8086_8088处理器

8086_8088处理器
8086_8088处理器

8086/8088处理器

1、引言

8086/8088微处理器是Intel公司推出的第三代CPU芯片,它们的内部结构基本相同,都采用16位结构进行操作及存储器寻址,但外部性能有所差异,两种芯片都封装在相同的40脚双列直插组件(DIP)中。

2、8086微处理器的一般特点

A、16位内部结构,16位双向数据信号线;

B、20位地址信号线,可寻址1M字节存储单元;

C、较强的指令系统;

D、利用第十六位的地址总线来进行I/O端口寻址,可寻址64K个I/O端口;

E、中断功能强,可处理内部软件中断和外部中断,中断源可达256个;

D、单一的+5V电源,单相时钟5MHz

另外,Intel公司同期推出的Intel 8088微处理器是一种准16位微处理器,其内部寄存器、内部操作等均按16位处理器设计,与Intel 8086微处理器基本相同,不同的是其对外的数据线只有8位,目的是为了更方便地与八位I/O接口芯片相兼容。

8088内部结构图

3、8086/8088 CPU内部寄存器

8086/8088 CPU内部寄存器可分为通用寄存器和专用寄存器两大类,专用寄存器包括指针寄存器、变址寄存器等。

①通用寄存器

8086/8088有4个16位的通用寄存器(AX、BX、CX、DX),可以存放16位的操作数,也可分为8个8位的寄存器(AL、AH;BL、BH;CL、CH;DL、DH)来使用。其中AX称为累加器,BX称为基址寄存器,CX称为计数寄存器,DX称为数据寄存器。

②指针寄存器

系统中有两个16位的指针寄存器SP和BP,其中SP是堆栈指针寄存器,由它和堆栈段寄存器SS一起来确定堆栈在内存中的位置; BP是基数指针寄存器,通常用于存放基地址。

③变址寄存器

系统中有两个16位的变址寄存器SI和DI,其中SI是源变址寄存器,DI是目的变址寄存器,都用于指令的变址寻址方式。

AH&AL=AX:累加寄存器,常用于运算;

BH&BL=BX:基址寄存器,常用于地址索引;

CH&CL=CX:计数寄存器,常用于计数;

DH&DL=DX:数据寄存器,常用于数据传递。

IP(Instruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;

SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置;

SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;

DI(Destination Index):目的变址寄存器,可用来存放相对于 ES 段之目的变址指针。

④控制寄存器

IP、标志寄存器是系统中的两个16位控制寄存器,其中IP是指令指针寄存器,用来控制CPU的指令执行顺序,它和代码段寄存器CS一起可以确定当前所要取的指令的内存地址。顺序执行程序时,CPU每取一个指令字节,IP自动加1,指向下一个要读取的字节;当IP单独改变时,会发生段内的程序转移;当CS

和IP同时改变时,会产生段间的程序转移。标志寄存器的内容被称为处理器状态字PSW,用来存放8086/8088CPU在工作过程中的状态。

⑤段寄存器

系统中共有4个16位段寄存器,即代码段寄存器CS、数据段寄存器DS、堆栈段寄存器SS和附加段寄存器ES。这些段寄存器的内容与有效的地址偏移量一起,可确定内存的物理地址。通常CS划定并控制程序区,DS和ES控制数据区,SS 控制堆栈区。

4、处理器状态字PSW

8086/8088内部标志寄存器的内容,又称为处理器状态字PSW。其中共有9

个标志位,可分成两类:一类为状态标志,一类为控制标志。其中状态标志表示前一步操作(如加、减等)执行以后,ALU所处的状态,后续操作可以根据这些状态标志进行判断,实现转移;控制标志则可以通过指令人为设置,用以对某一种特定的功能起控制作用(如中断屏蔽等),反映了人们对微机系统工作方式的可控制性。

5、管脚与信号定义

如图所示,是8086/8088CPU的外部结构,即引脚信号图,注意:在不同的工作模式下,其中一部分引脚的名称和功能可能不一致。8088/8086CPU芯片都是双列直插式集成电路芯片,都有40个引脚,其中32个引脚在两种工作模式下的名称和功能是相同的,还有8个引脚在不同的工作模式下,具有不同的名称和功能。下面,我们分别来介绍这些引脚的输入/输出信号及其功能。

㈠两种模式下,名称和功能相同的32个引脚

①VCC、GND:电源、接地引脚(3个),8088/8086CPU采用单一的+5V电源,但有两个接地引脚。

② AD15—AD0(Address Data Bus):地址/数据复用信号输入/输出引脚(16个),分时输出低16位地址信号及进行数据信号的输入/输出。

③ A19/s6—A15/s3(Address Status Bus):地址/状态复用信号输出引脚(4个),分时输出地址的高4位及状态信息,其中s6为0用以指示8086/8088CPU当前与总线连通;s5为1表明8086/8088CPU可以响应可屏蔽中断;s4、s3共有四个组态,用以指明当前使用的段寄存器,如表9-5所示,00—ES,01—SS,10—CS,11—DS。

④ NMI(Non-Maskable Interrupt)、INTR(Interrupt Request):中断请求信号输入引脚(2),引入中断源向CPU提出的中断请求信号,高电平有效,前者为非屏蔽中断请求,后者为可屏蔽中断请求信号。

⑤RD(Read):读控制输出信号引脚(1),低电平有效,用以指明要执行一个对内存单元或I/O端口的读操作,具体是读内存单元,还是读I/O端口,取决于IOM/控制信号。

⑥CLK/(Clock):时钟信号输入引脚(1),时钟信号的方波信号,占空比约为33%,即1/3周期为高电平,2/3周期为底电平,8088/8088的时钟频率(又称为主频)为4.77MHz,即从该引脚输入的时钟信号的频率为4.77MHz。

⑦Reset(Reset):复位信号输入引脚(1),高电平有效。8088/8086CPU要求复位信号至少维持4个时钟周期才能起到复位的效果,复位信号输入之后,CPU结束当前操作,并对处理器的标志寄存器、IP、DS、SS、ES寄存器及指令队列进行

清零操作,而将CS设置为0FFFFH。

⑧READY(Ready):“准备好”状态信号输入引脚(1),高电平有效,“Ready”输入引脚接收来自于内存单元或I/O端口向CPU发来的“准备好”状态信号,表明内存单元或I/O端口已经准备好进行读写操作。该信号是协调CPU与内存单元或I/O端口之间进行信息传送的联络信号。

⑨TEST(Test):测试信号输入引脚(1),低电平有效,TEST信号与WAIT指令结合起来使用,CPU执行WAIT指令后,处于等待状态,当TEST引脚输入低电平时,系统脱离等待状态,继续执行被暂停执行的指令。

⑩MN/MX(Minimum/Maximum Model Control)最小/最大模式设置信号输入引脚(1),该输入引脚电平的高、低决定了CPU工作在最小模式还是最大模式,当该引脚接+5V时,CPU工作于最小模式下,当该引脚接地时,CPU工作于最大模式下。

BHE/S7(Bus High Enable/Status):高8位数据允许/状态复用信号输出引脚(1) ,输出。分时输出BHE有效信号,表示高8为数据线D15—D8上的数据有效和S7 状态信号,但S7未定义任何实际意义。

㈡最小模式下的24-31引脚

当8088/8086CPU 的XMMN/引脚固定接+5V时,CPU处于最小模式下,这时候剩余的24—31共8个引脚的名称及功能如下:

①INTA(Interrupt Acknowledge)中断响应信号输出引脚(1),低电平有效,

该引脚是CPU响应中断请求后,向中断源发出的认可信号,用以通知中断源,以便提供中断类型码,该信号为两个连续的负脉冲。

②ALE(Address Lock Enable):地址锁存允许输出信号引脚(1),高电平有效,

CPU通过该引脚向地址锁存器8282/8283发出地址锁存允许信号,把当前地址/数据复用总线上输出的是地址信息,锁存到地址锁存器8282/8283中去。

注意:ALE信号不能被浮空。

③DEN(Data Enable):数据允许输出信号引脚,低电平有效,为总线收发器

8286提供一个控制信号,表示CPU当前准备发送或接收一项数据。

④RDT/(Data Transmit/Receive):数据收发控制信号输出引脚(1),CPU通过

该引脚发出控制数据传送方向的控制信号,在使用8286/8287作为数据总线收发器时,RDT/信号用以控制数据传送的方向,当该信号为高电平时,表示数据由CPU经总线收发器8286/8287输出,否则,数据传送方向相反。

⑤MIO/(Memory/Input &Output): 存储器/I/O端口选择信号输出引脚(1),这

是CPU区分进行存储器访问还是I/O访问的输出控制信号。当该引脚输出高⑥WR(Write): 写控制信号输出引脚(1) ,低电平有效,与MIO/配合实现对存

储单元、I/O端口所进行的写操作控制。

⑦HOLD(Hold Request): 总线保持请求信号输入引脚(1),高电平有效。这是系

统中的其它总线部件向CPU发来的总线请求信号输入引脚。

⑧HLDA(Hold Acknowledge):总线保持响应信号输出引脚,高电平有效,表示

CPU认可其他总线部件提出的总线占用请求,准备让出总线控制权。

㈢最大模式下的24-31引脚

当8088/8086CPU 的XMMN/引脚固定接地时,CPU处于最大模式下,这时候剩余的24—31共8个引脚的名称及功能如下:

① QS1、QS0(Instruction Queue Status):指令队列状态信号输出引脚(2), 这

两个信号的组合给出了前一个T状态中指令队列的状态,以便于外部

8088/8086CPU内部指令队列的动作跟踪。

②2S、 1S 、0S :总线周期状态信号输出引脚(3),低电平的信号输出端,这

些信号组合起来,可以指出当前总线周期中,所进行数据传输过程的类型,总线控制器8288利用这些信号来产生对存储单元、I/O端口的控制信号。2S、1S、 0S与具体物理过程之间的对应关系。

③LOCK (Lock):总线封锁输出信号引脚(1),低电平有效,当该引脚输出低电

平时,系统中其它总线部件就不能占用系统总线。

LOCK信号是由指令前缀LOCK产生的,在LOCK前缀后面的一条指令执行完毕之后,便撤消 LOCK信号。此外,在8088/8086的 2个中断响应脉冲之间, LOCK 信号也自动变为有效的低电平,以防止其它总线部件在中断响应过程中,占有总线而使一个完整的中断响应过程被中断。

④1/GTRQ、0/GTRQ(Request/Grant):总线请求信号输入/总线允许信号输出引脚(2)。这两个信号端可供CPU以外的两个处理器,用来发出使用总线的请求信号和接收CPU对总线请求信号的应答。这两个引脚都是双向的,请求与应答信号在同一引脚上分时传输,方向相反。

intel的cpu有哪些系列

intel的cpu有哪些系列? LGA775接口 赛扬系列如赛扬331 赛扬E系列如赛扬E430 赛扬E双核系列如赛扬E双核E1200 奔腾4系列如奔腾4 506 奔腾D系列如奔腾D 802 奔腾E双核65NM系列如奔腾E2200 奔腾E双核45NM系列如奔腾E5200 酷睿2双核E系列如酷睿2E7300 酷睿2四核Q系列如酷睿2Q6600 LGA1366接口 酷睿I7系列如酷睿I7 920 Amd的cpu有哪些系列? AMD(所有AM2 AM2+ AM3全是940针脚) AM2接口 闪龙系列如闪龙3200+ 闪龙LE系列如闪龙LE1150 双核闪龙系列如双核闪龙2100 双核速龙系列(K8) 如双核速龙5400+ 双核速龙BE系列如双核速龙BE2350 AM2+接口 双核速龙系列(K10) 如双核速龙7750 三核羿龙系列如羿龙8650 四核异龙系列如羿龙9850 AM3接口 三核羿龙II系列如羿龙II X3 720 四核羿龙II系列如羿龙II X4 940 Cpu构架的含义 解释一: CPU的封装形式。一种是Socket,一种是Slot。 Slot架构已经被淘汰掉了,代表的如Intel的叫Slot 1、AMD的叫做Slot A。Socket架构是目前我们最常见的,代表性的如Intel的Socket370、Socket478、Socket T(又称LGA775)AMD的Socket462、Socket754、Socket939、Socket940等。 解释二:

CPU内部结构,包括晶体管电路设计、制造工艺、指令集、计算管道、总线运作方式。。。 比如:PⅢ是采用P6总线架构设计的,此架构优点是流水线短,执行效率高,缺点是前段总线与外频同步,总线带宽不能满足高吞吐量的数据。 而P4、PD是采用Netburst总线架构来设计的,此架构的优点是可以利用QDR 技术采用4倍传送速率来进行总线传输以达到高带宽,实现数据的高吞吐量需求。缺点是超长的计算管道虽然能升CPU的主频,但是超长流水线导致CPU 的执行效率严重低下,因此人们常形容P4的CPU是高频低能,高主频导致CPU 的功耗和发热量严重上升,因此,Intel开发出了Core架构。 Core架构可以说是目前桌面处理器最快的,它采用与P6架构比较类似,但是与P6的架构有着截然不同的概念:首先它最大的优点是把流水线缩短,这样CPU的运算效率有很大的提高,其次它有保留了Netburst的总线传输方式,总线依然是以外频的4倍运作,然后利用共享二级缓存的先进技术,把CPU的性能提升了很高的层次。此架构的优点是运算效率高、功耗低,缺点是目前的价格偏贵。。。 AMD的架构我不太清楚,所以暂时不发表任何评论。但是有一点肯定的是:AMD 的总线架构完全不逊于Intel,因为AMD采用的是在CPU内部集成了内存控制器,并以HTT总线方式运作,单凭这几点就代表了AMD的CPU也有着绝对卓越的性能。 cpu的线程和核心数 线程:cpu线程就相似于GPU的流水线,每一线程处理多个程序。多核心cpu 也就是多线程,程序只要支持多核心处理,就能够将程序利用多线程来进行处理加快程序执行效率。好比1辆小货车和1辆大货运送物品。虽然两车速度是一样的,但是运送的物品缺大了一倍。那么反过来讲,把1个执行程序分成两部分并行运算,它的运算时间应该是有缩减的。 cpu的线程目前分两种,每核心1线程和每核心双线程。按照intel的理论来讲,支持双线程的cpu效能要强于单线程。 核心数:核心数指CPU的内核数量,线程数指CPU可以同时处理的进程数量。I3 530支持超线程,意思是1个内核可以在一个周期里同时处理两个线程,最早在是P4上应用。——原创

数字音频处理器中文使用说明

MAXIDRIVER3.4数字音频处理器 ALTO MAXIDRIVER3.4数字处理器是集增益、噪声门、参数均衡、分频、压缩限 幅、延时为一体的全功能数字音频处理器,具有2个输入通道和6个输出通道,本机内设10种工厂预设的分频模式,64个用户程序数据库位置以及利用多媒体卡(MMC)进行128个用户程序外置储存的功能。MAXIDRIVER3.4是新一代全数字音 频处理器,采用分级菜单形式,操作非常方便。 功能键介绍 前面板 1、MODE---分级菜单选择,按动时循环选择PRESET(预设)、DELAY(延时)、EDIT(编辑)、UTILITY(系统设置)菜单功能。同时相对应的LED指示灯会被点亮。这时可以进入所选择的菜单进行参数编辑。 2、LED指示灯---当你用MODE键选择需要编辑的菜单时,相对应的LED指示 灯会被点亮。 3、2X16位LCD显示屏---显示正在编辑或查看的系统参数或系统状态。 4、数据轮---转动这个数据轮可以调节需要编辑的参数的数值,顺时针旋转提高数值,逆时针旋转减低数值。 5、PREV/NEXT---前翻/后翻键,每个主菜单下面都有若干个子菜单,通过按动这两个按键可以向前或向后选择所需要进行编辑的子菜单。 6、NAVIGATION CURSOR KEYS---光标移动键,每个子菜单中都有若干个可以 编辑的参数选择,按动这两个键,可以选择需要编辑的参数,选中的参数会闪烁。 7、CARD---储存卡插入口,在这个插口插入MMC储存卡,利用PRESET(预设) 菜单下,可以对该储存卡进行写入、读出等操作。 8、ENTER---确认键,按此键可以对所选择的菜单或编辑的参数数值进行确认。 9、ESC---取消键,按此键可以对所选择的菜单或编辑的参数数值进行取消操作,返回上一级菜单。 10、输入电平指示表,实时指示A/B两个输入通道输入电平的强弱数值。 11、MUTE---静音按键,按下后将关闭相应输出通道的输出信号,相对应的 红色LED指示灯将点亮。 12、输出电平指示表,显示每个输出通道输出电平大小数值,这里显示的数 值不是绝对的输出电平数值,而是与该列LED指示灯中的LIMIT(限幅)指示为基础相比较的数值。

BIAMP Nexia CS数字音频处理器

BIAMP Nexia CS数字音频处理器 [会议系统]适用于需要大量话筒的应用环境,诸如法庭,会议室,理事会等场合。 Nexia CS是一台数字信号处理器,配有10路话筒/线路输入和6路独立的混合输出,可满足会议室、法庭和理事会等场合的会议应用。Nexia的设计软件中提供了大量的路由选择、信号处理等模块,用户可以通过PC软件来对系统进行搭积木式的设计。通过控制软件的屏幕、RS-232接口或者其他兼容的遥控设备可以对Nexia CS进行控制。利用以太网和NexLink数字音频接口,多台Nexia 设备可以联机构成大系统工作。 特性: 10路平衡式话筒/线路输入,采用裸线接口端子。 6路平衡式输出,采用裸线接口端子。 以太网接口用于软件设置/控制。 串行接口用于第三方RS-232远程控制。 远程控制母线用于特制的控制面板。 NexLink接口用于多台设备联机工作。 NEXIA软件,可工作在WindowsNT4.0/2000/XP。 固定数量的输入输出接口,内部处理可自由设定。 具有混合、线路交换、组合、均衡、延时、控制等多种功能。 CE认证标志,通过CSA UL6500标准测试。 设计师和工程师用指标说明 数字会议系统应该具备10路配有裸线接口端子的平衡式话筒/线路输入和6路配有裸线接口端子的平衡式线路输出。输入输出都是模拟信号,设备内部采用24-bit量化、48kHz取样频率进行模拟/数字和数字/模拟转换。所有的内部处理都是数字处理。采用NexLink连接后,允许在多台设备间共享数字音频信

号。 可以用软件来创建或者连接每一台硬件设备中数字信号处理组件。可选用的系统组件应该包括(并不限定于):调音台、均衡器、分频器、动态增益控制器,路由选择、延时器、远程控制器、电平表、信号发生器以及诊断器。软件设置和控制可通过以太网连接进行操作。设定完成之后,处理器可以通过软件显示屏进行控制。第三方RS-232控制系统和第三方遥控设备都可以用来控制本设备。软件可以在一台工作在Windows NT4.0/2000/XP下,配有网卡的个人电脑下运行。 Nexia CS就是满足以上要求的数字会议系统。 各模块界面: (1)输入/输出模块界面 输入/输出10进6出界面 (2)其它模块界面与Nexia SP相同。

Intel处理器型号命名详解

Intel处理器型号命名详解  凭借着妇孺皆知的品牌效应和随处可见的广告宣传,Intel的CPU在国内拥有数量极其庞大的用户群。但是由于产品线频繁更新,别说是普通消费者,就连一些泡在卖场的商家都被其种类繁多的产品型号搅得一头雾水。下面笔者就将对这些CPU的型号命名进行讲解,以帮助读者选择自己钟意的产品。 Intel CPU产品介绍 从大的命名规则来看,Intel的CPU产品主要分为Pentium奔腾系列和Celeron赛扬系列处理器。而从架构上区分,目前市面上的Intel CPU产品既有最常见的Socket 478架构,也有老一代的Socket 370架构,还有极少量的Socket 423架构。 (Intel的Pentium 4和Celeron处理器) 一、早期的Socket 370架构: 这是Intel的早期产品,当前二手市场上能见到的有Coppermine铜矿核心的Pentium Ⅲ和Celeron Ⅱ,以及Tualatin图拉丁核心的Celeron Ⅲ。虽然看起来稍显过时,但其实这里面也有着性价比较高的产品。例如Tualatin图拉丁核心的Celeron Ⅲ,因为拥有 32KB的一级缓存和256KB的二级缓存,所以性能与同频的Pentium Ⅲ都有得一拼。并且由于采用了0.13微米制程,所以Tualatin图拉丁赛扬的超频潜力也不错。不过由于Intel的市场策略,Socket 370架构现已被彻底抛弃,基于该架构的主板和CPU产品也因此失去了任何升级潜力。所以这些CPU只适合老用户升级使用,并不推荐新装机的用户购买。 二、过渡型Socket 423架构: 这主要见于Intel第一批推出的Willamette核心Pentium 4产品。但它只不过是昙花一现,上市不久便立即被Socket 478架构所取代。其相应的处理器和主板产品也迅速被品牌机等市场消化,现在市场上已经几乎见不到它们了。所以如果您在逛市场时见到这样的CPU,估计都是不知道从哪翻出的仓底货或是二手产品,笔者奉劝大家尽量少碰为妙。三、主流的Socket 478架构: 这是当前Intel的主流产品,产品线中既包括有高端的Pentium 4处理器,也包括了低端的Celeron处理器。可就是同属Socket 478架构的Intel处理器,也有许多不同类型。这就是我们下面将要讲述的内容。 "ABCDE"含义释疑 我们知道,Intel的不少Pentium 4处理器在频率后面还带有一个字母后缀,不同的字母也代表了不同的含义。 "A"的含义: Pentium 4处理器有Willamette、Northwood和Prescott三种不同核心。其中Willamette核心属于最早期的产品,采用0.18微米工艺制造。因为它发热较大、频率提升困难,而且二级缓存只有256KB,所以性能颇不理想。于是Intel很快用Northwood核心取代了它的位置。Northwood核心Pentium 4采用0.13微米制程,主频有了很大的飞跃,二级缓存容量也翻了一番达到了512KB。为了与频率相同但只有256KB二级缓存的Pentium 4产品区别,Intel在其型号后面加了一个大写字母"A",例如"P4 1.8A",代表产品拥有 512KB二级缓存。这些产品均只有400MHz的前端总线(Front Side Bus,简称FSB)。"B"的含义: 同样频率的产品,在更高的外频下可具备更高的前端总线,因此性能也更高。为此Intel在提升CPU频率的同时,也在不断提高产品的前端总线。于是从可以支持533MHz FSB的845E等主板上市开始,市场上又出现了533MHz FSB的Pentium 4处理器。为了与主频相同但是只有400MHz FSB的Pentium 4产品区别开来,Intel又给它们加上了字母"B"作为后缀,例如"P4 2.4B"。 "C"的含义:

教你怎样使用数字音频处理器

怎样使用数字音频处理器现在数字音频处理器越来越多地运用到工程当中了,对于有基础有经验的人来说,处理器是一个很好用的工具,但是,对于一些经验比较欠缺的朋友来说,看着一台处理器,又是一大堆英文,不免有点无从下手。其实不用慌,我来介绍一下处理器使用步骤,以一个2进4出的处理器控制全频音箱+超低音音箱的系统为例 1、首先是用处理器连接系统,先确定好哪个输出通道用来控制全频音箱,哪个输出通道用来控制超低音音箱,比如你用输出1、2通道控制超低音,用输出3、4通道控制全频。接好线了,就首先进入处理器的编辑(EDIT)界面来进行设置,进入编辑界面不同的产品的方法不同,具体怎么进入,去看说明书。 2、利用处理器的路由(ROUNT)功能来确定输出通道的信号来自哪个输入通道,比如你用立体声方式扩声形式,你可以选择输出通道1、3的信号来自输入A,输出通道的2、4的信号来自输入B。信号分配功能不同的产品所处的位置不同,有些是在分频模块里,有些是在增益控制模块里,这个根据说明书的指示去找。 3、根据音箱的技术特性或实际要求来对音箱的工作频段进行设置,也就是设置分频点。处理器上的分频模块一般用CROSSOVER或X-OVER表示,进入后有下限频率选择(HPF)和上限频率选择(LPF),还要滤波器模式和斜率的选择。首先先确定工作频段,比如超低音的频段是40-120赫兹,你就把超低音通道的HPF设置为40,LPF设置为120。全频音箱如果你要控制下限,就根据它的低音单元口径,设置它的HPF大约在50-100Hz,。处理器滤波器形式选择一般有三种,bessel,butterworth和linky-raily,我以前有帖子专门说明过三种滤波器的不同之处,这里不赘述。常用的是butterworth和linky-raily两种,然后是分频斜率的选择,一般你选24dB/oct就可以满足大部分的用途了。 4、这个时候你需要检查一下每个通道的初始电平是不是都在0dB位置,如果有不是0的,先把它们都调到0位置上,这个电平控制一般在GAIN功能里,DBX的处理器电平是在分频器里面的,用G表示。 5、现在就可以接通信号让系统先发出声音了,然后用极性相位仪检查一下音箱的极性是否统一,有不统一的,先检查一下线路有没有接反。如果线路没接反,而全频音箱和超低音的极性相反了,可以利用处理器输出通道的极性翻转功能(polarity或pol)把信号的极性反转,一般用Nomal或“+”表示正极性,用INV或“-”表示负极性。 6、接下来就要借助SIA这类工具测量一下全频音箱和超低音的传输时间,一般来说是会有差异的,比如测到全频的传输时间是10ms,超低音是18ms,这个时候就要利用处理器的延时功能对全频进行延时,让全频和低音的传输时间相同。处理器的延时用DELAY或DLY表示,有些用m(米)有些用MS(毫秒)来显示延时量,SIA软件也同时提供了时间和距离的量,你可以选择你需要的数据值来进行延时 7、接下来就该进行均衡的调节了,可以配合测试工具也可以用耳朵来调,处理器的均衡用EQ来表示,一般都是参量均衡(PEQ),参量均衡有3个调节量,频率(F),带宽(Q 或OCT),增益(GAIN或G)。具体怎么调,就根据产品特性、房间特性和主观听觉来调了,这个就自己去想了。 8、均衡调好后,就要进行限幅器的设置了,处理器的限幅器用LIMIT来表示,进去以后一般有限幅电平(THRESHOLD),压缩比(RA TIO)的选项,你要做限幅就要先把压缩比RA TIO设置为无穷大(INF),然后配合功放来设置限幅电平,变成限幅器后,启动时间A TTACK和恢复时间RELEASE就不用去理了。DBX处理器的限幅器用PEAKSTOP来表示,启动后,直接设置限幅电平就可以了,至于怎么调限幅器,我有专门的帖子,自己去看。 9、都调好了就要保存数据,处理器的保存一般用STORE或SA VE表示,怎么存,就看产品说明书了。

最新整理Intel处理器命名规则是怎样的

I n t e l处理器命名规则是怎样的 相信我们大多数人电脑都是使用I n t e l的处理器,处理器有很多种,官方都是怎么进行命名的呢?在I n t e l C P U型号中,都有哪些C P U是带后缀的呢?请看下文解析。 I n t e l处理器命名规则是怎样的? M:笔记本专用C P U,一般为双核,M前面一位数字是0,意味着是标准电压处理器,如果是7,则是低电 压处理器。 U:笔记本专用低电压C P U,一般为双核,U前面一位数字为8,则是28W功耗的低压处理器(标准电压双核处理器功耗为35W),若前一位数字为7,则是17W功耗的低压处理器,若为0,则是15W功耗的低压处理器。 H:是高电压的,是焊接的,不能拆卸。 X:代表高性能,可拆卸的。 Q:代表至高性能级别。 Y:代表超低电压的,除了省电,没别的优点的了,是不能拆卸的。 T:是涡轮增压技术,能增加C P U的转速,比如5400转的,可以提升到7200转,用来增加C P U性能。 K:可以超频的版本。

无后缀的是标准版。 Q M(第四代开始改为M Q):笔记本专用C P U,Q是Q u a d 的缩写,即四核C P U。若Q M前一位数字是0,则表示此产品为功耗45W的标准电压四核处理器,若为2,则表示此产品为35W功耗的低电压四核处理器,若为5,与对应为0的C P U主要规格相同,但集成的核芯显卡频率更高(如3630Q M和3635Q M,后者核显最大频率 1.2G H z,前者则是 1.15G H z)。 H Q:第四代C P U新出现的系列,主要参数和标准的四核C P U一致,但集成了性能空前强大的核芯显卡I r i s P r o5200系列,这种核显的性能可以直接媲美中端独立显卡。目前有i74750H Q,4850H Q和4950H Q三款C P U,后来出了一款i7 4702H Q,并没有集成高性能核芯显卡,是定位较为模糊的一款产品。 X M:最强大的笔记本C P U,功耗一般为55W。X意为E x t r e m e,此类型C P U完全不锁频,在散热和供电允许 的情况下可以无限制超频,而即便是默认频率下,也比同一时代的其它产品强大得多。这类C P U都是工厂生产后精心挑选出来得极品,质量极佳,性能完美,但价格非常昂贵。一块X M系列的C P U批发价可达1000美金以

英特尔i系列处理器技术参数

i3处理器 系统处理器 号内核/ 线程数时钟 速度英特尔? 智能高速缓存芯片英特尔? 睿频加速技术?1 英特尔? 超线程(HT)技术?2 标准电压处理器 i3-350M 2 个内核 / 4 条线程 2.26 GHz 3 MB 32 纳米否是 i3-330M 2 个内核 / 4 条线程 2.13 GHz 3 MB 32 纳米否是 超低电压处理器 i3-330UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米否是 i3-540 2 个内核 / 4 条线程 3.06 GHz 4 MB 32 纳米否是 i3-530 2 个内核 / 4 条线程 2.93 GHz 4 MB 32 纳米否是 i5处理器 系统处理器 号内核/ 线程时钟 速度英特尔? 智能高速缓存芯片英特尔? 睿频加速技术?1 英特尔? 超线程(HT)技术?2 英特尔? 高清显卡(HD Graphics)技术?3 标准电压处理器 i5-540M 2 个内核/ 4 条线程 2.53 GHz,采用英特尔? 睿频加速技术后高达3.06 GHz 3 MB 32 纳米是是是 i5-520M 2 个内核/ 4 条线程 2.40 GHz,采用英特尔? 睿频加速技术后高达2.93 GHz 3 MB 32 纳米是是是 i5-430M 2 个内核/ 4 条线程 2.26 GHz,采用英特尔? 睿频加速技术后高达2.53 GHz 3 MB 32 纳米是是是 超低电压处理器 i5-540UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米是是是 i5-520UM 2 个内核/ 4 条线程 1.06 GHz,采用英特尔? 睿频加速技术后高达1.86 GHZ 3 MB 32 纳米是是是 i5-430UM 2 个内核 / 4 条线程 1.20 GHz 3 MB 32 纳米是是是

酷睿处理器命名规则

英特尔酷睿处理器命名规则 前面酷睿和iX标识和上一代完全相同的,不做更多介绍。变化主要是中间四位数字和最后两位字母。 第一位“4”:代表英特尔酷睿第四代处理器; 第二位“5”“6”“7”“8”“9”:这些数字代表处理器等级排序,数字越大性能等级相对越高;第三位“3”“5”“0”:这一位基本上就是对应核芯显卡的型号,其中“3”代表高性能处理器配HD 4600;“5”代表核芯显卡采用的是Iris 5000、5100或者Pro 5200;而“0”则是HD 4600;第四位“0”“2”“8”:“0”在标准电压中代表47W,而在低电压中是代表15W;“2”则代表37W,“8”在低电压处理器中代表28W; 第五位“MX”“HQ”“MQ”“U”:字母“MX”代表旗舰级,“HQ”封装方式FCBGA1364,并且部分支持Trusted Execution Technology和博锐技术,“MQ”版本封装方式FCBGA946, “U”代表超低电压以15W和28为主; 英特尔官方网站首批移动版酷睿i7处理器共有14款,其中TDP为57W的只有一款,就是之前我们评测过的酷睿i7-4930MX,不过其搭载的核芯显卡是HD 4600,并不是大家想看到的Iris Pro 5200。另外,酷睿i7 M、H系列也有细微的区别,初看后可能会认为H代表高性能、M代表主流。结果恰恰相反,M系列CPU频率比H系列更高,只是GPU没有使用最好的GT3e,旗舰型号Core i7-4930MQ的热设计功耗也唯一达到了57W。 除了酷睿i7外,官方网站也展示了酷睿i5和酷睿i3的具体规格。酷睿i5和i3低电压版分为U和Y两种系列,命名规则中主要也区别在后四位上。拿其中的酷睿i5-4200Y和酷睿i5-4258U为例,第一位“4”是第四代酷睿处理器;第二位的“2”则是产品序列,个人理解理论上数字越高性能越好;第三位数字“5”代表的是核芯显卡系列HD 5000以及Iris(锐矩)5100,“0”和“1”都是HD 4400和HD 4200;第四位“0”代表15W,而如果标注数字是“8”的,TDP 则是28W,最后一位字母U依然代表低电压,而全新的“Y”字母则代表更低功耗的11.5W。注:在表格中有一项SDP是之前没有过的,英特尔以往使用热设计功耗(TDP)来衡量计算机在最差情况下的功耗,即CPU全速运行一段时间的功耗。目前,英特尔引入了一个新概念,即场景设计功耗(SDP)。这主要衡量计算机在媒体播放等轻量级应用下的功耗。英特尔将以SDP来衡量用于平板电脑和笔记本的的处理器。可以看到,只有超低功耗的11.5W处理器上才会有SDP场景设计功能。 附:酷睿i7处理器中core i7 4710MQ 排名在五名左右(联想Y400-430笔记本系列CPU)

数字音频处理器参数

1. 扩声系统升级改造 (1)新增2台数字音频处理器。该处理器需要和原有视频会议系统、数字会议系统、讲台话筒、现场图传背包TVU系统、无线麦克风、控制室电脑、有线电视等信号源(原调音台连接图附件1图1所示)和新增录播系统进行音频集成,实现各系统音频信号的任意路由和控制。处理器具备12进8出,12路输入通道带AEC回声消除功能,拥有AVB网络接口,支持多达128X128AVB网络,具备 Speech Sense (语音触发技术)和 Sona AEC (回声消除技术)的新型处理算法,信号处理可通过软件直观的配置和控制,如:信号路由和混音、均衡、滤波、动态处理、延迟等。 (2)新增会场前后方音箱。在大厅前方选用2只柱状线列阵音箱,铰接列阵与线性列阵技术的结合,在大厅中后场两侧柱子上壁挂两只补声音箱,以满足中后场的声压级。 整个扩声系统改造后需要符合会场声学环境要求,声音清楚无回声,声音大小符合会场扩声需求。声学特性指标按中华人民共和国国家标准GB50371-2006《厅堂扩声系统设计规范》要求,列表如下: 2. 中控系统升级改造 新购一套中控系统,系统需具有双网卡功能,局域网端口用于连接主机到外部网络,ICSLAN端口连接AMX设备或其他第三方A/V设备使其独立于主要网络;同时支持IPv6和网络标准和特性;支持灵活的编程应用实现(RPM,NetLinx和Java);具有向后和跨平台的兼容性;具有自动诊断功能,能自动检测断线或连接错误的串口和红外端口;程序文件支持从USB驱动器导入/导出。 中控系统需要和原有及新增系统高度集成,将音频、视频、灯光、升降器、大屏控制等进行集中控制管理,能完成所有原系统控制部分的操作,支持一键式的模式切换,同时可支持此项目新购系统的统一控制。原中控系统连接示意图如下图所示:

英特尔历代经典CPU产品回顾

悉数历史英特尔历代经典CPU产品回顾 2006年7月份,英特尔终于在万众期待下发布了其新一代Core微体系架构桌面处理器——Conroe。Core 微体系架构彻底抛弃了使用多年的NetBurst微架构,执行效率更高,而功耗却大幅降低。其实,作为半导体业界领袖的英特尔,在38年(英特尔创立于1968 年)的公司历程中曾生产出无数的经典产品,今天笔者就给大家介绍和回顾一下英特尔最具代表性的处理器。 CPU的发展可谓翻天覆地,从单核心过度到双核心 CPU发展的速度 在过去的时间里,处理器发展的脚步跑相当快!从1977年英特尔的第一颗处理器——4044首次登台露面,它由2300个晶体管构成;今天英特尔的Pentium Extreme Edition 840处理器,晶体管数量已经增加至230,000,000个!足足增加了100,000倍! CPU发展过程中的变革 2006年,英特尔的LGA775平台已经成为市场主流;双核心也加入了CPU这个大家庭。无疑,大家手中的CPU越来越“快”了。本次,我们比较了从CPU诞生到现今CPU,从Sokect 370到LGA775,时钟频率从1MHz出头到现在最高的3.8GHz!

介绍完了一些CPU发展的背景知识,现在就带大家去看看CPU是怎样从无到有,并且一步步发展起来的。根据网络的记忆,笔者把它分为了几个发展阶段。注意,这并非按照教科书去划分,而是根据我们的记忆。 CPU发展的初级阶段 1971年1月,英特尔公司的霍夫(Marcian E.Hoff)研制成功4位微处理器芯片Intel 4004,标志着第一代微处理器问世,微处理器和微机时代从此开始。正因为发明了微处理器,霍夫被英国《经济学家》杂志列为“二战以来最有影响力的7位科学家”之一。 英特尔的第一颗处理器——4004 4004当时只有2300个晶体管,是个四位系统,时钟频率仅为108KHz,每秒执行6万条指令(0.06 MIPs)。功能比较弱,而且计算速度较慢,只能用在Busicom计算器上。

Intel cpu后缀含义

关于英特尔?处理器号 在为满足计算机需求选购合适的处理器时,处理器号是除处理器品牌、特定系统配置和系统级性能指标评测以外的一个重要考虑因素。 在同一处理器等级或家族内,编号越高表示处理器的特性越多,但可能某一特性较强而另一特性较弱。当您确定了需要购买的处理器品牌或型号后,您可通过比较处理器号来确定该处理器是否具有您需要的特性。 查看处理器规格并比较处理器 > 查看处理器性能指标评测 > 笔记本电脑、台式机和移动设备处理器 第四代智能英特尔?酷睿?处理器家族 第四代智能英特尔?酷睿?处理器的编号采用基于一种字母数字方案,即以品牌及其标识符开头,随后是代编号和产品系列。四个数字序列中的第一个数字表示处理器的代编号,接下来的三位数是 SKU 编号。在适用的情况下,处理器名称末尾有一个代表处理器系列的字母后缀。 英特尔?高端台式机处理器依其各自的功能组合采用不同的编号方案。获得详细信息 >

英特尔?酷睿?2 处理器家族品牌的处理器号采用带有一个字母前缀的四位数字序列进行分类。下表列出了

英特尔?酷睿?2 四核处理器家族的处理器号由一个字母前缀和 4 位数字序列组成。此外,低功耗英特尔?酷睿?2 四核处理器可通过“S”后缀(表明该处理器热设计功耗较低)进行辨认。 英特尔?凌动?处理器 英特尔?凌动?处理器家族的处理器号采用三位数字序列进行分类。上网本级英特尔?凌动?处理器的字母前缀为 N,用于移动互联网终端(MID)的英特尔凌动处理器的字母前缀为 Z。 在同一处理器等级或家族内,编号越大通常表示特性越多。拥有较高编号的处理器可能某种特性较强,而另一特性较弱。 英特尔?奔腾?处理器 英特尔奔腾品牌处理器号由一个字母前缀和一个由四位字符数字组成的序列号构成。所有英特尔?奔腾?品牌处理器均为高能效双核台式机处理器,TDP 不低于 65 瓦。 在同一处理器等级或家族内,编号越高表示特性越多,如高速缓存、时钟速度、前端总线或其它英特尔技术。1拥有较高编号的处理器可能某种特性较强,而另一特性较弱。 英特尔?赛扬?处理器 英特尔?赛扬?品牌的处理器号以三位数字序列或五位字符序列(一个字母前缀和四个数字)表示,具体表示方式视处理器类型而定。 在同一处理器等级或家族内,编号越高表示特性越多,如高速缓存、时钟速度、前端总线或其它英特尔技术。1拥有较高编号的处理器可能某种特性较强,而另一特性较弱。

英特尔全线处理器型号及参数总览表

英特尔i3/i5/i7+全线处理器型号及参数总览表前言:随着英特尔全新32nm移动处理器的推出,英特尔移动处理器大军的规模进一步膨胀。粗略地计算一下,现在市场上可以买到的Core i、酷睿2、奔腾双核、赛扬双核、凌动处理器几大家族的成员已经超过了80款,即使是经常关注笔记本技术的达人,也很难记住每一款处理器的技术规格。 正是由于英特尔移动处理器的混乱,JS们才拥有了可趁之机,肆无忌惮的欺瞒消费者,经常以处理器的某项参数来忽悠消费者,让我们为本不需要的功能,或者被夸大的技术所买单。 下面是特尔主流移动处理器的技术参数,避免在选购笔记本时被JS商家忽悠,亲爱的网友们,你可要睁大眼睛看了。。。。。 *************************名词解释 ************************************ 前端总线:是指CPU与北桥芯片之间的数据传输总线,人们常常以MHz表示的速度来描述总线频率。总线的种类很多,前端总线的英文名字是Front Side Bus,通常用FSB表示。 睿频:英特尔睿频加速技术。是英特尔酷睿 i7/i5 处理器的独有特性。也是英特尔新宣布的一项技术。 英特尔官方技术解释如下:当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升 10%~20% 以保证程序流畅运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果只有内存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。 三级缓存(L3):目前只有酷睿I系列才有,之前的都是L2(二级缓存)。是为读取二级缓存后

Intel酷睿处理器CPU参数大全

Intel 酷睿系列双核CPU 型号制程L2 主频FSB 核心虚拟化|超线程|节电|64位|防病毒 T7800 65nm 4MB 2.60 800 2 Yes T7600 65nm 4MB 2.33 667 2 Yes NO Yes Yes Yes T7500 65nm 4MB 2.20 800 2 Yes T7400 65nm 4MB 2.16 667 2 Yes NO Yes Yes Yes T7300 65nm 4MB 2.00 800 2 Yes T7250 65nm 2MB 2.00 800 2 Yes T7200 65nm 4MB 2.00 667 2 Yes NO Yes Yes Yes T7100 65nm 2MB 1.80 800 2 Yes T5600 65nm 2MB 1.83 667 2 Yes NO Yes Yes Yes T5500 65nm 2MB 1.66 667 2 NO NO Yes Yes Yes T5300 65nm 2MB 1.73 533 2 NO NO Yes Yes Yes T5200 65nm 2MB 1.60 533 2 NO NO Yes Yes Yes L7500 65nm 4MB 1.60 800 L7400 65nm 4MB 1.50 667 2 Yes NO Yes Yes Yes L7300 65nm 4MB 1.40 800 2 L7200 65nm 4MB 1.33 667 2 Yes NO Yes Yes Yes T2700 65nm 2MB 2.33 667 2 Yes NO Yes NO Yes T2600 65nm 2MB 2.16 667 2 Yes NO Yes NO Yes T2500 65nm 2MB 2.00 667 2 Yes NO Yes NO Yes T2450 65nm 2MB 2.00 533 2 Yes NO Yes NO Yes T2400 65nm 2MB 1.83 667 2 Yes NO Yes NO Yes T2350 65nm 2MB 1.86 533 2 NO NO Yes NO Yes T2300 65nm 2MB 1.66 667 2 Yes NO Yes NO Yes

CPU宝典之intelCPU编码含义

CPU宝典之intelCPU编码含义 以下介绍intelCPU编码含义: 图片附件: 1.jpg (2007-5-7 13:35, 164.03 K) 图片附件: 1.jpg (2007-5-7 13:51, 60.99 K)

CPU都可以从其外面壳的铁上看到以上的信息,上面一共5行字母,最上面的字母INTEL 05就不多说了相信谁都知道。 图片附件: 2.jpg (2007-5-7 14:00, 140.42 K) 第二行的Intel? Core?2 Duo 表示这颗CPU的系列,就是我们常说的酷睿,同样如果是其他CPU还有可能是CELERON D、Pentium4,Pentium D等等。

图片附件: 3.jpg (2007-5-7 14:05, 138.31 K) 第三行,开始的6300,这个编号在以后的Intel处理器里可能都会看见,这是Intel处理器上的一个产品产品编号,和下面的1.86GHz是相对应的,也就是说不同的数字代表不同的频率。 图片附件: 4.jpg (2007-5-7 14:09, 138.63 K) 紧接着后面的SL9SA可能不少朋友就比较陌生了,这几个字母叫S-Spec 编码,是Intel为了方便用户查询其CPU产品所制定的一组编码,此编码通常包含了CPU的主频、二级缓存、前端总线、制造工艺、核心步进、工作电压、耐温

极限、CPU ID等重要的参数。并且CPU和S-Spec编码是一一对应的关系。对于大多数人而言S-Spec的含义无法直接看出的,也没有必要深入地研究各字符所代表的参数规格,但它是选择Intel处理器的最有用工具,通过此编码到Intel 的官方网站上查询https://www.360docs.net/doc/e014046024.html,/Default.aspx,就可以直接查到这个型号CPU的一切相关信息,包括他的制造工艺、核心步进、极限温度、最大功耗为等(后面我列出了常见的Intel CPU的S—Spec编码对应的CPU 型号及有关参数)。具体办法如下: 1、打开https://www.360docs.net/doc/e014046024.html,/Default.aspx,如下图: 图片附件: 3.jpg (2007-5-7 14:46, 304.16 K) 2、进入CPU具体参数页面。如下图: 图片附件: 5副本.jpg (2007-5-7 14:46, 337.07 K)

Biamp_Nexia数字音频处理器介绍

B i a m p N e x i a音频处理器介绍 编者案:传统扩音都是由调音台、音频处理、功放和音箱组成,设备众多,总投资不菲。而非专业音频的用户往往不会操作,刚调好的一个声场,几个月后已经是惨不忍睹。在数字化的今天,我们迎来 更加符合现代数字音视频集成工程应用的需要。 1.?前言 Biamp Nexia 于1976年在美国俄勒冈州注册,最早是生产高品质的音乐器材,紧随着专业音频技术的发展,逐步转型生产专业音频处理设备。1996年生产出第一台Audia数字媒体矩阵,2003年推出智能话筒混音器、单声道/立体声线路混音器,功率放大器系列,同年推出专门针对中小型多媒体会议系统的NEXIA系列小型媒体矩阵(PM CS SP)。当远程会议走入人们视线时,Biamp也在2006年生产了专门针对远程会议的Nexia TC&VC.基于他们生产音乐器材的背景和对声音的热爱,他们对声音有很高的要求,同时也把这样的要求应用到所有产品中,而且把高品质声音作为产品生产的第一位。应用范围很广,涉及政府、学校、公交、以及视频会议系统、体育场馆扩声工程,并享有很高的赞誉。在国际信息化产业联盟ICIA公布的最佳系统集成固定安装类产品大奖中,BIAMP公司的产品被权威期刊评为“最佳DSP处理大奖”。2003年进入中国市场,市场份额逐年上升; 你的远见可以成为现实 Nexia系列产品根据工程中遇到的现实问题而量身定做的。很多客户往往预算紧张,但对声音质量的要求却毫不妥协,并且希望联网遥控。通过创新的数字信号处理技术,Nexia以小巧的外形提供了远胜于模拟系统的解决方案。 通过标配的Nexlink接口,最多可以4台Nexia设备级联成系统,彼此交换数字音频信号,并共享DSP资源。再配合VS8这样人性化的线控面板,一个灵活而实用的数字音频系统就展现在你的面前。高雅、简洁而且功能强大,在每天的日常实用中稳定地发挥效能。 Nexia软件:易于使用、精于设计。 界面直观、操作简单、功能强大,Nexia软件允许您以搭积木的方式进行系统设计。所有的设计操作都在同一个界面下完成,无需反复在不同页面间切换。令设计、修改,甚至推翻重来这一切工作都变 为使工程项目进展更快,所有Nexia产品出厂时都包含了标准的音频系统设计,通电就能使用!如果您有特殊需求,也可以对工厂内置的系统设计进行修改,实现您的梦想! 线控组件:人性外观,简洁有效。

intel酷睿i系列CPU全解析

intel酷睿i系列CPU全解析 在酷睿2大获成功的基础上,Intel基于Core 2系列优秀的运算核心,大刀阔斧的改良了CPU架构,从而诞生了全新的Core i系列处理器。Core i首次整合了内存控制器、抛弃了老迈的FSB启用高速的QPI总线、加入大容量共享式三级缓存,在技术和架构方面以后来者居上的姿态全面压制AMD Phenom II系列产品,性能方面更是遥遥领先! BloomField、Lynnfield、Clarkdale三种核心

Nehalem、Westmere、Sandybridge三种处理器架构 全新架构的Core i系列的确非常诱人,但也很烦人。从技术方面来讲,同为Core i系列产品线,居然拥有两种不同的CPU和接口、三种截然不同的架构。在型号命名方面来讲,共有三种型号i7/i5/i3,但这三种型号并没有与三种架构相对应,三种型号又被细分为五大系列,让消费者一头雾水…… 为了帮助大家深刻认识Intel Core i产品线,理清Intel处理器及平台的技术和特色,并找到适合自己的产品,笔者特意将Intel全线产品的规格型号整理出来,并按照核心架构的不同分类介绍给大家,供选购时参考。 Bloomfield核心:Core i7 9XX

★ 首批Core i7:965X、940、920三款 2008年10月,Intel正式发布了Nehalem架构的Core i7 965/940/920三款处理器以及X58芯片组,这是Intel第一款整合内存控制器和QPI总线的产品,因此备受关注。 i7 9XX系列处理器是基于Nehalem架构的首款产品,核心研发代号是Bloomfield,采用了45nm工艺制造,是原生四核心设计,集众多先进技术于一身: 1. 超线程技术回归,四核八线程大幅提升CPU的多任务和多线程计算能力; 2. 整合三通道DDR3内存控制器,带宽大幅提升、延迟大大下降,从此内存不再是瓶颈;

分频器数字音频处理器功放音响

精心整理 在一套音响系统中提到分频器一般来说是指能将:20Hz--20000Hz 频段的音频信号分成合适的、不同的几个频率段,然后分别送给相应功放,用来推动相应音箱的一种音响周边设备。由于它是一种用来处理、分配音频频率信号的电子设备,所以我们通常也叫它:电子分频器。电子分频器的详细功能和工作原理我就不多说了,这里我只是侧重于对一些大家比较重视或经常感到困惑的方面做一些通俗易懂的介绍,希望能对大家有所帮助! 一、我们为什么要使用电子分频器 我们音响师研究电声和现在电声设备与技术的不断发展都是为了一个目的:就是要尽量忠实的再123频率( 1、我们可以用电子分频器将高频信号通过功放送到高音扬声器中. 2、可以用电子分频器将中频信号通过功放送到中音扬声器中。 3、可以用电子分频器将低频信号通过功放送到低音扬声器中。 这样高、中、低频信号独立输出、互不干涉,因此可以尽可能发挥不同扬声器的工作频段优势,使音响系统中各频段声音重放显得更加均衡一些,使声音更具层次感,使音色更加完美。这也就

是我们为什么使用电子分频器的原因了。 二、电子分频器的作用和特点 通过以上的介绍大家应该对电子分频器有一个大体认识了吧,那么使用分频器还有哪些作用和特点,甚至是缺点呢?根据多年的工作经验我总结了下面几点: (一)、作用和特点 1、基本分频任务:由于现在音箱的种类很多,系统中要采用什么功能的、几分频的电子分频器还是要灵活配置的,现在通常用的电子频器有2分频、3分频、4分频等区分,超过4分频就显得太复杂和无实际意义了。当然现在的电声技术日新月异,目前还有一些分频器在分频的同时还可以对音频信号进行一些其它方面的处理,但不管什么类型电子分频器的主要功能和任务当然还是分频了。 2、 15寸3、 (二) 1 2、 声音来,但如果经过了电子分频器分频后在200Hz以上频率工作的话,那这只音箱的丰满度和震撼力就会全没有了,因为此时音箱的低音给电子分频器切掉了。同样情况下我们利用电子分频器也切掉了大部分低音音箱的高音部分,虽然这样音色可能会好听了,但不可否认的是低音音箱也浪费掉了大量的能量。这对于音箱数量较多又注重音色的音响系统来说还无所谓,但如果一套音响系统中音箱数量不多又不注重音色只是要大声些,那此时还是不使用电子分频器现实一些。 3、分配频率不合理会导致设备损坏:上面说了合理使用电子分频器可以保护设备,同样电子分频器还是一把双刃剑,使用不当的话反而会损害设备:例如我们把从电子分频器里分出的高音信号送给了低音音箱,由于低音喇叭发不出这么高频率的声音来,所以此时的现象就是:高音音箱和低音音箱都不会有声音。如果有些音响师不看原因,只是一味的增加前级信号和后级功放的音量,那结果就是增加再大的音量也没有用。此时还会很容易损害功放,而且要是电平信号大到失真还容易烧坏扬声器,别以为低音音箱没有声音就没有事了,毕竟此时已经有很大的电流在通过

相关文档
最新文档