原核生物与真核生物在遗传信息表达上有何不同

原核生物与真核生物在遗传信息表达上有何不同
原核生物与真核生物在遗传信息表达上有何不同

二RNA的生物合成(转录)

生物体以DNA中的一条单链为模板,NTP为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程称为转录。真核生物一个mRNA分子一般只含有一个基因,编码产物为单顺反子。原核生物的一个mRNA分子通常含有多个基因,编码产物为多顺反子。

(一)转录体系:DNA模板、4种NTP、RNA聚合酶某些蛋白因子和必要的无机离子。(二)转录DNA模板

RNA转录模板并非DNA的全部基因,而是DNA链上区段结构基因。发生转录的链成为模板链,相对应的另一条链为编码链,模板链并不是总在同一条链上。

(三)转录特点:不对称转录,边转录边翻译(原核生物)

(四)RNA聚合酶:原核生物和真核生物RNA聚合酶种类不同,原核生物中RNA聚合酶可以直接起始转录合成RNA,真核生物则不能。在真核生物中,三种RNA聚合酶都必须在蛋白质转录因子的协助下才能进行RNA的转录。主要见表3

(五)原核生物以操纵子为一个转录单位。

表3原核生物和真核生物RNA聚合酶的特点

原核生物RNA聚合酶真核生物RNA聚合酶

1种(RNA-pol),5个亚基(α2ββ'ζ)3种(RNA-polⅠ、Ⅱ、Ⅲ)

RNA-pol具有合成mRNA,rRNA,tRNA的功能,没有校对功能,缺乏3'→5'外切酶活性

α2 位于启动子上游,决定哪些基因被转录β与底物NTP结合,形成磷酸二酯键

β'酶与模板结合的主要部位

ζ辨认起始点(无催化活性)、Ⅱ、Ⅲ由于识别不同的启动因子而分别识别不同的基因。转录

RNA-polⅠ定位核仁,转录45S- rRNA

RNA-polⅡ定位核浆,转录产生hnRNA

RNA-polⅢ定位核浆,转录产生tRNA,

5S- rRNA,snRNA.

(三)DNA复制的过程

原核生物和真核生物DNA的过程大致可分为:起始+延长+终止三个阶段。

1、起始阶段表2

(1)解链/旋,解链/旋酶催化。

(2)起始点识别。

(3)原核生物形成复制叉。(真核生物形成多个复制单位)

(4)引物酶催化引物合成。引发体与引物酶结合到DNA链上,在引物酶的作用下合成一小段引物。

表2原核生物和真核生物DNA复制的起始阶段的特点比较

原核生物真核生物

复制起始点

起始点识别

引物

起始点长度

复制单位

参与的酶和蛋白因子

一个OriC

DnaA

长、多

一个双向复制

DnaA识别复制起始点

DnaB解螺旋酶活性

DnaC运载和协助DnaB

DnaG引物酶活性

SSB稳定解开的单链DNA

拓扑酶理顺DNA双链

多个

可能有“蛋白质-DNA复合物参与”

短、少

多个双向复制

DNA-polα起始引发,引物酶活性

DNA-polδ解螺旋酶活性

增殖细胞核抗原

复制因子

拓扑酶理顺DNA双链

2、复制的延长

单个核苷酸以3',5'-磷酸二酯键相连与新链上,复制方向从5'→3,合成领头链和随从链。

原核生物复制的延长参与的酶主要是DNA-polⅢ催化,NAD+供能;真核生物DNA-polδ在增殖细胞核抗原的协同下取代DNA-polα的作用合成DNA子链,ATP供能。真核生物以复制子各自进行复制,引物和冈崎片断较原核生物短,且引物除RNA外还有DNA,所以真核生物切除引物需要核内RNA酶,还需要核酸外切酶。

3、复制的终止

原核生物基因为环状的DNA,复制的终止点ter,催化填补空隙为DNA-polⅠ,DNA连接酶连接冈崎片段成DNA链。

真核生物基因为线状的DNA,其复制与核小体的装配同步进行,复制后形成染色体,DNA-polε填补空隙,存在端粒及端粒酶防止DNA的缩短(RNA引物留下的空白无法填补时出现DNA的缩短),其中端粒酶为RNA-蛋白质的复合体,具逆转录酶活性。

(二)DNA的复制的必要条件

1、摸板:母链DNA解链成单链后的两条链均可作为摸板。

2、原料:4种脱氧核苷三磷酸。

3、需要一小段RNA作为引物,提供3'-OH末段。

4、需要ATP和无机离子。

5、需要多种酶和蛋白因子:如引物酶、DNA聚合酶、拓扑酶、SSB蛋白等。

以上必要条件中,原核生物和真核生物在DNA的复制所需要引物、酶和蛋白因子等存在差别。其中DNA聚合酶种类存在较大的差别。DNA聚合酶是指以DNA为摸板,在RNA引物3'-OH末段沿5'→3'方向按照碱基互补的原理催化合成DNA链的酶,也称为依赖DNA的DNA聚合酶。原核生物和真核生物DNA聚合酶的区别主要见下表1

表1原核生物和真核生物DNA聚合酶的区别

原核生物DNA聚合酶真核生物DNA聚合酶

DNA-polⅠ复制过程中的校读,填补缺口,修复。DNA-polⅡDNA损伤的应急修复。

DNA-polⅢ延长新链核苷酸的聚合。DNA-polα起始引发,引物酶活性。

DNA-polβ低保真复制。

DNA-polγ催化线粒体DNA的复制。

DNA-polδ延长子链的主要酶,解螺旋酶活性。DNA-polε填补引物空隙,切除修复,重组。

原核生物三种DNA聚合酶都有5'→3'聚合活性和3'→5'外切酶活性,不同的是DNA-polⅠ还有5'→3'外切酶活性,即外切酶活性有双方向。真核生物五种DNA聚合酶都有5'→3'外切酶活性,DNA-polα,DNA-polβ无

3'→5'外切酶活性,DNA-polβ无5'→3'聚合活性。

2008-11-08 14:17

原核生物和真核生物遗传物质传递过程中的比

分子生物学中心法则阐明了遗传物质传递的规律,通过DNA复制、转录、翻译使遗传信息代代相传并表达为执行生命活动的生物大分子。原核生物和真核生物由于在细胞内部结构与职能分工、遗传装置的扩增和复杂化上存在差别,致在遗传信息传递过程既有相同点也有差别。

一DNA的复制

复制是指遗传信息的传代,以母链DNA为摸板合成子链DNA的过程。碱基配对规律和DNA双螺旋结构是复制的分子基础,其化学本质是酶促的生物细胞内单核苷酸的聚合。真核细胞在细胞周期中有专门的DNA复制期(S期);原核细胞则没有,其DNA复制常是连续进行的。原核生物和真核生物DNA的复制过程原则上相同,具体细节存在差别。

(一)DNA的复制的规律

无论是原核生物还是真核生物都遵循半保留复制、双向复制、半不连续复制的基本规律。

1、半保留复制:以母链DNA为摸板,四种dNTP为原料,DNA聚合酶等酶和蛋白因子的参与下,按照碱基互补配对的原则合成子链DNA,其中新合成子链DNA双链中一条为新合成,一条来自母链的复制方式称半保留复制。此种复制方式使亲代的遗传信息准确的传递给子代从而保证了遗传的高保真性和物种的延续性。

2、双向复制:DNA复制时从起始点向两个方向解链形成两个延伸方向相反的复制叉。

3、半不连续复制:DNA复制过程中由于DNA聚合酶需要引物提供3'-OH端,复制方向为5'→3',随从链需要解开一定的长度才能开始复制,即复制为不连续的,随从链上合成的片段称冈崎片段。这种领头链连续随从链不连续复制的方式为半不连续复制。

分子生物学课后题

第一章 1、简述细胞的遗传物质,怎样证明DNA是遗传物质? 答:核酸是细胞内的遗传物质,包括脱氧核糖核酸(|DNA)和核糖核酸(RNA)两类,DNA是主要的遗传物质,具有储存遗传信息,将遗传信息传递给子代,物理化学性质稳定,有遗传变异能力适合作为遗传信息的特性,T2噬菌体侵染实验证明了DNA是遗传物质,将蛋白质被35S标记和DNA被32P 标记的T2噬菌体分别侵染E.coli后,发现进入宿主细胞的只有32P标记的DNA,而无35S标记物,所产生的子代噬菌体只含有32P标记的DNA,无S标记的蛋白质,因此证明DNA是遗传物质。 2、研究DNA的一级结构有什么重要的生物学意义? 答:DNA的一级结构是指DNA分子中的核苷酸排列顺序,它反映了生物界物种的多样性和复杂性,任何一段DNA序列都可以反映出它的高度的个体性和种族特异性,另外DNA一级结构决定其高级结构,研究DNA一级结构对阐明遗传物质结构、功能及表达调控都极其重要。 3、简述DNA双螺旋结构与现在分子生物学发展的关系。 答:DNA双螺旋结构具有碱基互补配对原则具有极其重要的生物学意义,它是DNA复制、转录、逆转录等基因复制与表达的分子基础。DNA为双链,维持了遗传物质的稳定性。 4、DNA双螺旋结构有哪些形式?说明其主要特点和区别。 答:主要有B-DNA,A-DNA,E-DNA形式 B-DNA:每一螺周含有10个碱基对,两个核苷酸之间夹角为36度 A-DNA:碱基对与中心倾角为19度,螺旋夹角为32.7度 E-DNA:左手螺旋,每圈螺旋含12对碱基,G=C碱基对非对称地位于螺旋轴附近。 第二章 1、简述DNA分子的高级结构。 答:1、单链核酸形成的二级结构(发夹结构)2、反向重复序列(十字架结构,每条链从5'--3'方向阅读)3、三股螺旋的DNA(一条链为全嘌呤核苷酸链,另一条链为全嘧啶核苷酸链)4、DNA的四链结构5、DNA结构的动态性与精细结构6、DNA的超螺旋结构与拓扑学性质。 2、什么是DNA的拓扑异构体,它们之间的相互转变依赖于什么? 答:DNA不同的空间分子构象又称拓扑异构体它们之间转换依赖于连环数L。连环数是指双螺旋DNA中两条链相互缠绕交叉的总次数。 3、简述真核生物染色体的组成,它们是如何组装的? 答:真核生物的染色体在间期表现为染色质,染色质是以双链DNA作为骨架与组蛋白和非组蛋白及少量各种RNA等共同组成的丝状结构的大分子物质、 组装的顺序:DNA—核小体链—纤丝—突环—玫瑰花结—螺旋圈—染色体 4、简述细胞内RNA的分布结构特点 答:成熟的RNA主要分布在细胞质中,无论是真核或原核细胞质中,成千上万种的RNA都分为三大类:1、转运RNA 2、信使RNA 3、核蛋白体RNA。细胞核内的RNA统称为nRNA. 5、简述细胞内RNA的结构特点以及与DNA的区别。 答:1、碱基组成不同,RNA分子主要是A G C U 而DNA以T代替U。 2、RNA分子中的核糖都是D-核糖,而DNA则是D-2-脱氧核糖。 3、RNA分子中有许多稀有,微量碱基,而DNA除个别外,不含有稀有碱基 4、RNA分子中嘌呤碱基与嘧啶碱基不一定相等。 5、RNA分子具有逆转录作用,RNA翻译成蛋白质是遗传物质,是遗传信息的传递结合表达者。 6、RNA分子具有催化功能。 6、引起DNA变性的主要因素有哪些?核酸变性后分子结构和性质发生了哪些变化? 答:①加热②极端PH值③有机溶剂,尿素和酰胺等 核酸变性后氢键被破坏而断裂,双链变为单链,而磷酸二酯键并未锻裂在A260nm 处呈现增色效应。DNA溶液的黏度大大下降、沉淀速度增加、浮力密度上升。紫外吸收光谱升高。酸碱滴定曲线改变,生物活性丧失等。 7、检测核酸变性的定性和定量方法是什么?具体参数如何? 答:在DNA变性过程中,紫外吸收光谱的变化时检测变性最简单的定性和定量方法。核酸在260nm 处具有特征的吸收峰,便是为A260nm。以50ug/ml DNA溶液在A260下测定,三者的A260数值为:

真核生物基因表达的调控

真核生物基因表达的调控 一、生物基因表达的调控的共性 首先,我们来看看在生物基因表达调控这一过程中体现的共性和一些基本模式。 1、作用范围。生物体内的基因分为管家基因和奢侈基因。管家基因始终表达,奢侈基因只在需要的时候表达,但二者的表达都受到调控。可见,调控是普遍存在的现象。 2、调控方式。基因表达有两种调控方式,即正调控与负调控,原核生物和真核生物都离不开这两种模式。 3、调控水平。一种基因表达的调控可以在多种层面上展开,包括DNA水平、转录水平、转录后加工水平、翻译后加工水平等。然为节省能量起见,转录的起始阶段往往作为最佳调控位点。 二、真核生物基因表达调控的特点 真核生物与原核细胞在结构上就有着诸多不同,这决定了二者在运行方面的迥异途径。真核生物比原核生物复杂,转录与翻译不同时也不同地,基因组与染色体结构复杂,因而有着更为复杂的调控机制。 1、 2、 3、 4、多层次。真核生物的基因表达可发生在染色质水平、转录起始水平、无操纵子和衰减子。 大多数原核生物以负调控为主,而真核生物启动子以正调控为主。 个体发育复杂,而受环境影响较小。真核生物多为多细胞生物,在转录后水平、翻译水平以及翻译后水平。

生长发育过程中,不仅要随细胞内外环境的变化调节基因表达,还要随发育的不同阶段表达不同基因。前者为短期调控,后者属长期调控。 从整体上看,不可逆的长期调控影响更深远。 三、真核生物基因表达调控的机制 介于真核生物表达以多层次性为最主要特点,我们可以分别从它的几个水平着眼,剖析它的调控机制。 1、染色质水平。真核生物基因组DNA以致密的染色质形式存在,发生在染色质水平的调控也称作转录前水平的调控,产生永久性DNA序列和染色质结构的变化,往往伴随细胞分化。染色质水平的调控包括染色质丢失、基因扩增、基因重排、染色体DNA的修饰,等等。a.基因丢失:丢失一段DNA或整条染色体的现象。在细胞分化过程中,可以通过丢失掉某些基因而去除这些基因的活性。某些原生动物、线虫、昆虫和甲壳类动物在个体发育中,许多体细胞常常丢失掉整条或部分的染色体,只有将来分化产生生殖细胞的那些细胞一直保留着整套的染色体。如马蛔虫2n=2,但染色体上有多个着丝粒。第一次卵裂是横裂,产生上下2个子细胞。第二次卵裂时,一个子细胞仍进行横裂,保持完整的基因组,而另一个子细胞却进行纵向分裂,丢失部分染色体。目前,在高等真核生物(包括动物、植物)中尚未发现类似的基因丢失现象。 b.基因扩增:基因扩增是指某些基因的拷贝数专一性增大的现象,它使得细胞在短期内产生大量的基因产物以满足生长发育的需要,是基因活性调控的一种方式。如非洲爪蟾卵母细胞中rDNA的基因扩增是因发育需要而出现的基因扩增现象;基因组拷贝数增加,即多倍性,在植物中是非常普遍的现象。基因组拷贝数增加使可供遗传重组的物质增多,这可能构成了加速基因进化、基因组重组和最终物种形成的一种方式。 c.基因重排:将一个基因从远离启动子的地方移到距它很近的位点从而启动转录,这种方式被称为基因重排。通过基因重排调节基因活性的典型例子是免疫球蛋白结构基因的表达。在人类基因组中,所有抗体的重链和轻链都不是由固定的完整基因编码的,而是由不同基因片段经重排后形成的完整基因编码的。

(完整版)DNA是主要的遗传物质教学设计(优质课)

《DNA是主要的遗传物质》一节的教学设计 一、教材分析 1、教材的地位和作用 《DNA是主要的遗传物质》是人教版普通高中新课程生物必修2《遗传与进化》中第3章第1节的内容。本节首先是以“问题探讨”的形式呈现了曾经在科学界争议了很长的问题:“ DNA 和蛋白质究竟谁是遗传物质?”目的在于引导学生思考如何对这一问题进行研究,激发学生的探索欲望;接着介绍了20世纪早期人们对于遗传物质的推测,在此基础之上教材详细讲述了DNA是遗传物质的直接证据──“肺炎双球菌的转化实验”和“噬菌体侵染细菌的实验”,引导学生重温科学家的探究历程,领悟科学的过程和方法,最终得出科学的结论。 本节是在学习了遗传的细胞基础、基因与染色体的关系等内容之后,从分子层面上认识遗传物质的本质,为学习DNA的复制,基因的表达和基因突变打下了基础。本内容的两个生物学经典实验,不仅向学生展示了生物学史上的重大事件,更重要的是其中的科学思维和方法对学生的科学素养的提高的重要的作用。 课标对本内容的要求为“总结人类对遗传物质的探索过程”,近几年的高考考纲知识点为“人类对遗传物质的探索过程”,要求为II级。课标和考纲对此均做了较高的要求,其原因与本节课的内容有关。 2、教学目标 (1)知识目标 ①总结两个经典实验的研究方法和思路 ②说明“DNA是主要的遗传物质”的含义 确立依据:本节内容的课程标准是“总结人类对遗传物质的探索过程”。本节内容包括两个人类在探索遗传物质的过程中的两个经典实验。此外,本节课的结论“DNA是主要的遗传物质”是重要的生物学事实,应当让学生理解。 (2)能力目标 通过分析两个经典实验,培养学生的逻辑思维 确立依据:本节内容以遗传物质的本质的探究历程为主线,以学生动脑分析实验现象得出实验结论为重点,让学生们从中体验科学研究的过程与方法。 (3)情感目标 ①体验科学探索的艰辛过程; ②认同人类对遗传物质的认识是不断深化、不断完善的过程;认同科学与技术的关系。 确立依据:本节教材介绍了人类探究遗传物质的过程和方法,可以加深学生对生物科学史本质的认识,特别是这些内容中所体现的生物学思想、技术手段促进科学的发展等观点对于学生的情感态度与价值观领域的发展有重要价值。 3、重点与难点

第三章第三节原核生物转录与遗传密码

第三章第三节原核生物转录与遗传密码 教学目标: 重难点: 教学内容: 一、原核生物转录 (一)转录起始 1 模板识别:第一步:RNA聚合酶的δ亚基发现识别位点,全酶就与启动子的-35区序列结合,形成一 个“封闭二元复合物”,封闭指此时DNA保持双螺旋结构,二元指DNA与RNA聚合酶;第 二步:与RNA聚合酶结合的启动子处DNA序列“溶解”,形成开放二元复合物,此过程, RNA聚合酶结构变化,DNA双链打开。 2 转录开始:RNA第一个核苷酸合成到RNA聚合酶离开启动子为止。 三元复合物处,RNA成功合成超过10个核苷酸链的RNA后离开启动子。 RNA聚合酶全酶释放δ因子,形成核心酶、DNA模板和新生RNA链组成的稳定三元延伸复合物。 (二)转录延伸:RNA聚合酶沿DNA双链移动,双链DNA解旋,模板暴露,核苷酸链接到3,端,形成RNA-DNA 杂合链;解链区后,DNA双链重新形成双螺旋。 (三)转录终止:一般情况下, RNA 聚合酶起始基因转录后,它就会沿着模板 5 '→ 3 '方向不停地移动,合成 RNA 链,直到碰上终止信号时才与模板 DNA 相脱离并释放新生 RNA 链;终 止发生时,所有参与形成 RNA-DNA 杂合体的氢键都必须被破坏,模板 DNA 链才能与有义 链重新组合成 DNA 双链。 不依赖于ρ因子的终止:不依赖于ρ因子的强终止子序列两个结构特征: ( 1 )在终止点之前具有一段富含 G-C 的回文区域;(2)富含 G-C 的区域之后是一连串的 DNA 碱基序列,它们转录的 RNA 链的末端为一连串 U (连续 6 个)。 模板 DNA 上存在终止转录的特殊信号―终止子,每个基因或操纵子都有一个启动子和一个终止子; 终止位点上游一般存在一个富含 GC 碱基的二重对称区,由这段 DNA 转录产生的 RNA 容易形成发卡式结构;在终止位点前面有一段 4 ~ 8 个 A 组成的序列,所以转录产物的 3 '端为寡聚 U ,这种结构特征的存在决定了转录的终止;在新生的 RNA 中出现发卡式结构会导致 RNA 聚合酶的暂停,破坏 RNA-DNA 杂合链 5 '端的正常结构。寡聚 U 的存在使杂合链的3 '端部分出现不稳定的 rU.dA 区域,两者共同作用使 RNA 从三元复合物中解离出来。 依赖于ρ因子的终止:ρ因子能使 RNA 聚合酶在 DNA 模板上准确地终止转录;ρ因子是一个相对分子质量为 2.0 × 105 蛋白,它能水解各种核苷酸三磷酸,实际上是一种 NTP 酶,它通 过催化 NTP 的水解促使新生 RNA 链从三元复合物中解离出来,从而终止转录。现在一般 认为, RNA 合成起始后,ρ因子即附着在新生的 RNA 链上,靠 ATP 水解产生的能量,

真核生物的基因表达调控机制

一、真核基因组的复杂性 与原核生物比较,真核生物的基因组更为复杂,可列举如下。 1. 真核基因组比原核基因组大得多,大肠杆菌基因组约4×106bp,哺乳类基因组在 109bp数量级,比细菌大千倍;大肠杆菌约有4000个基因,人则约有10万个基因。 2. 真核生物主要的遗传物质与组蛋白等构成染色质,被包裹在核膜内,核外还有遗传 成分(如线粒体DNA等),这就增加了基因表达调控的层次和复杂性。 3. 原核生物的基因组基本上是单倍体,而真核基因组是二倍体。 4. 如前所述,细菌多数基因按功能相关成串排列,组成操纵元的基因表达调控的单元, 共同开启或关闭,转录出多顺反子(polycistron)的mRNA;真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子(monocistron),基本上没有操纵元的结构,而真核细胞的许多活性蛋白是由相同和不同的多肽形成的亚基构成的,这就涉及到多个基因协调表达的问题,真核生物基因协调表达要比原核生物复杂得多。 5. 原核基因组的大部分序列都为基因编码,而核酸杂交等实验表明:哺乳类基因组中 仅约10%的序列为蛋白质、rRNA、tRNA等编码,其余约90%的序列功能至今还不清楚。 6. 原核生物的基因为蛋白质编码的序列绝大多数是连续的,而真核生物为蛋白质编码 的基因绝大多数是不连续的,即有外显子(exon)和内含子(intron),转录后需经剪接(splicing)去除内含子,才能翻译获得完整的蛋白质,这就增加了基因表达调控的环节。 7. 原核基因组中除rRNA、tRNA基因有多个拷贝外,重复序列不多。哺乳动物基因组 中则存在大量重复序列(repetitive sequences)。用复性动力学等实验表明有三类重复序列:1)高度重复序列(highly repetitive sequences),这类序列一般较短,长10-300bp,在哺乳类基因组中重复106次左右,占基因组DNA序列总量的10-60%,人的基因组中这类序列约占20%,功能还不明了。2)中度重复序列(moderately repetitive sequences),这类序列多数长100-500bp,重复101-105次,占基因组10-40%。例如哺乳类中含量最多的一种称为Alu的序列,长约300bp,在哺乳类不同种属间相似,在基因组中重复3×105次,在人的基因组中约占7%,功能也还不很清楚。在人的基因组中18S/28SrRNA基因重复280次,5SrRNA基因重复2000次,tRNA基因重复1300次,5种组蛋白的基因串连成簇重复30-40次,这些基因都可归入中度重复序列范围。3)单拷贝序列(single copy sequences)。这类序列基本上不重复,占哺乳类基因组的50-80%,在人基因组中约占65%。绝大多数真核生物为蛋白质编码的基因在单倍体基因组中都不重复,是单拷贝的基因。 从上述可见真核基因组比原核基因组复杂得多,至今人类对真核基因组的认识还很有限,使现在国际上制订的人基因组研究计划(human gene project)完成,绘出人全部基因的染色体定位图,测出人基因组109bp全部DNA序列后,要搞清楚人全部基因的功能及其相互关系,特别是要明了基因表达调控的全部规律,还需要经历很长期艰巨的研究过程。 二、真核基因表达调控的特点 尽管我们现在对真核基因表达调控知道还不多,但与原核生物比较它具有一些明显的特点。

原核生物知识点整理

第三章微生物细胞的结构和功能 第一节原核生物 原核生物细菌域:细菌(狭义)、放线菌、蓝细菌、支原体、立克次氏体和衣原体等 古细菌域 1.1细菌细胞的结构 细菌细胞的基本结构 细菌细胞的特殊结构 1.1.1细菌细胞的基本结构 1.细胞壁:是位于细胞最外的一层厚实、坚韧的外被, 主要由肽聚糖组成。 作用:维持细胞形状 保护细胞:外力,渗透压,有害物 协助鞭毛运动 某些病原菌细胞壁中某些成分与致病性有关 对细菌进行分类(革兰氏染色) 成为抗生素作用的靶点 》》革兰氏染色 根据革兰氏染色的结果可以将细菌分为两个主要的类群 紫色-革兰氏阳性细菌(Gram positive, G+)——eg.金黄色葡萄球菌 粉红色,红色-革兰氏阴性细菌(Gram negative, G-)——eg.大肠杆菌 过程:①结晶紫染色 ②碘液媒染 ③乙醇脱色 ④番红复染 革兰氏阳性菌和革兰氏阴性菌的细胞壁组成差异:肽聚糖,磷壁酸、脂多糖、分支菌酸 》》》肽聚糖(黏肽、胞壁质、粘质复合物) ◇肽聚糖肽四肽尾 肽桥 聚糖N-乙酰葡糖胺 N-乙酰胞壁酸

》》》革兰氏阳性细菌的细胞壁结构 ·很厚的肽聚糖层(peptidoglycan) ·磷壁酸(Teichoic acid) 革兰氏阳性细菌细胞壁特有的成分 通过磷酸基团相互连接的甘油或核糖醇的聚合物 根据结合部位不同,分为壁磷壁酸和膜磷壁酸。 磷壁酸的主要生理功能: 1.因带负电荷,故可与环境中的Mg 2+等阳离子结合,提高这些离子 在膜周围的浓度,以保证细胞膜上一些合成酶维持高活性的需要; 2.保证革兰氏阳性致病菌(如A族链球菌)与其宿主间的粘连; 3.构成革兰氏阳性细菌表面抗原的主要成分; 4.作为噬菌体吸附的受体; 5.调节细胞内自溶素的活力; 6.贮藏磷元素。 》》》革兰氏阴性细菌的细胞壁结构 ·外膜(Outer membrane)脂多糖 磷脂双分子层 脂蛋白 ——外膜位于细胞壁的最外层,厚18~20nm。由磷脂双分子层、脂蛋白与脂多糖组成。因含脂多糖,故常称为脂多糖层 磷脂双分子层与细胞膜的脂双层十分相似,只是其中插有跨膜的孔蛋白(porin),脂蛋白位于外壁层内侧,连接着磷脂双分子层与肽聚糖层。脂多糖位于外壁层的最外层,厚8~10nm。脂多糖(lipopolysaccharide,LPS)是革兰氏阴性细菌细胞壁特有的成分。 ——脂多糖的主要功能: ?细菌内毒素的物质基础; ?革兰氏阴性细菌细胞壁表面的抗原决定因子; ?作为许多噬菌体的吸附受体; ?有吸附Mg 2+、Ca 2+等阳离子以提高其在细胞表面的浓度的作用; ?起保护作用,它可以阻止溶菌酶、抗生素和染料等较大分子的物质的进入菌体。 ·质膜与外膜之间的空隙-外周胞质(Periplasm) ·很薄的肽聚糖层(Peptidoglycan) ·质膜(Cytoplasmic membrane) 2.古生菌的细胞壁——假肽聚糖 古生菌细胞壁组成多糖 独特多糖细胞壁甲烷八叠球菌 含半乳糖胺、葡糖醛酸、葡萄糖和乙酸,不含磷酸和硫酸 硫酸化多糖细胞壁盐球菌属 糖蛋白 极端嗜盐古生菌----盐杆菌属的细胞壁是由糖蛋白组成 蛋白质 少数产甲烷菌的细胞壁是由蛋白质所组成 3.无细胞壁的微生物 缺壁细菌实验室中形成自发缺壁突变:L型细菌

真核生物基因表达调控

第十章作业 1. 简述真核生物基因表达调控的7个层次。 ①染色体和染色质水平上的结构变化与基因活化 ②转录水平上的调控,包括基因的开与关,转录效率的高与低 ③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。 ④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控 ⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制 ⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制 ⑦对mRNA选择性降解的调控 2. 真核基因表达调控与原核生物相比有何异同? 相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要; ②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。 不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。 ②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。 ③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。 ④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。 3. DNA 甲基化对基因表达的调控机制。 甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。 4. 转录因子结合DNA的结构基序(结构域)有哪几类? ①螺旋-转折-螺旋 ②锌指结构 ③碱性-亮氨酸拉链 ④碱性-螺旋-环-螺旋 5. 真核基因转调控中有几种方式能够置换核小体? ①占先模式:可以解释转录时染色质结构的变化。该模型认为基因能否转录取决于特定位置上组蛋白和转录因子之间的不可逆竞争性结合。 ②动态模式该模型认为转录因子与组蛋白处于动态竞争之中,基因转录前染色质必须经历结构上的改变,即转换核小体中的全部或部分成分并重新组装,这个耗能的基因活化过程称为染色质重构 6. 简述真核生物转录水平调控过程。 真核生物在转录水平的调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的,主要是反式作用因子结合顺式作用元件后影响转录起始复合物的形成过程:①转录起始复合物的形成:真核生物RNA聚合酶识别的是由通用转录因子与DNA形成的

(完整版)DNA是主要的遗传物质知识讲解

DNA是主要的遗传物质 【学习目标】 1、通过总结前人对遗传物质的探索,理解证明DNA是遗传物质的实验过程和思路。 2、探讨实验技术在证明DNA是主要遗传物质中的作用。 3、掌握肺炎双球菌转化实验、噬菌体侵染细菌实验的原理和过程(重点)。 【要点梳理】 要点一:DNA是遗传物质的证据 1、肺炎双球菌转化实验 (1)肺炎双球菌的特点 R型菌——无荚膜,无毒性,菌落粗糙(rough) S型菌——有荚膜,使人或动物患病,菌落光滑(smooth) (2)体内细菌转化实验(1928年·英国·格里菲斯) 要点诠释: ①实验内容: 注射结果

第一组:无毒R 型活菌 小鼠 不死亡 第二组:有毒S 型活菌 小鼠 死亡 第三组:有毒S 型活菌 有毒S 型死菌 小鼠 不死亡 第四组:无毒R 型活菌+加热杀死的S 型菌 小鼠 死亡 S 型活菌 S 型活菌 ②结果分析 第一组实验结果说明R 型细菌没有毒性 第二组实验结果说明S 型细菌有毒性 第三组实验结果说明加热杀死的S 型菌没有毒性 第四组小鼠死亡,证明R 型细菌能转化为S 型细菌,说明S 型细菌含有促使R 型细菌转化的物质。 ③实验结论 S 型死菌中含有一种“转化因子”,能使R 型细菌转化为S 型细菌。 (3)体外转化实验的过程(1944年·美国·艾弗里) 要点诠释: ①艾弗里及其同事对S 型中的物质进行了提纯和鉴定,他们将提纯的DNA 、蛋白质和多糖等物质分别加入到培养了R 型细菌的培养基中,结果发现只有加入DNA ,R 型细菌才能转化为S 型细菌,并且DNA 的纯度越高,转化就有效;如果用DNA 酶分解从S 型活菌中提取的DNA,就不能使R 型细菌发生转化。 ②分析结论:DNA 能够引起可遗传的变异,DNA 只有保持分子结构稳定才能行使遗传功能。 (4)体内转化实验与体外转化实验的区别和联系 体内转化实验 体外转化实验 实验者 格里菲思 艾弗里及其同事 培养细菌 用小鼠(体内) 用培养基(体外) 注射 加热 结果 注射 结果 注射 结果 分离 培养

真核生物与原核生物基因表达调控的区别

原核生物和真核生物基因表达调控特点的比较1.相同点:转录起始是基因表达调控的关键环节2.不同点:A.原核基因的表达调控主要包括转录和翻译水平 真核基因的表达调 控主要包括染色质活化、转录、转录后加工、翻译、翻译后加工多个层次B.原核基因表达调控主要为负调控,真核主要为正调控C.原核转录不需要转录因子,RNA聚合酶直接结合启 动子,由sita因子决定基因表的的特异性 真核基因转录起始需要基础特异两类转录因子 依赖DNA-蛋白质、蛋白质-蛋白质相互作用 调控转录激活D.原核基因表达调控主要采用操纵子模型 转录出多顺反子RNA 实现协调调节 真核基因转录产物为单顺反子RNA 功能相关蛋白的协调表达机制更为复杂。真核生物基因表达调控的环节主要在转录水平 其次是翻译水平。原核生物基因以操纵子的形式存在。转录水平调控涉及到启动子、sita因子 与RNA聚合酶结合 、阻遏蛋白 负调控 、正调控蛋白、倒位蛋白、RNA聚合酶抑制物、衰减子等。翻译水平的调控涉及SD序列、mRNA的稳定性 不稳定(5’端和3’端的发夹结构可保护不被酶水解mRNA的5’端与核糖体结合 可明显提高稳定性)、翻译产物及小分子RNA的调控作用。真核生物基因表达的调控环节较多 在DNA水平上可以通过染色体 丢失、基因扩增、基因重排、DNA甲基化、染色体结构改变影响基因表达。在转录水平主要通过反式作用因子调控转录因子与TATA盒的结合、RNA聚合酶与转录因子-DNA复合物的结合及转录起始复合物的形成。在转录后水平主要通过RNA修饰、剪接及mRNA运输的控制来影响基因表达。在翻译水平有影响起始翻译的阻遏蛋白、5’AUG、5’端非编码区长度、mRNA 的稳定性调节及小分子RNA。真核基因调控中最重要的环节是基因转录 真核生物基因表达需要转录因子、启动子、沉默子和增强子。葡萄糖存在 乳糖不存在 此时无诱导剂

05 真核生物的遗传分析

第五章真核生物的遗传分析 教学目的和要求: 1. 理解四分子分析的原理和遗传作图的方法; 2. 了解真核生物重组的机制 3. 掌握各种遗传标记的特点及应用。 教学重点和难点: 【教学重点】 1. 四分子分析的原理和遗传作图的方法; 2. 重要分子标记分析原理和方法。 【教学难点】应用四分子分析进行遗传作图的原理与方法;重要分子标记分析原理与具体实验环节之间的有机联系。 教学内容: 第一节真菌类的染色体作图 一.两个连锁基因的作图 二.三个连锁基因的作图 三.红色面包霉染色体的着丝粒作图 第二节真核生物重组的分子机制 一.同源重组的发生 二.同源重组的分子模型 三.有丝分裂分离与重组 第三节基因转变及其分子机制 一. 异常分离与基因转换 二. 基因转变及其分子机制 第四节真核生物遗传标记的特点及应用 一. RFLP标记 二. VNTR和STR标记 三. SNP标记 四. 分子标记遗传图谱的应用

第一节真菌类的染色体作图 除了二倍体的高等植物具有连锁和交换的遗传现象以外,单倍体的真菌也有连锁和交换的遗传现象。对单倍体真菌的遗传分析和染色体作图通常采用四分子分析(tetrad analysis)的方法。一次减数分裂的四个子细胞称为四分子,对四分子进行遗传学分析称为四分子分析。根据减数分裂产物在子囊中排列是否有序将四分子分析可分为有序四分子分析和无序死分子分析两种。有序四分子分析是指根据一个子囊中四个按严格顺序直线排列的四分子表现进行的遗传分析,也称为有序四分子分析。无序四分子或八分子中孢子没有特殊的顺序,因此也就不能进行着丝粒作图,但无序四分子也可用于各种减数分裂分离和重组分析。前者以对粗糙链孢霉(Neurospora crassa,2n=14)的遗传分析为代表,而后者主要是对酿酒酵母(Saccharomyces cerevisiae 2n=34)的遗传分析。 粗糙链孢霉,又称红色面包霉,在分类学上属于真菌中的子囊菌纲、球壳目、脉孢菌属,目前已知有4~5种。利用粗糙链孢霉进行遗传学分析有如下优点:①个体小,生长快,容易培养;②既可进行有性繁殖,又可进行无性繁殖,一次杂交可产生大量后代;③染色体与高等生物一样,研究结果可广泛应用于遗传学上;④无性世代是单倍体,没有显隐性,基因型可以直接在表型上反映出来;⑤一次只需分析一个减数分裂的产物,就可以观测倒遗传结果,简单易行,而二倍体合子是两个不同减数分裂产生的配子相互结合的结果,需要通过测交实验才能分析减数分裂的结果,手续麻烦。因此粗糙链孢霉是进行基因分离和连锁交换遗传分析的好材料。粗糙链孢霉的营养体是由单倍体(n=7)的多细胞菌丝体和分生孢子所组成,生活方式由有性和无性两种。菌丝经有丝分裂直接发育成菌丝体,称无性生殖。而两种不同接合型细胞结合产生有性孢子的过程称有性生殖。无性繁殖过程,由菌丝顶端断裂形成分生孢子。分生孢子有两种,小型分生孢子中只含有一个核,大型分生孢子有几个核。分生孢子萌发成菌丝,可以再生成分生孢子,周而复始。 酿酒酵母(n=17)的细胞有两种生活形态,单倍体和二倍体。单倍体的生活史较简单,通过有丝分裂繁殖。在环境压力较大时通常则死亡。二倍体细胞(酵母的优势形态)也通过简单的有丝分裂繁殖,但在外界条件不佳时能够进入减数分裂,生成一系列单倍体的孢子。单倍体可以交配,重新形成二倍体。酵母有两种交配类型,称作a和α,是一种原始的性别分化,因此很有研究价值。 一.两个连锁基因的作图 酿酒酵母、构巢曲霉和单细胞藻类中的衣藻的每 一个子囊中的8个子囊孢子的排列是杂乱无序的。这 类真菌的遗传分析可采用非顺序四分子分析 (unordeted tetrad analysis)方法。以酿酒酵母为例,如 果要研究A、B基因是否连锁,并计算图距。首先要 明了当AB×ab杂交时,无论有无连锁,只产生下列3种可能的无序四分子。 因为这些子囊是无序排列的,所以尽管第一种类型(亲二型)看起来似乎是两个座位都同MⅠ模式,实际上不是这样,这些孢子以任意顺序写出来都是等效的。这些子囊仅仅是按照它们是包含二型(ditypes)还是四型(tetratypes)来划分的。在二型中,两种基因型要么是亲二型(PD)要么是非亲二型(NPD),四型

孟德尔的豌豆杂交实验 规律方法分解组合法

孟德尔的豌豆杂交实验规律方法分解组合法 自由组合题目的解题思路:将自由组合问题转化为若干个分离定律问题。具体方法为: (1)分解:将所涉及的两对(或多对)基因或性状分离开来,一对对单独考虑,用分离定律进行研究。 (2)组合:将用分离定律研究的结果按一定方式(相加或相乘)进行组合。 ①配子种类的计算 求基因型为AaBbcc的雄性个体,其产生的配子种类最多有多少种?其中产生基因型为Abc的配子的比例是多少?基因型为AaBbCc的雌性个体能产生的配子种类有多少种?这两个雌雄个体间的配子的组合方式有多少种? ②基因型类型及概率的计算 (1)任何两种基因型的亲本相交,产生的子代基因型的种类数等于亲本各对基因单独相交所产生的子代基因型种类数的乘积。 (2)子代某一基因型的概率是亲本每对基因杂交所产生相应基因型概率的乘积。 如AaBbCc与AaBBCc杂交,求其后代的基因型种类数。 可分解为三个分离定律: Aa×Aa→后代有3种基因型(1AA∶2Aa∶1aa); Bb×BB→后代有2种基因型(1BB∶1Bb); Cc×Cc→后代有3种基因型(1CC∶2Cc∶1cc)。 因而杂交组合AaBbCc×AaBBCc产生的后代中有3×2×3=18种基因型。 又如该双亲后代中AaBBcc出现的概率为1/2(Aa)×1/2(BB) ×1/4(cc)=1/16 ③表现型类型及概率的计算 如AaBbCc×AabbCc,求其杂交后代可能的表现型种类数。可分解为三个分离定律: Aa×Aa→后代有2种表现型(3A_∶1aa); Bb×bb→后代有2种表现型(1Bb∶1bb); Cc×Cc→后代有2种表现型(3C_∶1cc); 所以杂交组合AaBbCc×AabbCc产生的后代中有2×2×2=8种表现型。 又如该双亲后代中表现型A_bbcc出现的概率为3/4(A_)×1/2(bb) ×1/4(cc)=3/32

生物必修二dna是主要的遗传物质知识点知识总结基础梳理

必修二第3章第1节DNA是主要的遗传物质 知识点一肺炎双球菌的转化实验 1.肺炎双球菌类型 2. (1)过程及结果 (2)结论:加热杀死的S型细菌中,含有某种促成R型细菌转化为S型细菌的“转化因子”。3.艾弗里的体外转化实验 (1)方法 直接分离S型细菌的DNA、荚膜多糖、蛋白质等,将它们分别与R型细菌混合培养,研究它们各自的遗传功能。

(2)过程与结果 (3)结论:DNA才是使R型细菌产生稳定遗传变化的物质,即DNA是“转化因子”,是遗传物质。 [深度思考] (1)加热杀死的S型细菌中是否所有物质都永久丧失了活性 提示不是。加热杀死S型细菌的过程中,其蛋白质变性失活,但是其内部的DNA在加热结束后随温度的恢复又逐渐恢复活性。 (2)肺炎双球菌转化的实质是什么 提示肺炎双球菌转化实验中S型细菌的DNA片段整合到了R型细菌的DNA中,使受体细胞获得了新的遗传信息,即发生了基因重组。 知识点二噬菌体侵染细菌的实验 1.实验材料:T2噬菌体和大肠杆菌。 2.实验方法:同位素示踪法,该实验中用35S、32P分别标记蛋白质和DNA。 3.实验过程

(1)标记噬菌体 (2)侵染细菌4.实验结果分析

含35S噬菌体+细菌 宿主细胞内无35S,35S主要分布 在上清液中 35S—蛋白质外壳未进入宿主细 胞,留在外面 [思维诊断] (1)T2噬菌体可利用寄主体内的物质大量增殖(2013·海南,13D)( √) (2)T2噬菌体侵染大肠杆菌实验证明了DNA是遗传物质(2013·新课标Ⅱ,5改编)( √) (3)噬菌体的蛋白质可用32P放射性同位素标记(2012·上海,11D)( ×) (4)噬菌体增殖需要细菌提供模板、原料和酶等(2012·山东,5B)( ×) (5)32P、35S标记的噬菌体侵染细菌实验分别说明DNA是遗传物质、蛋白质不是遗传物质(2011·江苏,12D)( ×) 知识点三生物的遗传物质 1.RNA作为遗传物质的证据(烟草花叶病毒感染烟草的实验) (1)过程 ①完整的烟草花叶病毒烟草叶出现病斑 (2)结果分析与结论 烟草花叶病毒的RNA能自我复制,并控制其遗传性状,因此RNA是它的遗传物质。 2.完善下表中生物体内核酸种类及遗传物质类型 感染烟草

真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。但是,最经济、最主要的调控环节仍然是在转录水平上。 DNA水平的调控 DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。 转录水平的调控 转录水平的调控包括染色质的活化和基因的活化。通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。 转录后调控 转录后调控包括hnRNA的选择性加工运输和RNA编辑 在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。加工过程包括三个方面:加帽、加尾和去掉内含子。同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。转录后的RNA在编码区发生碱基插入,缺失或转换的现象。

翻译水平的调控 阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译 此外,还可以控制mRNA的稳定性和有选择的进行翻译。 翻译后调控 直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。在蛋白质翻译后的加工过程中,还有一系列的调控机制。 1.蛋白质折叠 线性多肽链必须折叠成一定的空间结构,才具有生物学功能。在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。 2.蛋白酶切割 末端切割 有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。信号肽必须切除多肽链才具有功能。 多聚蛋白质的切割 有些新合成的多肽链含有几个蛋白质分子的序列,切割以后产生具有不同功能的蛋白质分子。

生活中的DNA科学作业答案

1、朊粒病的共同特征中不包括() 1.潜伏期长,达数月、数年甚至数十年 2.一旦发病呈慢性、进行性发展,以死亡告终 3.表现为海绵状脑病或蛋白质脑病 4.产生严重反应和免疫病理性损伤 2、下面哪种酶是在重组DNA技术中不常用到的酶() 1.限制性核酸内切酶 2.DNA聚合酶 3.DNA连接酶 4.DNA解链酶 3、长期接触X射线的人群,后代遗传病发病率明显升高,主要原因是该人群生 殖细胞发生() 1.基因重组 2.基因突变 3.基因互换 4.基因分离 4、抗VD佝偻病属于:() 1.常染色体显性遗传病 2.常染色体隐性遗传病 3.X连锁显性遗传病 4.X连锁隐性遗传病 5、法医DNA技术中的三大基本技术指() ①DNA 指纹技术②荧光显微技术③PCR 扩增片段长度多态性分析技术④线 粒体DNA 测序 1.①②③ 2.②③④ 3.①②④ 4.①③④ 6、相互连锁的两个基因位于()上 1.同源染色体 2.同一染色体 3.非同源染色体 4.不同对染色体 7、关于核糖体的移位,叙述正确的是() 1.空载tRNA的脱落发生在“A”位上

2.核糖体沿mRNA的3’→5’方向相对移动 3.核糖体沿mRNA的5’→3’方向相对移动 4.核糖体在mRNA上一次移动的距离相当于二个核苷酸的长度 8、Western blot是() 1.检测DNA的方法 2.检测RNA的方法 3.检测蛋白的方法 4.检测酶的方法 9、针对耐药菌日益增多的情况,利用噬菌体作为一种新的抗菌治疗手段的研究 备受关注。下列有关噬菌体的叙述,正确的是() 1.利用宿主菌的氨基酸合成子代噬菌体的蛋白质 2.以宿主菌DNA为模板合成子代噬菌体的核酸 3.外壳抑制了宿主菌的蛋白质合成,使该细菌死亡 4.能在宿主菌内以二分裂方式增殖,使该细菌裂解 10、a和b是不同顺反子的突变,基因型ab/++和a+/+b的表型分别为() 1.野生型和野生型 2.野生型和突变型 3.突变型和野生型 4.突变型和突变型 11、法医DNA科学涉及的学科有() 1.分子遗传学 2.生物化学 3.生物统计学 4.以上都是 12、下列哪种碱基不属于DNA/RNA的碱基() 1.腺嘌呤 2.鸟嘌呤 3.次黄嘌呤 4.胸腺嘧啶 13、要使两对基因杂合体自交后代群体纯合率达到96%以上,至少应该连续自交 () 1.4代 2.5代 3.6代 4.7代

遗传规律习题

遗传规律习题 1.采用下列哪组方法,可以依次解决①~④中的遗传问题() ①鉴定一只白羊是否是纯种②在一对相对性状中区分显、隐性 ③不断提高小麦抗病(显性性状)品种的纯合度④检验杂种F1的基因型 A.杂交、自交、测交、测交B.测交、杂交、自交、测交 C.测交、测交、杂交、自交D.杂交、杂交、杂交、测交 2.具有TtGg(T=高度,G=颜色,基因独立遗传)基因型的2个个体交配,其后代只有1种显性性状的概率是多少 A. 9/16 B. 7/16 C. 6/16 D. 3/16 3.下列关于基因和染色体关系的叙述,正确的是:() A.基因全部位于染色体上 B.基因在染色体上呈线性排列 C.一条染色体上有一个基因 D.染色体就是由基因组成的 4.已知一玉米植株的基因型为AABB,周围虽生长有其他基因型的玉米植株,但其子代不可能出现的基因型是 A.AABB B.AABb C.aaBb D.AaBb 5.基因型为AaBb的个体与基因型为aaBb的个体杂交,两对基因独立遗传,则后代中 A.表现型4种,比例为3:1:3:1;基因型6种 B.表现型2种,比例为3:1,基因型3种 C.表现型4种,比例为9:3:3:1;基因型9种 D.表现型2种,比例为1:1,基因型3种 6.孟德尔遗传规律不适合原核生物,是因为原核生物() A.没有遗传物质 B.没有核物质 C.没有完善的细胞器 D.主要进行无性生殖 7.某种鼠中,黄鼠基因A对灰鼠基因a为显性,短尾基因B对长尾基因b为显性。且基因A 或b在纯合时使胚胎致死,这两对基因是独立遗传的。现有两只双杂合的黄色短尾鼠交配,理论上所生的子代表现型比例为 A.2∶1 B.9∶3∶3∶1 C.4∶2∶2∶1 D.1∶1∶1∶1 8.已知豌豆红花对白花、高茎对矮茎、子粒饱满对子粒皱缩为显性,控制它们的三对基因自由组合。以纯合的红花高茎子粒皱缩与纯合的白花矮茎子粒饱满植株杂交,F2代理论上A.12种表现型B.高茎子粒饱满:矮茎子粒皱缩为15:1 C.红花子粒饱满:红花子粒皱缩:白花子粒饱满:白花子粒皱缩为9:3:3:1 D.红花高茎子粒饱满:白花矮茎子粒皱缩为9:1 9.黄色(Y)圆粒(R)豌豆和绿色圆粒豌豆杂交,对其子代表现型按每对相对性状进行统计, 结果如图所示。请分析回答: (1)后代中各种表现型及所占的比例是。 (2)后代中能稳定遗传的个体占总数的。后代 个体自交能产生性状分离的占。 (3)后代中重组类型占,其中能稳定遗传的占。 (4)实验中所用亲本的基因型为。 10、控制鸡腿有无毛的遗传因子为A或a,控制鸡冠形状的是遗传因子B或b。现有两只 亲本子代性状 ①甲×丙毛腿豌豆冠 ②甲×丁毛腿豌豆冠 ③乙×丙毛腿豌豆冠、光腿豌豆冠 ④乙×丁毛腿单冠、光腿豌豆冠 (1)腿部有毛是____________性性状,单冠是____________性性状。 (2)甲、乙、丙、丁四只鸡的基因型依次是____________。 (3)第一组子代的基因型是____________;第二组子代的基因型是____________。

【新高考】高三生物一轮复习专题17 DNA是主要的遗传物质(知识点+练习 讲解)

专题17 DNA是主要的遗传物质 1、最新考纲 人类对遗传物质的探索过程(Ⅱ) 2、最近考情 2018·全国卷Ⅱ(5)、2018·全国卷Ⅲ(1)、2017·全国卷Ⅰ(29)、2017·全国卷Ⅱ(2) 生命观念DNA的结构与其作为遗传物质的功能相适应 科学思维分析总结肺炎双球菌转化实验和噬菌体侵染细菌实验的原理和过程 科学探究分析人类对遗传物质探索的实验设计思路 考点一肺炎双球菌转化实验的分析【科学思维】 【基础知识梳理】 1.格里菲思的体内转化实验 (1)实验材料:S型和R型肺炎双球菌、小鼠。 (2)两种肺炎双球菌类型的比较 (3)

结果分析:实验①、②对比说明R型细菌无毒性,S型细菌有毒性;实验②、③对比说明被加热杀死的S 型细菌无毒性;实验②、③、④对比说明R型细菌可转化为S型细菌。 (4)实验结论:已经被加热杀死的S型细菌中,含有某种将无毒性的R型活细菌转化为有毒性的S型活细菌的“转化因子”。 2.艾弗里的体外转化实验 (1)实验材料:S型和R型细菌、培养基。 (2)实验目的:探究S型细菌中的“转化因子”是DNA还是蛋白质或多糖。 (3)实验过程及结果 结果分析:实验①、②分别说明荚膜多糖、蛋白质没有转化作用。实验③、④说明DNA有转化作用。(4)实验结论:S型细菌的DNA是使R型细菌产生稳定遗传变化的物质。 3.比较肺炎双球菌体内和体外转化实验 ①转化的实质是基因重组而非基因突变 肺炎双球菌转化实验中S型细菌的DNA片段整合到R型细菌的DNA中,即发生了基因重组。

②S型细菌死亡实质 加热使生命活动的承担者——蛋白质变性,表现为细菌生命活动的终止,加热时可以破坏DNA双链间的氢键,使DNA的双螺旋结构被破坏,在温度降低后可恢复原结构,保持其作为遗传物质的功能。 例题精讲:(2020年浙江省高考生物试卷(7月选考)·12)下列关于“肺炎双球菌转化实验”的叙述,正确的是() A.活体转化实验中,R型菌转化成的S型菌不能稳定遗传 B.活体转化实验中,S型菌的荚膜物质使R型菌转化成有荚膜的S型菌 C.离体转化实验中,蛋白质也能使部分R型菌转化成S型菌且可实现稳定遗传 D.离体转化实验中,经DNA酶处理的S型菌提取物不能使R型菌转化成S型菌 【答案】D 【解析】 A、活体转化实验中,小鼠体内有大量 S型菌,说明R型菌转化成的S型菌能稳定遗传,A错误; B、活体转化实验中,无法说明是哪种物质使R型菌转化成有荚膜的S型菌,B错误; C、离体转化实验中,只有S型菌的DNA才能使部分R型菌转化成S型菌且可实现稳定遗传,C错误; D、离体转化实验中,经DNA酶处理的S型菌提取物,其DNA被水解,故不能使R型菌转化成 S型菌,D 正确。 变式训练:(2019浙江4月选考·20)为研究R型肺炎双球菌转化为S型肺炎双球菌的转化物质是DNA 还是蛋白质,进行了肺炎双球菌体外转化实验,其基本过程如图所示: 下列叙述正确的是() A.甲组培养皿中只有S型菌落,推测加热不会破坏转化物质的活性 B.乙组培养皿中有R型及S型菌落,推测转化物质是蛋白质 C.丙组培养皿中只有R型菌落,推测转化物质是DNA D.该实验能证明肺炎双球菌的主要遗传物质是DNA 【答案】C 【解析】艾弗里的肺炎双球菌体外转化实验中,将S型菌的DNA、蛋白质和荚膜等物质分离开,与R 型菌混合培养,观察S型菌各个成分所起的作用。最后再S型菌的DNA与R型菌混合的培养基中发

相关文档
最新文档