(完整版)高中数学线性规划各类习题精选

(完整版)高中数学线性规划各类习题精选
(完整版)高中数学线性规划各类习题精选

线性规划

基础知识:

一、知识梳理

1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.

2.可行域:约束条件所表示的平面区域称为可行域.

3. 整点:坐标为整数的点叫做整点.

4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.

5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识:

一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0

2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0

3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,

(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0

2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域:

①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.

包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;

注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法:

取特殊点检验; “直线定界、特殊点定域

原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入

Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,

当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

例题:

1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC

?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

2. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,

点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题: ①z x y =+在 处有最大值 ,在 处有最小值 ; ②z x y =-在 处有最大值 ,在 处有最小值

3. 若x 、y 满足条件?????≤+-≥+-≤-+.0104010230122y x y x y x ,

求y x z 2+=的最大值和最小值 4. 设实数x y ,满足20240230x y x y y --??+-??-?

≤,≥,≤,

,则y

z x =的最大值是__________. 5. 已知05≥-+y x ,010≤-+y x .求2

2

y x +的最大、最小值

6. 已知2040250x y x y x y -+??+-??--?

,,,≥≥≤求22

1025z x y y =+-+的最小值

7. 给出平面区域如右图所示,若使目标函数z=ax+y (a > 0 )取得最大值的最优解有无穷多个,则a 的值为( ) A.

41 B.53 C.4 D.3

5 8.已知变量,x y 满足约束条件241y x y x y ≤??

+≥??-≤?

,则3z x y =+的最大值为

( )

()A 12 ()B 11 ()C 3

()D -1

9.设变量,x y 满足-100+20015x y x y y ≤??

≤≤??≤≤?

,则2+3x y 的最大值为

A .20

B .35

C .45

D .55

10.若,x y 满足约束条件1030330x y x y x y -+≥???

+-≤??

+-≥??,则3z x y =-的最小值为 。

11.设函数

ln ,0

()21,0x x f x x x >?=?

--≤?,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)

处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 . 12.某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )

A 、1800元

B 、2400元

C 、2800元

D 、3100元

13.若,x y 满足约束条件:02323

x x y x y ≥??

+≥??+≤?;则x y -的取值范围为_____.

14.设,x y 满足约束条件:,0

13x y x y x y ≥??

-≥-??+≤?

;则2z x y =-的取值范围为 .

15.设不等式组x 1x-2y+30y x ≥??

≥??≥?所表示的平面区域是1Ω,平面区域是2Ω与1Ω

关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值

等于( )

A.285

B.4

C. 12

5 D.2

16. 设不等式组??

?≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是

A 4π

B 22π-

C 6π

D 44π-

17.若实数x 、y 满足10

,0x y x -+≤??

>?则y x 的取值范围是 ( ) A.(0,1) B.(

]

0,1

C.(1,+∞)

D.[)1,+∞

18.已知正数a b c ,

,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b

a 的取值范围

是 .

19.设平面点集{}

221(,)()()0,(,)(1)(1)1

A x y y x y

B x y x y x ??

=--≥=-+-≤????,则

A B I 所表示的平面图形的面积为

A 34π

B 35π

C 47π

D 2π

20.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤

且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )

A .2

B .1

C .12

D .1

4

21.若A 为不等式组002x y y x ≤??

≥??-≤?

表示的平面区域,则当a 从-2连续变化到1时,动

直线x y a +=扫过A 中的那部分区域的面积为 .

22.若不等式组

3434x x y x y ≥??

+≥??+≤?

所表示的平面区域被直线

4

3y kx =+

分为面积相

等的两部分,则k 的值是

(A )73 (B ) 37 (C )43 (D ) 34高

23.若0,0≥≥b a ,且当???

??≤+≥≥1

,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于__________.

24.在平面直角坐标系中,若不等式组101010

x y x ax y +-≥??

-≤??-+≥?(α为常数)所表示的平面区域内的面积等于2,则a 的值为

A. -5

B. 1

C. 2

D. 3

25.若直线x y 2=上存在点),(y x 满足约束条件???

??≥≤--≤-+m x y x y x 0

3203,则实数m 的最大

值为( )

A .21

B .1

C .23

D .2

26.设二元一次不等式组2190802140

x y x y x y ?+-?

-+??+-?,,≥≥≤所表示的平面区域为M ,使函数

(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )

A .[1,3]

B .[2,10]

C .[2,9]

D .[10,9]

27.设不等式组 110

330530x y x y x y 9+-≥??

-+≥??-+≤? 表示的平面区域为D ,若指数函数y=x

a 的图像上存在区域D 上的点,则a 的取值范围是

A (1,3]

B [2,3]

C (1,2]

D [ 3, +∞] 28.设m 为实数,若{250(,)30

0x y x y x mx y -+≥??

-≥??+≥?}

22

{(,)|25}x y x y ?+≤,则m 的取值范围是___________.

29.若实数x ,y 满足不等式组330,

230,10,x y x y x my +-≥??

--≤??-+≥?

且x y +的最大值为9,则实数m =( )

A 2-

B 1-

C 1

D 2

30.若x ,y 满足约束条件1122

x y x y x y +≥??

-≥-??-≤?,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是 ( )

A .(1-,2)

B .(4-,2)

C .(4,0]-

D . (2,4)-

31.设m >1,在约束条件下,???

??≤+≤≥1

y x mx y x y 目标函数z=x+my 的最大值小于2, 则m 的取值范围为

A .)21,1(+

B .),21(+∞+

C .(1,3)

D .),3(+∞

32.设x ,y 满足约束条件???

??≥≥≥+-≤--0

,0020

63y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的

值是最大值为12,则23

a b +

的最小值为( ) A. 625 B. 38 C. 311

D. 4

33.设,x y 满足约束条件2208400 , 0x y x y x y -+≥??

--≤??≥≥?,若目标函数()0,0z abx y a b =+>> 的最

大值为8,则a b +的最小值为________.

1.略

2.①点A,6,边界BC,1

②点C,1,点B,-3

3.2

4.3 2

5.最大、最小值分别是50和

2

25

6.

2

9

7.B

8.B

9.D

10.-1

11.2

12.C

13.[3,0]

-

14.[-3,3]

15.B

16.D

17.C

18.[] 7

e,

19.D

20.B

21.7 4

22.A

23.1

24.D

25.B

26.C

27.A

28.

4 [0,]

3

29.C

30.B

31.A

32.A

33.4

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学简单线性规划复习题及答案(最全面)

简单线性规划复习题及答案(1) 1、设,x y 满足约束条件?? ? ??≤--≥-+≥-0 2020 2y x y x y x ,则22y x ++的最大值为 45 2、设变量,x y 满足?? ? ??≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:1 3、若实数x 、y ,满足?? ? ??≤+≥≥12 3400 y x y x ,则13++=x y z 的取值范围是]7,43[. 4、设y x z +=,其中y x ,满足?? ? ??≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为 5、已知x 、y 满足以下条件220 240330 x y x y x y +-≥??-+≥??--≤? ,则22 z x y =+的取值范围是 4[,13]5 6、已知实数,x y 满足约束条件10 10310 x y x y x y +-≤??-+≥??--≤? ,则22 (1)(1)x y -+-的最小值为 12 7、已知,x y 满足约束条件10 00 x x y x y m -≥?? -≤??+-≤? ,若1y x +的最大值为2,则m 的值为 5 8、表示如图中阴影部分所示平面区域的不等式组是 ?? ? ??≥-+≤--≤-+0623063201232y x y x y x

9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤?? --≤??>? ,则实数m 的取值范围是 (,1)-∞ 10、已知实数y ,x 满足10103x y x y y -+≥?? +-≤??≥-? ,则3z x y =+的最小值为 -3 11、若,x y 满足约束条件10, 0,40,x x y x y -≥??-≤??+-≤? 则x y 的最小值为 13. 12、已知110220x x y x y ≥??-+≤??--≤? ,则22 (2)(1)x y ++-的最小值为___10_ 13、已知,x y 满足不等式0303x y x y x -≥?? +-≥??≤? ,则函数3z x y =+取得最大值是 12 14、已知x ,y 满足约束条件?? ? ??≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-6 15、以原点为圆心的圆全部在区域?? ? ??≥++≤-+≥+-0 9430420 63y x y x y x 内,则圆面积的最大值为 π516

高中数学(人教版A版必修五)配套单元检测:第3章:3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二) 课时目标 1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型. 1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域; (5)利用线性目标函数(直线)求出最优解; 根据实际问题的需要,适当调整最优解(如整数解等). 2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小. 一、选择题 1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( ) A.????? a 1x +a 2y ≥c 1, b 1 x +b 2 y ≥c 2 ,x ≥0,y ≥0 B.????? a 1x +b 1y ≤c 1, a 2 x +b 2 y ≤c 2 , x ≥0, y ≥0 C.????? a 1x +a 2y ≤c 1, b 1 x +b 2 y ≤c 2 ,x ≥0,y ≥0 D.????? a 1x +a 2y =c 1, b 1 x +b 2 y =c 2 , x ≥0, y ≥0 2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C .4 D.53 3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对

新编【人教A版】高中数学:必修2课本例题习题改编(含答案)

A A ' B B ' C C ' 2 3 新编人教版精品教学资料 2015版人教A 版必修2课本例题习题改编 湖北省安陆市第一高级中学 伍海军 597917478@https://www.360docs.net/doc/e01159770.html, 1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称. 改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积; (Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ. 解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱. 由于底面ABC ?的高为1,所以2 2 112AB =+=. 故所求全面积22ABC BB C C ABB A S S S S ''''?=++ 1 221322328622 =???+?+??=+2(cm ). 这个几何体的体积121332 ABC V S BB ?'=?=???=3 (cm ) (Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠. 俯视图 A 正视图 侧视图 A ' B B 'A B C A B C A ' B ' C ' 1 2 3 11 3 正视图 侧视图 俯视图

2 P P 正视图 侧视图 O O O ' O ' 2 2 22 2 2 2 俯视图 P O O ' 在Rt BB C ''?中,22223213BC BB B C ''''=+=+=,故33 cos 1313 13BB BC θ'= =='. 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为 3cm ). 所以所求表面积2 1212127S ππππ=?+??+??=2 (cm ), 所求体积221 3 1213233 V ππππ=??+???=+ 3(cm ). 3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。 改编 已知直角三角形ABC ,其三边分为c b a ,,,(c b a >>).分别以三角形的a 边,b 边,c 边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为321,,S S S 和 321,,V V V ,则它们的关系为 ( ) A .321S S S >>, 321V V V >> B .321S S S <<, 321V V V << C .321S S S >>, 321V V V == D .321S S S <<, 321V V V == 解:a a bc V c b a bc S 211)(31),)(( ππ=+=,22223 1 ,bc V c ac S πππ=+= , c b V b ab S 23233 1 ,πππ=+=, 选B. 4.原题(必修2第32页图像)改编 如图几何体是圆柱挖去一个同底等高的圆锥所得,现用一个竖直的平面截这个几何体,所得截面可能是:

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

高中数学线性规划问题

高中数学线性规划问题 一.选择题(共28小题) 1.(2015?马鞍山一模)设变量x,y满足约束条件:,则z=x ﹣3y的最小值() A.﹣2 B.﹣4 C.﹣6 D.﹣8 2.(2015?山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=() A.3 B.2 C.﹣2 D.﹣3 3.(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为() A.﹣3 B.1 C.D.3 4.(2015?福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于() A.﹣2 B.﹣1 C.1 D.2 5.(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()

A.﹣1 B.﹣2 C.﹣5 D.1 6.(2014?新课标II)设x,y满足约束条件,则z=2x﹣ y的最大值为() A.10 B.8 C.3 D.2 7.(2014?安徽)x、y满足约束条件,若z=y﹣ax取得最 大值的最优解不唯一,则实数a的值为() A.或﹣1 B.2或C.2或1 D.2或﹣1 8.(2015?北京)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2 9.(2015?四川)设实数x,y满足,则xy的最大值为()A. B. C.12 D.16 10.(2015?广东)若变量x,y满足约束条件,则z=3x+2y 的最小值为() A.4 B. C.6 D. 11.(2014?新课标II)设x,y满足约束条件,则z=x+2y 的最大值为() A.8 B.7 C.2 D.1

12.(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4, 则k的值为() A.2 B.﹣2 C.D.﹣ 13.(2015?开封模拟)设变量x、y满足约束条件,则目标函 数z=x2+y2的取值范围为() A.[2,8] B.[4,13] C.[2,13] D. 14.(2016?荆州一模)已知x,y满足约束条件,则z=2x+y 的最大值为() A.3 B.﹣3 C.1 D. 15.(2015?鄂州三模)设变量x,y满足约束条件,则s= 的取值范围是() A.[1,] B.[,1] C.[1,2] D.[,2] 16.(2015?会宁县校级模拟)已知变量x,y满足,则u= 的值范围是() A.[,] B.[﹣,﹣] C.[﹣,] D.[﹣,]

最新人教版 高中数学必修一课后习题配套答案

人教版高中数学必修1课后习题答案(第一章集合与函数概念)人教A版

习题1.2(第24页)

练习(第32页) 1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值, 而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.解:图象如下 [8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设 12,x x R ∈,且12x x <, 因为 121221()()2()2() 0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数. 5.最小值. 练习(第36页)

1.解:(1)对于函数 42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数; (2)对于函数 3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数 3()2f x x x =-为奇函数; (3)对于函数 21 ()x f x x +=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有 22()11 ()()x x f x f x x x -++-==-=--, 所以函数21 ()x f x x +=为奇函数; (4)对于函数 2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内 每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数 2()1f x x =+为偶函数. 2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的. 习题1.3(第39页) 1.解:(1) 函数在5(,)2-∞上递减;函数在5 [,)2 +∞上递增; (2)

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

人教版高中数学总复习[知识梳理简单的线性规划(基础)

简单的线性规划 【考纲要求】 1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 2.会从实际情境中抽象出一元二次不等式模型。 3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组; 4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 5.熟练应用不等式性质解决目标函数的最优解问题。 【知识网络】 【考点梳理】 【不等式与不等关系394841 知识要点】 考点一:用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 要点诠释: 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线); ②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。 简称:“直线定界,特殊点定域”方法。 考点二:二元一次不等式表示哪个平面区域的判断方法 因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧. 要点诠释: 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法: 因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号 简单的线性规划 二元一次不等式(组)表示的区域 简单应用 不等式(组)的应用背景

人教版高中数学全套教材例题习题改编(高考必做,高考题来源)

人教A 版必修1课本例题习题改编 1.原题(必修1第七页练习第三题(3))判断下列两个集合之间的关系:A={} {}|410|20,x x x N B x x m m N ++∈==∈是与的公倍数,, 改编 已知集合4x x M x N N **??=∈∈????且10,集合40x N x Z ?? =∈???? ,则( ) A .M N = B .N M ? C .20x M N x Z ?? =∈???? D .40x M N x N *?? =∈???? 解:{}20,M x x k k N *==∈, {} 40,N x x k k Z ==∈,故选D . 2.原题(必修1第十二页习题1.1B 组第一题)已知集合A={1,2},集合B 满足A ∪B={1, 2},则这样的集合B 有 个. 改编1 已知集合A 、B 满足A ∪B={1,2},则满足条件的集合A 、B 有多少对?请一一写出来. 解:∵A ∪B={1,2},∴集合A ,B 可以是:?,{1,2};{1},{1,2};{1},{2};{2},{1,2};{2},{1};{1,2},{1,2};{1,2},{1};{1,2},{2};{1,2},?.则满足条件的集合A 、B 有9对. 改编2 已知集合A 有n 个元素,则集合A 的子集个数有 个,真子集个数有 个 解:子集个数有2n 个,真子集个数有21n -个 改编3 满足条件 {}{} 1,21,2,3A =的所有集合A 的个数是 个 解:3必须在集合A 里面,A 的个数相当于2元素集合的子集个数,所以有4个. 3.原题(必修1第十三页阅读与思考“集合中元素的个数”)改编 用C(A)表示非空集合A 中的元素个数,定义 ?? ?<-≥-=*C(B) C(A)当C(A),C(B)C(B) C(A)当C(B),C(A)B A ,若 {}{} 02)ax ax)(x (x x B ,1,2A 22=+++==,且1B A =*,则由实数a 的所有可能取值构 成的集合S = . 解:由{ }2C(A)1,2A ==得,而1B A =*,故3C (B )1C (B )==或.由02)ax ax )(x (x 22=+++得02)ax (x 0ax )(x 22=++=+或. 当1C(B)=时,方程02)ax ax )(x (x 2 2 =+++只有实根0x =,这时0a =.

2020高考:高中数学线性规划各类习题精选

线性规划 基础知识: 一、知识梳理 1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数. 2.可行域:约束条件所表示的平面区域称为可行域. 3. 整点:坐标为整数的点叫做整点. 4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决. 5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识: 一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=0 2. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<0 3. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>0 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不. 包括边界; ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 取特殊点检验; “直线定界、特殊点定域 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。 例题: 1. 如图1所示,已知ABC ?中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC ?内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或z =你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?

高中数学专题讲义-线性规划

【例1】 设O 为坐标原点,(1,1)A ,若点B 满足2222101212x y x y x y ?+--+????≥≤≤≤≤, 则OA OB ?u u u v u u u v 的最小值为( ) A .2 B .2 C .3 D .22+ 【例2】 已知变量,x y 满足120x y x y ????-? ≥≤≤,则x y +的最小值为( ) A .2 B .3 C .4 D .5 【例3】 不等式组0,10, 3260x x y x y ??--??--?≥≥≤所表示的平面区域的面积等于 . 典例分析 线性规划

【例4】设变量,x y满足约束条件 3 1 x y x y + ? ? -- ? ≥ ≥ ,则目标函数2 z y x =+的最小值为() A.1B.2C.3D.4 【例5】设变量,x y满足 0, 10 3260 y x y x y ? ? -- ? ?-- ? ≥ ≥ ≤ ,则该不等式组所表示的平面区域的面积等 于,z x y =+的最大值为. 【例6】目标函数2 z x y =+在约束条件 30 20 x y x y y +- ? ? - ? ? ? ≤ ≥ ≥ 下取得的最大值是________. 【例7】下面四个点中,在平面区域 4 y x y x <+ ? ? >- ? 内的点是() A.(0,0)B.(0,2)C.(3,2) -D.(2,0) -

【例8】已知平面区域 1 ||1 (,)0,(,) 1 y x y x x y y M x y y x ?? + ? ?? -+ ? ?? ??? Ω== ?????? ? ?? ????? ? ?? ≤ ≤ ≥ ≥ ≤ ,向区域Ω内 随机投一点P,点P落在区域M内的概率为() A.1 4 B. 1 3 C. 1 2 D. 2 3 【例9】若x,y满足约束条件 30 03 x y x y x + ? ? -+ ? ? ? ≥ ≥ ≤≤ ,则2 z x y =-的最大值为. 【例10】已知不等式组 y x y x x a ? ? - ? ? ? ≤ ≥ ≤ ,表示的平面区域的面积为4,点() , P x y在所给平面区 域内,则2 z x y =+的最大值为______.

高中数学必修5常考题型:简单的线性规划问题

简单的线性规划问题 【知识梳理】 线性规划的有关概念 【常考题型】 题型一、求线性目标函数的最值 (X+2Q2, 【例1】设变重X, *满足约束条件〈2x+ y<4, 则目标函数z= 3x- V的取值范围 〔4*- - 1, 是() 3 A. -6 C. [-L6] D. -6, 3. "+2E, [解析]约束条件〈2X+V<4,y> - 1所表示的平面区域如图阴影部分,直线y= 3x- Z斜率为

3 z 取最小值- 3 .??z=3x-y 的取值范围为6」,故选A. [答案]A 【类题通法】 解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而 言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点. 【对点训练】 X- 4y< -3, 3x+5y<25, 求z 的最大值和最小值. Q1, [解]作出不等式组表示的平面区域,即可行域,如图所示.把z=2x+>变形为v=-2x +乙则得到斜率为-2,在)/轴上的截距为乙旦随z 变化的一组平行直线.由图可以看出, 当直线z=2x+*经过可行域上的点/时,截距z 最大,经过点8时,截距z 最小. |x-4y+3 = 0, 解方程组i3H5 =。,得/点坐标为厚), X=l, 解方程组L-4*+3 =。,得8点坐标为("), 大值 = 2x5 + 2=12, z 建小值=2x 1 + 1 = 3. ( 于4尸 3=0 =0

题型二、求非线性目标函数的最值 ( X- y+5>0, X+VA O,x<3. ⑴求"=/+必的最大值与最小值; V ⑵求 >=六的最大值与最小值. X— O [解]画出满足条件的可行域如图所示, (1) /+,=。表示一组同心圆(圆心为原点Q,旦对同一圆上的点】+必的值都相等,由图可知:当(X, M在可行域内取值时,当旦仅当圆。过c点时,〃最大,过(0,0)时,〃最小.又Q3,8),所以u意大也=73、"缺小值=0. y (2) v^=—表示可行域内的点Rx, H到定点Q(5,0)的斜率,由图可知,蜘最大,处。最 A— O 小,又03,8), 8(3, -3), -3 3 8 所以/ 是大渲= 3 — 5 = 1',照小坦=3 _ 5 = 一4? 【类题通法】 非线性目标函数最值问题的求解方法 ⑴非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果?

2019人教版 高中数学 选修2-2课本例题习题改编(含答案)

2019人教版精品教学资料·高中选修数学 选修2-2课本例题习题改编 1.原题(选修2-2第十一页习题1.1B 组第一题)改编 在高台跳水中,t s 时运动员相对水面的高度(单位:m )是105.69.4)(2 ++-=t t t h 则t=2 s 时的速度是_______. 解:5.68.9)(+-='t t h 由导数的概念知:t=2 s 时的速度为 )/(1.135.628.9)2(s m h -=+?-=' 2.原题(选修 2-2 第十九页习题 1.2B 组第一题)改编记 21 sin 23sin ,23cos ,21cos -===c B A ,则A,B,C 的大小关系是( ) A .A B C >> B .A C B >> C . B A C >> D. C B A >> 解:时的导数值,,在分别表示,2321sin 23cos 21 cos = x x 记)2 3 sin 23(,21sin 21,),(N M 根据导数的几何意义A 表示sinx 在点M 处的切线的斜率,B 表示sinx 在点N 处的切线的斜率,C 表示直线MN 的斜率, 根据正弦的图像可知A >C >B 故选B 32.5 2 1.5 1 0.5 0.5 1 1.5 2 2.5 3 54321 1 2 3 4 5 f x () = sin x () M N 3.原题(选修2-2第二十九页练习第一题)改编 如图是导函数/ ()y f x =的图象,那么函数 ()y f x =在下面哪个区间是减函数

A. 13(,)x x B. 24(,)x x C.46(,)x x D.56(,)x x 解:函数的单调递减区间就是其导函数小于零的区间,故选B 4.原题(选修2-2第三十二页习题 1.3B 组第1题(4))改编 设02 x π << ,记 s i n ln sin ,sin ,x a x b x c e === 试比较a,b,c 的大小关系为( ) A a b c << B b a c << C c b a << D b c a << 解:先证明不等式ln x x x e << x>0 设()ln ,0f x x x x =-> 因为1 ()1,f x x '= -所以,当01x <<时,1()10, f x x '=->()f x 单调递增,()ln (1)10f x x x f =-<=-<;当1x >时1 ()10,f x x '=-<()f x 单调递减, ()l n (1)1f x x x f =-< =-<;当x=1时,显然ln11<,因此ln x x < 设(),0x g x x e x =-> ()1x g x e '=- 当0()0x g x '><时 ()(0,+g x ∴∞在)单调递减 ∴()(0)0g x g <= 即x x e < 综上:有ln x x x e <<,x>0成立 02 x π << ∴0sin 1x << ∴ sin ln sin sin x x x e << 故选A 5.原题(选修2-2第三十七页习题1.4A 组第1题)改编 用长为18 m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是_________. 解:设长方体的宽为x m ,则长为2x m ,高??? ?? -=-=230(m)35.441218<<x x x h . 故长方体的体积为).2 30)((m 69)35.4(2)(3322<<x x x x x x V -=-= 从而2 ()181818(1).V x x x x x '=-=- 令0(X)V =',解得x =0(舍去)或x =1,因此x =1. 当0<x <1时,(X)V '>0;当1<x < 3 2 时,(X)V '<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值. 从而最大体积V =3(m 3 ),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3 . 6.原题(选修2-2第四十五页练习第二题)改编 一辆汽车在笔直的公路上变速行驶,设

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

相关文档
最新文档