热电厂热力过程及效率分析

热电厂热力过程及效率分析
热电厂热力过程及效率分析

热电厂热力过程及效率分析

第一部分:热力学基础

热电厂是以蒸汽为工质的一个热力系统,因此,对热电厂的分析必须建立在热力学定律及理想热力循环的基础上。

一、热力学的基本概念:

1.热力系:

在分析热力过程或现象时,常从若干物体中取出需要研究的对象,这被取出的研究对象称为热力系。热力系可以是元件或设备,也可以是系统或空间。在同一个大的热力系统中,因研究问题的不同所选择的热力系也不同。以热电厂为例,可以把锅炉、汽轮机或单独一部分蒸汽管道作为一个热力系研究锅炉运行、汽轮机运行或管道损失问题,也可以把锅炉、管道及汽轮机共同作为一个热力系研究发电供汽过程存在的问题。

外界:热力系以外的物质世界统称为外界或环境;

边界:热力系与外界的分界面称为边界;因此热力系即为由界面包围的作为研究对象的物体的总和。

按热力系与外界进行物质、能量交换的情况不同,热力系主要有:

闭口系:热力系与外界无物质交换;

开口系:热力系与外界之间有物资交换,或者说有物质穿过边界。按热力系

绝热系:热力系与外界无热量交换;

孤立系:热力系与外界既无能量交换又无物质交换;

2.热力过程与热力循环:

2.1概念:热力系状态连续变化的过程称为热力过程。热力系统从一个初态出发经历一系列状态变化后又回到初始状态封闭的热力过程,称为热力循环。

2.2工程中常见的两类热力循环:P

热能动力和制冷装置

热机的经济性用热效率衡量,等于净功与向循环输入

的热量比,η=W/Q

0热力循环

二、热力学第一定律:

1.第一定律的实质:

热力学第一定律是能量守恒与能量转换定律在热力学中的具体体现。

热力学第一定律:在任何发生能量传递和转换的热力过程中,传递和转换的能量的总量保持恒定不变。

“永动机是不可能制造成功的”。

2.热力过程的两种能量传递方式:

热力系与外界传递能量的方式有两种:作功和传热。

2.1功:

力学中功的定义为物体所受的力与沿力的方向所产生的位移之积。

δW=F.dx

在热力学中功的定义为:功是物系间相互作用而传递的能量,当系统完成作功时,其对外界的作用可用在外界举起重物的单一效果来代替。热力系对外作功符号为正,外界对热力系作功符号为负。

在工程中,热与功的相互转换常常是通过气体的体积变化(膨胀或压缩)来实现的。

2.2热:

热是系统与外界交换能量地另一种形式,它是与物质内部分子运动有关的能量,当热力系与外界间温度不等而发生接触时,彼此将进行能量交换。热力系与外界之间依靠温差传递的能量称为热。热力系吸热时符号为正,放热时为

负。

δQ=m.c.dT

热与功是物系在与外界相互作用的过程中传递的能量,传热和作功是热力系与外界传递能量的两种方式,它们是过程量而不是状态量,因此不能说“物体具有多少热量”和“物体具有多少功量”。

3.热力学第一定律表达式:

3.1基本表达式:

根据能量守恒定律,对于闭系能量守恒方程式:

Q=ΔU+W

δQ=dU+δW

式中:U为物质的内能,是以一定方式储存于热力系内部的能量,是热力系的状态函数。

在闭系中,不存在与外界的物质交换,只存在能量交换,只涉及内能、热、功的相互转换,不牵涉任何其它形式能的转换,上述方程的惟一依据是能量守恒定律,因而适用于闭系内进行的一切热力过程。

3.2稳定流动能量方程式:

稳定流动:

工程中常遇到工质流过热力设备时,工质不但与外界有能量传递与转换,而且有质量交换,即有工质流进流出,如汽轮机,是开口系。

在流动过程中,开口系内部及其边界上各点,工质的热力参数及运动参数都不随时间而变,这种流动过程称为稳定流动过程。

稳定流动的条件:

单位时间进入和流出热力系的工质质量相等,并等于常数;

单位时间加入热力系的净热及热力系输出的净功不随时间而变;

p12v2T2

u2c2z2

2

1Q

稳定流动能量方程式:

因为存在工质的进出及能量的转化,因此在研究稳定流动过程时,应以能量守恒定律为基础,同时兼顾热力学能量变化与宏观机械能等能量的变化。

工质进入热力系界面1-1时携带的能量:

工质的内能:U1;工质因具有流速c1而具有的宏观动能1/2mc12;工质在进口截面相对某一基准面有一定的高度而具有的重力势能mgz1;因此工质进入热力系统时携带的能量为:E1=U1+1/2mc12+mgz1。

同理,工质流出热力系界面2-2时携带的能量为:E2=U2+1/2mc22+mgz2。

因而,工质流经热力系统时,热力系统储存能量的变化为:

ΔE=E2-E1=(U2-U1)+1/2m(c22-c12)+mg(z2-z1)

=ΔU+1/2mΔc+mgΔz

热力系与外界功、热量的变化为:外界加入Q的热量;系统输出净功

W net;工质进入热力系克服系统内工质阻力而对热力系作的功P1V1,工质流出热力系克服外界阻力而对外界作功P2V2。W f=P2V2-P1V1=ΔPV称为流动功。

综上,根据能量守恒定律有:

Q=E2-E1+W net+W f=ΔE+W net+W f=ΔU+1/2mΔc+mgΔz+W net+W f

=(U2+P2V2)-(U1+P1V1)+1/2mΔc+mgΔz+W net

定义H=U+PV或对于单位工质h=u+pv分别为焓及比焓,则有:

Q=ΔH+1/2mΔc+mgΔz+W net

其微分形式为:δQ=dH+1/2mdc+mgdz+δW net

此即为稳定流动的能量方程式。

焓的概念及实质:

在稳定能量方程中引入了一个新的参数焓H=U+PV,显然焓是由状态参数组成的,因此它也是一个状态参数。从物理意义上讲,焓实际上是流动工质的内能与流动功之和,可以认为是流动工质所携带的能量。

稳定流动的能量方程式是热电厂分析中最常用的工具。

第二部分:蒸汽动力循环:

一、概述:

蒸汽动力循环系指以蒸汽作为工质的动力循环。热电厂即是以蒸汽动力循环为理论依据设计、建设的,因此研究蒸汽动力循环,分析循环热效率是分析提高热电厂运行效率的基础。

1、动力循环的热效率:

动力循环过程的热力学第一定律表达式为:q=w,其中q=q1-q2,w=w t-

w p,q和w分别表示循环的净热量和净功量;q1和q2分别表示循环的吸热量和放热量;w t和w p分别表示循环的作功量和耗功量;则循环效率为:η=w/q1=(q1-q2)/q1=1-q2/q1

2、卡诺循环:

根据热力学第二定律,当冷热源温度确定时,可逆循环的热效率最高。由两个定温过程及两个绝热工程组成的可逆循环称为卡诺循环。

对于可逆过程有q

2/q1=T2/T1,故循环热效率为:T

η=1-T2/T1

而对于一般的动力循环,如图,引入平均吸热T1

温度T1和平均放热温度T2,则循环效率可表达为:T2

η=1-T2/T1

可见欲提高循环效率,应设法提高平均吸热温度和O S

降低平均放热温度。卡诺循环在蒸汽卡诺循环中,定温吸热过程4-1是在锅炉

内的定压吸热过程,定温放热过程2-3是在冷凝器中T

的定压放热过程,定熵膨胀过程是在汽轮机中的理想

绝热膨胀过程,定熵压缩过程3-4是在压缩机中的理

2

想绝热压缩过程。

热电厂热力系统计算

热力发电厂课程设计 1.1 设计目的 1. 学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2. 学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3. 提高计算机绘图、制表、数据处理的能力 1.2 原始资料 西安 某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安 地区采暖期 101 天,室外采暖计算温度 –5℃,采暖期室外平均温度 1.0℃,工业用汽 和采暖用汽热负荷参数均为 0.8MPa 、230℃。通过调查统计得到的近期工业热负荷和采暖热 负荷如下表所示: 1.3 计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别 链条炉 煤粉炉 沸腾炉 旋风炉 循环流化床锅炉 锅炉效率 0.72~0.85 0.85~0.90 0.65~ 0.70 0.85 0.85~ 0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率 750~ 6000 12000 ~ 25000 5000 汽轮机相对内效率 0.7~0.8 0.75~ 0.85 0.85~0.87 汽轮机机械效率 0.95~0.98 0.97~ 0.99 ~ 0.99 发电机效率 0.93~0.96 0.96~ 0.97 0.98~0.985 3)热电厂内管道效率,取为 0.96。 4)各种热交换器效率,包括高、低压加热器、除氧器,一般取 0.96~0.98。

5)热交换器端温差,取3~7℃。 2%

6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂 以化学软化水为补给水的供热式电厂5% 7)厂内汽水损失,取锅炉蒸发量的3%。 8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 10)生水水温,一般取5~20℃。 11)进入凝汽器的蒸汽干度,取0.88~0.95。 12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1 设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见 表2-1 。用户处工业用汽符合总量:采暖期最大为175 t/h, 折算汇总到电厂出口处为166.65 t/h 。 2-1 折算到热电厂出口的工业热负荷,再乘以0.9 的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1 、图2-2。 表2-2 热电厂设计热负荷

发电厂热力设备及系统

发电厂热力设备及系统 07623班参考资料 :锅炉设备及系统 1有关锅炉的组成(本体、辅助设备) 锅炉包括燃烧设备和传热设备; 由炉膛、烟道、汽水系统以及炉墙和构架等部分组成的整体,称为锅炉本体; 供给空气的送风机、排除烟气的引风机、煤粉制备系统、给水设备和除灰除尘设备等一系列设备为辅助设备。 2 A燃料的组成成份 化学分析:碳(C)、氢(H )、氧(0)、氮(N )、硫(S)五种元素和水分(M )、灰分(A)两种成分。 B水分、硫分对工作的影响; 硫分对锅炉工作的影响:硫燃烧后形成的SO3和部分SO2,与烟气中的蒸汽相遇, 能形成硫酸和亚硫酸蒸汽,并在锅炉低温受热面等处凝结,从而腐蚀金属;含黄铁矿硫的 煤较硬,破碎时要消耗更多的电能,并加剧磨煤机的磨损。 水分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)影响煤的磨制及煤粉的输送(4)烟气流过低温受热面产生堵灰及低温腐蚀。 C水分、灰分、挥发分的概念: 水分:由外部水和内部水组成;外部水分,即煤由于自然干燥所失去的水分,又叫表面水分。失去表面水分后的煤中水分称为内部水分,也叫固有水分。 挥发分:将固体燃料在与空气隔绝的情况下加热至850摄氏度,则水分首先被蒸发 出来,继续加热就会从燃料中逸出一部分气态物质,包括碳氢化合物、氢、氧、氮、挥发性硫和一氧化碳等气体。 灰分:煤中含有不能燃烧的矿物杂质,它们在煤完全燃烧后形成灰分。 D挥发分对锅炉的影响: 燃料挥发分的高低对对燃烧过程有很大影响。挥发分高的煤非但容易着火,燃烧比较稳定,而且也易于燃烧安全;挥发分低的煤,燃烧不够稳定,如不采取必要的措施来改 善燃烧条件,通常很难使燃烧安全。 E燃料发热量:发热量是单位质量的煤完全燃烧时放出的全部热量。煤的发热量分为高位发热量和低位发热量。1kg燃料完全燃烧时放出的全部热量称为高位发热量;从高 位发热量中扣除烟气中水蒸气汽化潜热后,称为燃料的低位发热量。 F标准煤:假设其收到基低位发热量等于29270kj/kg的煤。(书88页) G灰的性质:固态排渣煤粉炉中,火焰中心气温高达1400~1600摄氏度。在这样的 高温下,燃料燃烧后灰分多呈现融化或软化状态,随烟气一起运动的灰渣粒,由于炉膛水冷壁受热面的吸热而同烟气一起冷却下来。如果液态的渣粒在接近水冷壁或炉墙以前已经 因温度降低而凝结下来,那么它们附着到受热面管壁上时,将形成一层疏松的灰层,运行 中通过吹灰很容易将它们除掉,从而保持受热面的清洁。若渣粒以液体或半液体粘附在受热面管壁或炉墙上,将形成一层紧密的灰渣层,即为结渣。 H灰分对锅炉工作的危害:(1)降低发热量(2)阻碍着火及燃烧(3)烟气携带飞灰流过受热面产生结渣、积灰、磨损、腐蚀等有害现象。 3热平衡: 输入锅炉的热量=有效利用热量(输出锅炉的热量)+未完全燃烧的热损失+其它热损失

火力发电厂热力系统节能分析论文

火力发电厂热力系统节能分析 摘要:本文简要分析了当前节能形势,归纳了主要的热力系统计算分析方法,指出了电厂热力分析仍然存在的问题,并对电站节能改造给出了建议和节能策略分析。 关键词:热力系统 ; 经济指标 ; 计算方法;节能技术 abstract: this paper analyzes the current energy situation, summed up the main system calculation analysis methods, and pointed out that there are still problems of power plant thermal analysis, and provided strategy analysis for power plant energy-saving advice and energy saving. keywords: thermodynamic system; economic indicators; calculation method; energy-saving technologies 中图分类号: tk284.1文献标识码:a文章编号: 引言 众所周知,能源问题已经成为世界各国共同关注的问题,在我 国这一现象更加凸显。由于我国粗放型经济增长方式,又处在消费结构升级加快的历史阶段,能源消耗过大,因此节能降耗将是一项长远而艰巨的任务。根据美国及我国电力行业调查统计表明,我国平均供电煤耗率要比发达国家高出30~60g/kwh,这是一个很大的差距,说明我国的电厂节能有很大的节能潜力可以挖掘。因此,电站热力系统节能是关系到节能全局以及可持续性发展的大事。因此,在热力系的环境下,揭示各种节能理论内在的联系,深入地研究和

热电厂热力系统计算分析

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

(6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175 t/h,折算汇总到电厂出口处为166.65 t/h。 表2-1 热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8 kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

化工过程能量分析

第6章 化工过程能量分析 重点难点:能量平衡方程、熵平衡方程及应用,理想功和损失功的计算,有效能的概念及计算,典型化工单元过程的有效能损失。 1) 能量平衡方程、熵平衡方程及应用 (1) 能量平衡方程及其应用 根据热力学第一定律: 体系总能量的变化率=能量进入体系的速率-能量离开体系的速率 可得普遍化的能量平衡方程: t V p W Q gZ u H m gZ u U m t k k k k d d 22d d s 12sy st 2-++???? ??++=?????????? ??++∑= 式中左边项代表体系能量的变化,右边项第一项表示质量流带入、带出的能量,后三项表示体系与环境热和功的交换量。 注意:式中H 为单位质量的焓,u 2/2为单位质量的动能,gZ 为单位质量的位能,内能、动能和位能(g =9.81m/s 2)之和为单位质量流体的总能量E : gZ u U E E U E p k ++=++=22 1 符号规定:进入体系的质量流率m k 为正,体系吸热Q 为正,环境对体系做功W 为正(体系得功为正)。 上式适用于任何过程,不受过程是否可逆或流体性质的影响。 要对一个过程进行能量分析或能量衡算,应该根据过程的特点,正确分析能量平衡方程式中的各个项,化简能平式,关键是要会分析题意特点,能平式中各项的含义要明白。 ① 对封闭体系:忽略动、位能的变化,则能平式变为 W Q U δδd += 积分,可得 W Q U +=Δ 此即为封闭体系热力学第一定律的数学表达式。 ② 稳态流动体系(简称稳流体系) 稳态流动过程是指物料连续地通过设备,进入和流出的质量流率在任何时刻都完全相等,体系中任一点的热力学性质都不随时间变化,体系没有物质和能量的积累。因此,稳流体系的特点:体系中任一点的热力学性质都不随时间而变;体系没有物质及能量的积累。 对一个敞开体系,以过程的设备为体系,即为稳流体系。其能平式可化为 02s 12=++???? ??++∑=W Q gZ u H m k k k k 把上式中第一项进、出分开,即得: 022s out 2in 2=++???? ??++-???? ??++W Q m gZ u H m gZ u H 单位质量的稳流体系的能量方程式:

热电厂热力系统计算

热电厂热力系统计算

————————————————————————————————作者: ————————————————————————————————日期:

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 项目单位 采暖期非采暖期 最大平均最小最大平均最小 用户热负荷工业t/h 175 142 108 126 92 75采暖t/h 177 72 430 0 0 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉锅炉效率0.72~0.85 0.85~0.90 0.65~0.700.85 0.85~0.90(2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985(3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

关于液体沸腾汽化过程的热力学分析

关于液体沸腾汽化过程的热力学分析 李强国 (郴州高等师范专科学校化学系,湖南郴州 423000)摘 要 对纯液体沸腾汽化过程的热力学问题用吉布斯自由能判据进行了详细讨论,指出生成一个球形气泡新相时必须克服一个能峰,而且这个能峰随液体的过热度的增大而变小,从而合理地解释了液体沸腾汽化的过热现象. 关键词 液体汽化;过热现象;热力学 分类号 O 64;O 414 现行的一些热力学及物理化学教材大都是用开尔文公式来解释液体的过热现象的,有的是用开尔文公式和拉普拉斯公式相结合来进行解释[1,2];有的则只用开尔文公式来解释[3,4].在这些教材中有的以球形小液滴导出如下的开尔文方程 ln (p r/p)=2σM/RTrρ (1) 此式是用来描述在液体表面汽化——即蒸发过程中微小液滴表面上的饱和蒸气压与同温下水平液面上的饱和蒸气压之间的关系的.能否简单地把它应用到沸腾过程(即整个液体内部发生的汽化过程),来描述球形气泡中的饱和蒸气压与水平液面的饱和蒸气压之间的关系呢?笔者认为是不行的.因为,虽然蒸发和沸腾在相变机构上没有什么根本的区别,但二者在形式上是完全不同的.前者无须形成气泡,在任何温度下都能进行,而沸腾汽化必须形成气泡,只在沸点下才能进行.那么究竟应如何来说明液体沸腾汽化需过热的原因呢?本文将从热力学角度用吉

布斯自由能判据对液体沸腾汽化过程进行讨论,并在此基础上导出液体中气泡的开尔文公式. 假设沸腾汽化是在一带有理想活塞(无质量、无摩擦)的密闭容器中进行.显然,此过程是一恒温恒外压过程.为了讨论方便,不妨从中抽出一个球形气泡(气泡中的气体为纯蒸气)和液体两相作为研究对象.由于气泡在生成和长大的过程中,泡内压力不断增大(因为泡内气体的物质的量不断增加).所以气泡在形成过程中系统的吉尔斯自由能变化为 dG=V g dp g+V l dp l+σdA+μg dn g+μl dn l(2) 式中V、p、σ、A、μ和n分别代表体积、压力、液气界面张力、球形气泡表面积、化学势和物质的量,上标g和l分别代表气相和液相. 对液体来说,压力的影响可忽略,故式(2)可写成 dG=V g dp g+σdA+μg dn g+μl dn l(3) 因为dn g=-dn l,故 dG=V g dp g+σdA+(μg-μl)dn g(4) 再设气泡中纯蒸气为理想气体,则V g=n g RT/p g,故式(4)可写成 dG=n g RTdln p g+σdA+(μg-μl)dn g(5) 当球形气泡与液体达成两相平衡时,dG=0,即得力学平衡条件和相平衡条件 n g RTdln p g+σdA=0 (6) μg-μl=0 (7) 下面讨论汽化过程吉尔斯自由能变化与汽泡半径r的半系.对于球形气泡,有 dA=8πrdr (8) 代入式(5),并将式(5)右边第三项分子分母同乘以V g m(气体摩尔体积)得

化工过程的能量分析

Hefei University 论文 课程名称:化工热力学 论文题目:化工过程的能量分析 学科专业:化学工程与工艺(12级化工卓越班)作者姓名:胡振 导师姓名:高新勤 完成时间:2014年12月21日

化工过程的能量分析 摘要:化工过程需要消耗大量能量,提高能量利用率、合理地使用能量已成为人们共同关心的问题。从最原始的意义上来说,热力学是研究能量的科学,用热力学的观点、方法来指导能量的合理使用已成为现代热力学一大任务。 关键词:化工过程;能力分析:按质用能;降耗 正文: 进行化工过程能量分析的理论基础是热力学第一定律,热力学第二定律。 一、 热力学第一定律 热力学第一定律就是不同形式的能量在传递与转换过程中守恒的定律,表达式为Q=△U+W 。表述形式:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。该定律经过迈耳 J.R.Mayer 、焦耳T.P.Joule 等多位物理学家验证。热力学第一定律就是涉及热现象领域内的能量守恒和转化定律。十九世纪中期,在长期生产实践和大量科学实验的基础上,它才以科学定律的形式被确立起来。 (一) 热力学第一定律的实质 自然界的物质是千变万化的,但就其数量来说是不变的,能量也是守恒的,热力学第一定律明确表明了自然界中能量的多种形式之间是可以相互转换的,但只能是等量相互转换,这就说明能量既不能被消灭,也不能凭空产生,必须遵循守恒规律。 (二) 体系 1. 封闭体系(限定质量体系) 与环境仅有能量交换,而无质量交换,体系内 部是固定的 2. 敞开体系(限定容积体系) 与环境既有能量交换也有质量交换。 3. 化工生产中大都为稳定流动体系,稳流过程,均流过程。 (三) 能量平衡方程的应用 1. 化工机器:如膨胀机、压缩机等 2. 对化工设备:如反应器、热交换器、传质设备、阀门、管道等。 00212=?=Z g u Ws Q H +=?0 021 0 2=?==Z g u W s Q H =?

热电厂供热远程计量管理系统方案

热电厂供热远程计量管理系统方案 一、系统概述 热网监控系统利用GPRS5线网络平台,将供热热网中的每个热网用户、热源厂以及热水换热站的用蒸汽或热水参数通过二次仪表、GPRS/CDM模块 发到热网监控中心热网服务器上的数据库上。并通过监控软件,对热网用户数据进行实时监控,并具备报警、趋势记录、结算累计、统计分析等多项功能,来实现现场参数的采集、调度室与各换热站的数据实时通讯控制,可以很好的解决许多存在的问题,可以有效提高供热系统的自动化控制水平,并且能很大程度上提高供热行业的管理水平。供热工程中的自动控制对于保证供热系统优质供热、安全运行、经济节能、环境保护具有十分重要的作用。 二、系统组成 1本系统主要由以下几部分组成: 监控中心:(计算机、热网监控系统软件) 通信网络:(基于移动或者电信的通信网络平台) GPRS/CDMATU (采集现场仪器仪表信号,通过GPRS/CDM网络传输到 监控中心) 测量仪表:(流量计、流量积算仪、电镀阀、温度传感器,压力传感器) 2、系统结构图:

三、硬件简介 1、GPRS/CDMATU基本功能及特点: 内嵌TCP/IP协议、用户数据完全透明传输; 具有自动登陆网络、断线自动重连的功能,用户免于维护数据链路;参数设置可以通过电脑或手机远程设置、更改; 双重看门狗设计,长期运行不会死机; 用户数据接口为RS232或RS485速率可调; 支持GSM拨号、短信数据传输方式,用户数据可选短信、GPRS/CDM网 络双通道数据通信; 128K用户数据缓冲; 具有信号强度显示、网络连接和数据收发指标灯;标准工业模块和滑道安装,标准工业接线端子;工业级品质保证、性能稳定可靠; 提供用户设置软件、DLL或控件开放源代码接口、方便与多种组太软件 及其它软件连接;

发电厂热力系统介绍

第二部分发电厂热力系统介绍 仪控技术员,一般从事锅炉、汽机、DCS、外围这几个专业的仪控技术工作。作为技术员,首先得清楚这台机组的工作流程,也就是热力系统。我们热工的系统图,也就是在机务的流程图基础上,标注上热工仪表及控制设备。 这一讲我们简单介绍火力发电厂的热力系统及热工设备。 1、系统流程 火力发电厂是将燃料(煤、油、天然气)的化学能转变为热能和电能的工厂。基本的热力系统图见下图:储存在储煤场中的原煤由输煤设备从储煤场送到锅炉的原煤斗中,再由给煤机送到磨煤机中磨成煤粉。合格的煤粉由热二次风送到锅炉本体的喷燃器,由喷燃器喷到炉膛内燃烧。燃烧的煤粉放出大量的热能将炉膛四周水冷壁管内的水加热成汽水混合物。混合物被锅炉汽包内的汽水分离器进行分离(目前一般用汽水分离器、储水箱替代汽包及下降管),分离出的水经下降管送到水冷壁管继续加热,分离出的蒸汽送到过热器,加热成符合规定温度和压力的过热蒸汽,经管道送到汽轮机作功。过热蒸汽在汽轮机内作功推动汽轮机旋转,汽轮机带动发电机发电,发电机发出的三相交流电通过发电机端部的引线经变压器什压后引出送到电网。在汽轮机内作完功的过热蒸汽被凝汽器冷却成凝结水,凝结水经凝结泵送到低压加热器加热,然后送到除氧器除氧,再经给水泵送到高压加热器加热后送到锅炉继续进行热力循环。再热式机组采用中间再热过程,即把在汽轮机高压缸做功之后的蒸汽,送到锅炉的再热器重新加热,使汽温提高到一定温度后,送到汽轮机中压缸继续做功。 2、锅炉主要系统 1)汽水系统:锅炉的汽水系统的主要功用是接受燃料的热能,提升介质的热势能,增压增温,完成介质的状态转换。 2)烟风系统:提供锅炉燃烧的氧气,带动干燥的燃料进入炉膛,维持炉膛风压以稳定燃烧。 3)制粉系统:完成燃料的磨碎、干燥。使之形成具有一定细度和干燥度的燃料,并送入炉膛。 4)其它辅助系统:包括燃油系统、吹灰系统、火检系统、除灰除渣系统等。

热电厂热力系统计算

热力发电厂课程设计 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 0.65~ 0.85 0.85~0.90 锅炉效率0.72~0.85 0.85~0.90 0.70 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。

(5)热交换器端温差,取3~7℃。 (6)锅炉排污率,一般不超过下列数值: 以化学除盐水或蒸馏水为补给水的供热式电厂2% 以化学软化水为补给水的供热式电厂5% (7)厂内汽水损失,取锅炉蒸发量的3%。 (8)主汽门至调节汽门间的压降损失,取蒸汽初压的3%~7%。 (9)各种抽汽管道的压降,一般取该级抽汽压力的4%~8%。 (10)生水水温,一般取5~20℃。 (11)进入凝汽器的蒸汽干度,取0.88~0.95。 (12)凝汽器出口凝结水温度,可近似取凝汽器压力下的饱和水温度。 2、原则性热力系统 2.1设计热负荷和年持续热负荷曲线 根据各个用户的用汽参数和汽机供汽参数,逐一将用户负荷折算到热电厂供汽出口,见表2-1。用户处工业用汽符合总量:采暖期最大为175t/h,折算汇总到电厂出口处为166.65t/h。 表2-1热负荷汇总表 折算到热电厂出口的工业热负荷,再乘以0.9的折算系数,得到热电厂设计工业热负荷,再按供热比焓和回水比焓(回水率为零,补水比焓62.8kJ/kg)计算出供热量,见表2-2。根据设计热负荷,绘制采暖负荷持续曲线和年热负荷持续曲线图,见图2-1、图2-2。 表2-2 热电厂设计热负荷

热电厂原则性热力系统课程设计说明书

《热力发电厂》课程设计说明书 班级:0 8热能(3)班 小组成员:易维涛虞循东赵显顺 吴文江高雨婷王颖 张盈文王靖宇白杨 指导老师:孙公钢 2011-12-05---2011-12-18

1、引言 1.1设计目的 1.学习电厂热力系统规划、设计的一般途径和方案论证、优选的原则 2.学习全面性热力系统计算和发电厂主要热经济指标计算的内容、方法 3.提高计算机绘图、制表、数据处理的能力 1.2原始资料 西安某地区新建热电工程的热负荷包括: 1)工业生产用汽负荷; 2)冬季厂房采暖用汽负荷。 西安地区采暖期101天,室外采暖计算温度–5℃,采暖期室外平均温度1.0℃,工业用汽和采暖用汽热负荷参数均为0.8MPa、230℃。通过调查统计得到的近期工业热负荷和采暖热负荷如下表所示: 热负荷汇总表 1.3计算原始资料 (1)锅炉效率根据锅炉类别可取下述数值: 锅炉类别链条炉煤粉炉沸腾炉旋风炉循环流化床锅炉 锅炉效率0.72~0.85 0.85~0.90 0.65~0.70 0.85 0.85~0.90 (2)汽轮机相对内效率、机械效率及发电机效率的常见数值如下: 汽轮机额定功率750~6000 12000~25000 5000 汽轮机相对内效率0.7~0.8 0.75~0.85 0.85~0.87 汽轮机机械效率0.95~0.98 0.97~0.99 ~0.99 发电机效率0.93~0.96 0.96~0.97 0.98~0.985 (3)热电厂内管道效率,取为0.96。 (4)各种热交换器效率,包括高、低压加热器、除氧器,一般取0.96~0.98。 (5)热交换器端温差,取3~7℃。

相关文档
最新文档