拉伸强度与弯曲强度关系

弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

弯曲模量又称挠曲模量。是弯曲应力比上弯曲产生的形变。材料在弹性极限内抵抗弯曲变形的能力。

我认为弯曲模量和弹性模量的不同在于所施加的应力一个是在弯曲方向,一个是在拉伸方向。拉伸强度是材料的一个本征值,与形状无关

抗弯强度是指材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度。一般采用三点抗弯测试或四点测试方法评测。其中四点测试要两个加载力,比较复杂;三点测试最常用。其值与承受的最大压力成正比。抗弯强度(弯曲强度)bendingstrength

又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。随试样形状变化会发生变化

材料抵抗外力不断裂的能力叫强度,强度越高抗力越大;例如钢,陶瓷

材料在外力作用下到断裂的过程中会发生变形,先发生弹性变形后发生塑性变形,弹性变形就是去掉外力后,还能恢复到原来形态,塑性变形就是去掉外力后,不能恢复到原来状态,如果是受拉力作用,尺寸会增大,受压,尺寸会变小,整个塑性变形阶段增大的尺寸与原来尺寸的比值就是延展性,而塑性变形阶段消耗的能就是塑性。塑性好,延展性也好,他们表达的是一个意思,表示材料塑性变形能力的,但是单位不同。塑性好就能承受很大的变形而不断裂,如铜,橡皮泥,但强度不一定高。

弹性好就是弹性变形能力强,例如橡胶,橡皮筋等,同样是描述材料变形能力的,强度也不一定高,即承受的外力不一定很大。

材料从抵抗外力到断裂过程中消耗掉的能(或叫做功)就是韧性,包括了弹性变形阶段和塑性变形阶段的共同消耗的能,韧性越好从外力作用到断裂过程消耗的能量越多。从力-位移曲线上说,纵坐标和横坐标都大的情况下,韧性最好,纵坐标要想增大就是要强度高,横坐标增大就是塑性好,因此,可以说如果一个材料的强度和塑性都好,那么它的韧性肯定非常好。但是从材料微结构上来讲,同时则增加材料的强度和塑性是一个矛盾体,要想提高强度,希望原子间的结合力越大越好,但是要想增加塑性反而不希望原子力太大,因此,如何同时提高材料的强度和韧性是材料届始终面临的最大挑战。

拉伸强度

是指材料产生最大均匀塑性变形的应力。

在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。

抗拉强度:拉断时的屈服强度。

弯曲强度

材料在弯曲负荷作用下破裂或达到规定挠度时能承受的最大应力,用公斤/厘米2[帕]表示。检验材料在经受弯曲负荷作用时的性能。测定标准ASTM D790 & ISO 178

机械设计试题及答案

1.在疲劳曲线上,以循环基数N0为界分为两个区:当N≥N0时,为(无限寿命区)区;当N <N0时,为(有限寿命区)区。 2.刚度是指机械零件在载荷作用下抵抗(弹性变形)的能力。零件材料的弹性模量越小,其刚度就越(小)。 3.润滑油的(油)性越好,则其产生边界膜的能力就越强;(粘度)越大,则其内摩擦阻力就越大。 4.为改善润滑油在某些方面的性能,在润滑油中加入的各种具有独特性能的化学合成物即为(添加剂)。 5.正是由于(弹性滑动)现象,使带传动的传动比不准确。带传动的主要失效形式为(打滑)和(带的疲劳破坏)。 6.蜗杆传动的主要缺点是齿面间的(相对滑动速度)很大,因此导致传动的(效率)较低、温升较高。 7.链传动水平布置时,最好(紧边)边在上,(松边)在下。 8.设计中,应根据被联接轴的转速、(转矩)和(直径)选择联轴器的型号。 9.径向滑动轴承的半径间隙与轴颈半径之比称为(相对间隙);而(偏心距)与(半径间隙)之比称为偏心率 。 10.对于普通平键,考虑到载荷分布的不均匀性,双键联接的强度按(1.5 )个键计算。 1.当所受轴向载荷通过(螺栓组形心)时,螺栓组中各螺栓承受的(轴向工作拉力)相等。2.从结构上看,带轮由(轮毂)、轮辐和(轮缘)三部分组成。 3.在直齿圆柱齿轮传动的接触疲劳强度计算中,以(节点)为计算点,把一对轮齿的啮合简化为两个(圆柱体)相接触的模型。 4.按键齿齿廓曲线的不同,花键分为(矩形)花键和(渐开线)花键。 5.请写出两种螺纹联接中常用的防松方法:(双螺母等)和(防松垫圈等)。

6.疲劳曲线是在(应力比)一定时,表示疲劳极限 与(循环次数)之间关系的曲线。 γN 7.理论上为(点)接触或(线)接触的零件,在载荷作用下,接触处局部产生的应力称为接触应力。 8.开式齿轮传动的主要失效形式是:(齿面的磨粒磨损)和(断齿)。 9.径向滑动轴承的条件性计算主要是限制压强、(速度)和(pv值)不超过许用值。10.在类型上,万向联轴器属于(无弹性元件的挠性)联轴器,凸缘联轴器属于(刚性)联轴器。 二、选择填空(每空1分,共10分) 1.下列磨损中,不属于磨损基本类型的是( 3 );只在齿轮、滚动轴承等高副零件上经常出现的是( 2 )。 (1)粘着磨损;(2)表面疲劳磨损; (3)磨合磨损;(4)磨粒磨损。 2.在通过轴线的截面内,(1 )的齿廓为直边梯形;在与基圆柱相切的截面内,(3 )的齿廓一侧为直线,另一侧为曲线。 (1)阿基米德蜗杆;(2)法向直廓蜗杆; (3)渐开线蜗杆;(4)锥蜗杆。 3、对于直齿圆柱齿轮传动,其齿根弯曲疲劳强度主要取决于(4 );其表面接触疲劳强度主要 取决于( 1 )。 (1)中心距和齿宽;(2)中心距和模数; (3)中心距和齿数;(4)模数和齿宽。 4、对于径向滑动轴承,(1 )轴承具有结构简单,成本低廉的特点;( 3 )轴承必须成对使 用。 (1)整体式;(2)剖分式; (3)调心式;(4)调隙式。 5.在滚子链传动的设计中,为了减小附加动载荷,应(4 )。 (1)增大链节距和链轮齿数;(2)增大链节距并减小链轮齿数; (3)减小链节距和链轮齿数;(4)减小链节距并增加链轮齿数。 6.对中性高且对轴的削弱又不大的键联接是( 1 )联接。

抗拉强度与硬度对照表

第2章金属材料的硬度试验 2.1 硬度试验的简介 2.1.1、硬度试验的概述 金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力。硬度测量能够给出金属材料软硬的数量概念。由于在金属表面以下不同深度的材料承受的应力和所发生的变形程度不同,因而硬度值可以综合的反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力。硬度值越高,表明金属抵抗塑性变形的能力越大,材料所产生的塑性变形就越困难。另外,硬度与其它机械性能(如强度指标σ 及塑性指标Ψ和 b δ)之间有着一定的内在联系,所以从某种意义上说硬度的大小对于机械零件 或工具的使用性能以及寿命具有决定性的意义。

硬度的试验方法有很多,在机械工业中广泛采用压入法来测定硬度,压入法又可以分为布氏硬度、洛氏硬度、维氏硬度等。 压入法硬度试验的主要特征是: 1. 试验时应力状态最软(即最大切应力远远大于最大正应力),因而不论是塑性材料还是脆性材料均能发生塑性变形。 2. 金属的硬度与强度指标之间存在如下近似的关系:σ =K·HB , b 式中:σ ---材料的抗拉强度值; b HB---布氏硬度值; K---系数; 退火状态的碳钢 K=0.34~0.36 合金调质钢 K=0.33~0.35 有色金属合金 K=0.33~0.53 3. 硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值,通常情况下,当硬度值越高,这些性能也就越好。在机械零件设计图纸上对性能的技术要求,往往只是标注硬度值,其原因就在于此。 4. 硬度测定后由于仅在金属表面局部体积内产生很小的压痕,并不损坏零件,因而适合于成品检验。 5. 设备简单,操作迅速方便。 实验目的:主要是了解硬度测定的基本原理及应用范围;布氏、洛氏硬度试验机的主要结构和操作方法。 实验设备:HB-3000型布氏硬度试验机和H-100型洛氏硬度试验机以及相关的读数放大镜等仪器。 试样:Ф20×10毫米的45钢的淬火和调质状态,Ф20×10毫米的硬铝。

抗弯强度计算公式

工字钢抗弯强度计算方法 一、梁的静力计算概况 1、单跨梁形式:简支梁 2、荷载受力形式:简支梁中间受集中载荷 3、计算模型基本参数:长L =6 M 4、集中力:标准值Pk=Pg+Pq =40+40=80 KN 设计值Pd=Pg*γG+Pq*γQ =40*1.2+40*1.4=104 KN 工字钢抗弯强度计算方法 二、选择受荷截面 1、截面类型:工字钢:I40c 2、截面特性:Ix= 23850cm4 Wx= 1190cm3 Sx= 711.2cm3 G= 80.1kg/m 翼缘厚度tf= 16.5mm 腹板厚度tw= 14.5mm 工字钢抗弯强度计算 方法三、相关参数 1、材质:Q235 2、x轴塑性发展系数γx:1.05 3、梁的挠度控制〔v〕:L/250 工字钢抗弯强度计算方法 四、内力计算结果 1、支座反力RA = RB =52 KN 2、支座反力RB = Pd / 2 =52 KN 3、最大弯矩Mmax = Pd * L / 4 =156 KN.M 工字钢抗弯强度计算方法 五、强度及刚度验算结果

1、弯曲正应力σmax = Mmax/ (γx * Wx)=124.85 N/mm2 2、A处剪应力τA = RA * Sx / (Ix * tw)=10.69 N/mm2 3、B处剪应力τB = RB * Sx / (Ix * tw)=10.69 N/mm2 4、最大挠度fmax = Pk * L ^ 3 / 48 * 1 / ( E * I )=7.33 mm 5、相对挠度v = fmax / L =1/ 818.8 弯曲正应力σmax= 124.85 N/mm2 < 抗弯设计值f : 205 N/mm2 ok! 支座最大剪应力τmax= 10.69 N/mm2 < 抗剪设计值fv : 125 N/mm2 ok! 跨中挠度相对值v=L/ 818.8 < 挠度控制值〔v〕:L/ 250 ok! 验算通过! 钢板抗弯强度计算公式 钢板强度校核公式是:σmax= Mmax / Wz ≤ [σ] 4x壁厚x(边长-壁厚)x7.85 其中,边长和壁厚都以毫米为单位,直接把数值代入上述公式,得出即为每米方管的重量,以克为单位。 如30x30x2.5毫米的方管,按上述公式即可算出其每米重量为: 4x2.5x(30-2.5)x7.85=275x7.85=2158.75克,即约2.16公斤 矩管抗弯强度计算公式 1、先计算截面模量 WX=(a四次方-b四次方)/6a 2、再根据所选材料的强度,计算所能承受的弯矩 3、与梁上载荷所形成的弯矩比对,看看是否在安全范围内 参见《机械设计手册》机械工业出版社2007年12月版第一卷第1-59页

梁弯曲时的强度计算教案

梁弯曲时的强度计算 [教学目的] 1. 能正确判断梁中最大弯矩所在的位置,并能确定其数值; 2.能准确的判断危险截面和危险点的位置,进行正应力强度计算。 [教学重点、难点] 确定危险截面和危险点的位置;进行强度校核、设计截面和确定许可载荷的计算。 [教学过程] 复习 1.梁纯弯曲时横截面上的正应力分布规律和计算公式? 3.梁纯弯曲时横截面上的最大正应力计算式? 4.常见截面的I z 和W z 的计算公式? 新课 一、梁弯曲时的正应力强度条件 1. 对于等截面梁,全梁的最大正应力一定出现在最大弯矩(M max )所在截面的上下边缘 处。 危险截面、危险点 2.要使梁能够正常工作,必须使梁危险截面上危险点处的工作应力不超过材料的许用应力[σ],即: 3.利用上式可解决弯曲强度计算的三类问题: 校核强度、设计截面尺寸、确定许可载荷 4.对抗拉和抗压性能不同的脆性材料,即[σ+]<[σ-],其强度条件应为: ][max max +++≤=σσz I y M , 二、例题 1. 如图所示的螺旋压板装置,已知工件受到的压紧力F= 2.5kN ,板长为3a ,a=50mm ,压板材料的许用应力[σ]=140MPa ,试校核压板的弯曲强度。 ][max max σσ≤=z W M ][max max ---≤=σσz I y M

例2.悬臂工字钢梁AB,长l=1.2m,在自由端有一集中载荷P,工 字钢的型号为18号。已知钢的许用应力[σ]=170MPa,略去梁的自 重,试计算集中载荷P的最大许可值。 三、课堂练习 简支木梁AB,跨度l=5m,承受均布载荷q=3.60kN/m,木材的许用应力[σ]=10MPa。如梁的截面为矩形,试为截面高度h与宽度b选择适当尺寸。(取截面宽高比为2:3) 作业布置:教材P153 7-7、7-11

直齿圆柱齿轮传动的轮齿弯曲强度计算

直齿圆柱齿轮传动的轮齿弯曲强度计算准则 为了保证在预定寿命内齿轮不发生轮齿断裂失效,应进行轮齿弯曲强度计算。 直齿圆柱齿轮传动的轮齿弯曲强度计算准则为:齿根弯曲应力σF 小于或等于许用弯曲应力[σ F ],即 σF ≤[σF ] 轮齿弯曲强度计算公式 轮齿弯曲强度的验算公式 计算弯曲强度时,仍假定全部载荷仅由一对轮齿承担。显然,当载荷作用于齿顶时,齿根所受的弯曲力矩最大。 图 11-8 齿根危险截面 计算时将轮齿看作悬臂梁(如图11-8所示)。其危险截面可用切线法确定,即作与轮齿对称中心线成夹角并与齿根圆角相切的斜线,而认为两切点连线是危险截面位置(轮齿折断的实际情况与此基本相符)。危险截面处齿厚为。 法向力Fn 与轮齿对称中心线的垂线的夹角为 ,Fn 可分解为 使齿根产生弯曲应力,则产生压缩应力。因后者较小故通常略去不计。 齿根危险截面的弯曲力矩为 式中:K 为载荷系数;为弯曲力臂。 危险截面的弯曲截面系数W 为 故危险截面的弯曲应力为 3030F s F α1F 2F F h F σ

令 式中称为齿形系数....。因和均与模数成正比,故值只与齿形中的尺寸比例有关而与模数无关,对标准齿轮仅决定于齿数。由此可得轮齿弯曲强度的验算公式 Mpa (a) 通常两齿轮的齿形系数和并不相同,两齿轮材料的许用弯曲应力[]和[] 也不相同,因此应分别验算两个齿轮的弯曲强度。 轮齿弯曲强度设计公式 引入齿宽系数,可得轮齿弯曲强度设计公式为 mm (b) 上式中的负号用于内啮合传动。内齿轮的齿形系数可参阅有关书籍。 式(a )和(b)中为小齿轮齿数;的单位为N ·mm ;b 和m 的单位为mm ; 和[]的单位为MPa 。 式(b)中的应代入和中的较大者。 算得的模数应圆整为标准模数。 传递动力的齿轮,其模数不宜小于1.5mm 。 26( )cos ()cos F F F F h m Y s m αα=F Y F h F s F Y 1 112122[]F F F F KTY KTY bd m bm z σσ= =≤1F Y 2F Y 1F σ2F σa b a ψ=m ≥1z 1T F σF σ[]F F Y σ11[]F F Y σ2 2[]F F Y σ

基础实验-塑料弯曲强度-实验讲义

塑料弯曲强度实验 塑料弯曲实验常用作热固性脆性材料的力学性能评价。可以将其看做是冲击韧性的放大。本质上是拉伸和弯曲的复合,最终直接关系到材料的剪切强度。 【实验目的】 1.掌握塑料弯曲强度测量的基本原理 2.掌握简支梁弯曲性能的测量方法; 3.了解弯曲强度实验方法适用的材料范围。 【实验原理】 把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或者变形达到预定值,测量该过程中对试样施加的压力。 4. 基本定义。 1.试验速度——speed of testing,支座与压头之间相对运动的速率,单位 mm/min 。 2.弯曲应力flexural stress Jf 试样跨度中心外表面的正应力, 按9.1 的(3) 式计算, 单位MPa 。 3.断裂弯曲应力flexural stress at break, σ fB试样断裂时的弯曲应力( 见图1 的曲线 a 和b), 单位MPa 。 4.弯曲强度flexural stretn gth, σ阳试样在弯曲过程中承受的最大弯曲应力( 见 国 1 的曲线 a 和b), 单位MPa 。 5.在规定挠度时的弯曲应力flexural stress at conventional deflection Jfc 达到 3.7 规定的挠度sc 时的弯曲应力( 见图1 的曲线C), 单位MPa 。 6.挠度deflection d 在弯曲过程中, 试样跨度中心的顶面或底面偏离原始 位置的距离, 单位mm 。 7.规定挠度conventionai deflection ,Sc规定挠度为试样厚度h 的1.5 倍, 单 位mm 。当跨度L=16h 时, 规定挠度相当于弯曲应变为 3.5% ( 见 3.8) 。 8.弯曲应变flexural strain, ε f试样跨度中心外表面上单元长度的微量变化, 用 无量纲的比或百分数(%) 表示。按9.2 的式(4) 计算。

2020年硬度与抗拉强度的关系对照表

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 一、硬度与抗拉强度的关系 当钢的硬度在500HB以下时,其抗拉强度与硬度成正比,kg/m ㎡(óB)=1/3 X HB=3.2 X HRC=2.1 X HS,但上述关系式也并非在什么场合都成立,从热处理方面说,回火温度低时,kg/m㎡与HRC时的相关关系便可能被破坏,钢的回火温度,硬度和抗拉强度的关系如图所示。 由此图可见硬度随回火温度的升高而下降,但在淬火状态以及300℃以下低温回火时,硬度与抗拉强度的关系难以成立。当回火温度在300℃左右时,kg/m㎡与HRC具有相关关系,即硬度高,抗拉强度就高;硬度低,抗拉强度就低。在低温回火状态欲求出kg/m㎡值是很困难的,因为此时抗拉强度值分布很离散。

由于低温回火件的kg/m㎡不稳定而不能确定,故在日本工业标准(JIS)中也是通试验来测定400℃以上温度回火件的拉伸特性(也有300℃回火工件)。换言之是只对调质件(淬火+400℃回火)进行拉伸试验。在工业上只是在要求抗旋转弯曲疲劳和抗磨损时才使用低温回火件。高频淬火和渗碳淬火即为此适用例。受拉应力的零件不采用低温回火。不过在低碳钢中,但淬火M能发生自回火(故Ms点高)时,亦有在淬火状态下使用者。低碳钢的板条马氏体组织结构自回火,正可在工业上应用,但此时必须考虑淬透性和质量效应(必要时应添加B、Cr、Mn等金属元素)。 二、钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表

如果您要查的抗拉强度>1000N/mm2,或者维氏硬度>310HV,或者布氏硬度>300HB,或者洛氏硬度>32HRC,请查本表

洛氏硬度HRB、HRA与其它硬度、强度换算关系表1

返回目录 附录二 洛氏硬度与其它硬度、强度换算表-1 (摘自GB/T1172-1999) 洛氏硬度布氏硬度F/D2=30 HRC HRA HBS HBW 维氏硬度 HV 强度(近似值) MPa b / σ 20 60.2 225 226 774 21 60.7 229 230 793 22 61.2 234 235 813 23 61.7 240 241 833 24 62.2 245 247 854 25 62.8 251 253 875 26 63.3 257 259 897 27 63.8 263 266 919 28 64.3 269 273 942 29 64.8 276 280 965 30 65.3 283 288 989 31 65.8 291 296 1014 32 66.4 298 304 1039 33 66.9 306 313 1065 34 67.4 314 321 1092 35 67.9 323 331 1119 36 68.4 332 340 1147 37 69.0 341 350 1177 38 69.5 350 360 1207 39 70.0 360 371 1238 40 70.5 370 370 381 1271 41 71.1 380 381 393 1305 42 71.6 391 392 404 1340 43 72.1 401 403 416 1378 44 72.6 413 415 428 1417 45 73.2 424 428 441 1459 46 73.7 436 441 454 1503 47 74.2 449 455 468 1550 48 74.7 470 482 1600 49 75.3 486 497 1653 50 75.8 502 512 1710 51 76.3 518 527 52 76.9 535 544 53 77.4 552 561 54 77.9 569 578 55 78.5 585 596

斜齿圆柱齿轮设计例题(变载荷)_校核弯曲强度

4.校核齿根弯曲疲劳强度NO 1)齿形系数: 当量齿数Z v1=Z1/cos3β=27/cos312036'12''=29 Z v2=Z2/cos3β=81/cos312036'12''=87 图12.21page229 Y Fa1=2.55 Y Fa2=2.22 应力修正系数:图12.22page230 Y Sa1=1.62 Y Sa2=1.78 重合度系数Yε:εα=[1.88-3.2(1/Z1+1/Z2)]cosβ =[1.88-3.2(1/29+1/87)]cos12036'12'' εα=1.69 Yε=0.25+0.75/εα=0.25+0.74/1.69 Yε=0.69 螺旋角系数Yβ:Yβ=max(1-εββ0/1200,1-0.25εβ,0.75) =max(1-1×12.60/1200,1-0.25×1,0.7 5) Yβ=0.9 2)载荷系数

a.齿间载荷分配系数:表12.10page217 K Fα=εα/cos2βb=1.69/cos212.60 K Fα=1.75 b.齿向载荷分布系数:图12.14page219 b/h=83/(2.25×2.5)=12.3 K Fβ=1.36 c.载荷系数:K=K A K v K FαK Fβ=1.5×1.2×1.75×1.36 K=4.28 3)许用应力: (同直齿轮例题)[σF]=σFlim Y N Y X/s Fmin a.极限应力:图12.23page231 σFlim1=600Mpa σFlim2=450M pa b.当量应力循环次数: 设3×106

弯曲变形的强度条件和强度计算

弯曲变形的强度条件和强度计算 当梁受到一组垂直于其轴线的力即横向力或位于轴线平面内的外力偶作用时,梁的轴线由一条直线变为曲线,称为弯曲变形。如果梁的几何形状材料性能和外力都对称于梁的纵向对称面则称为对称弯曲。如果梁变形后的轴为形心主惯性平面内的平面曲线则称为平面弯曲。本课程中主要研究以对称弯曲为主的平面弯曲,如图1所示。 图1 平面弯曲 一、梁弯曲时的内力——剪力和弯矩 梁的横截面上有两个分量——剪力和弯矩,它们都随着截面位置的变化而变化,可表示为F S=F S(x)和M=M (x),称为剪力方程和弯矩方程。 为了研究方便,通常对剪力和弯矩都有正负规定:使微段梁发生顺时针转动的剪力为正,反之为负,如图2所示;使微段梁上侧受拉下侧受压的弯矩为正,反之为负,如图3所示。 图2 剪力的正负 图3 弯矩的正负 例1:试写出下图所示梁的内力方程,并画出剪力图和弯矩图。

解:( 1 )求支反力 = ∑C M:0 3 10 12 6= ? - - ? Ay F,kN 7 = Ay F = ∑Y:0 10= - +By Ay F F,kN 3 = By F (2)列内力方程 剪力: ? ? ? < < - < < = 6 3 kN 3 3 kN 7 ) ( S x x x F 弯矩: ? ? ? ≤ ≤ ≤ ≤ ? - ? - = 6 3 3 m kN ) 6(3 m kN 12 7 ) ( x x x x x M (3)作剪力图和弯矩图 二、梁弯曲时的正应力 在一般情况下,梁的横截面上既有弯矩又有剪力。若梁上只有弯矩没有剪力,称为纯弯曲。本讲主要讨论纯弯曲时横截面上的应力——正应力。梁横截面上的正应力大小与该点至中性轴的距离成正比,即正应力沿截面宽度均匀分布,沿高度呈线性分布,如图4所示。 图4 梁弯曲时的正应力分布图 即有y I x M z ) ( = σ(1)

灰铸铁的硬度与抗拉强度间的关系

灰铸铁的硬度与抗拉强度间的关系 发布时间:2010-7-25 来源:亚洲泵网浏览:267 编辑: 小唐 抗拉强度 强度是在外力作用下,材料抵抗塑性变形和破断的能力. 硬度是材料抵抗局部塑性变形的能力. 通常强度越高,硬度也越高. 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 一般来说,对于灰铸铁在其它条件相同时,冷却速度愈慢或讲冷却时间愈长,铸件凝固中越容易出现粗大石墨,在共析转变时则有转变铁素体的倾向。铸件的硬度就越低。相反,由于冷却速度相应加大,也可以说冷却时间越短,铸件可以形成较细小的石墨片,此时在共析转变时大多呈珠光体基体,铸件的硬度就越高。严格的讲不能用时间的长短来分析与硬度的关系,因为铸件的几何形状复杂,壁厚差别也较大,很难简单地进行分析比较。因根据传热学原理,在铸造工艺设计中提出了“铸件模数M”的概念,M=(V-铸件体积,S-铸件表面积)。M值表示单位面积占有的体积量,M值愈大,冷却速度愈小;反之冷却速度愈大。同时还要考虑浇注温度、铸型的导热能力等因素的综合影响来分析与硬度的关系 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。 金属材料的硬度是指金属表面抵抗其他更硬物体压人的能力,表示材料的坚硬程度。硬度值的大小在一定程度上可以反映材料的耐磨性,是零件或工具的一项重要的机械性能指标。●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。

梁弯曲时的强度条件

第五节梁弯曲时的强度条件 梁截面上的弯矩M是随截面位置而变化的。因此,在进行梁的强度计算时,应使在危险截面上,即最大弯矩截面上的最大正应力不超过材料的弯曲许用应力 [σ],即梁的弯曲强度条件为:(1-29) 应用强度条件,同样可以解决强度校核、设计截面和确定许可载荷等三类问题。下面例题说明了它在解决强度校核方面的应用。本节另外附有例1-17,1-18和1-19三道例题来加强读者对此部分地掌握。有兴趣的可以点击作进一步的学习。 例1-16.图a所示容器,借助四个耳座支架在四根各长2.4m的工字钢梁的中点上,工字钢再由四根混凝土柱支持。容器包括物料重110k N,工字钢为16号型钢,钢材弯曲许用应力[σ]=120MP a,试校核工字钢的强度。 解析:将每根钢梁简化为简支梁,如图a,通过耳座加给每根钢梁的力为 k N。 简支梁在集中力的作用下,最大弯矩发生在集中力作用处的截面上,P力在梁的中间L/2处,最大弯矩值为: 由型钢表查得16号工字钢的,故钢梁的最大正应力为: MP a<120MP a 故此梁安全。

第二十章弯曲的强度计算 第一节概述 如图20-1所示的车轴,图20-2所示的桥式吊车梁,以及桥梁中的主梁,房屋建筑中的梁等。受力后这些直杆的轴线将由原来的直线弯成曲线,这种变形称为弯曲。以弯曲变形为主的杆件通常称为梁。 一般说来,当杆件受到垂直于杆轴的外力,或在通过杆轴的平面内受到外力偶作用时,杆将发生弯曲变形。我们先来研究比较简单的情况,即梁的横截面具有对称轴[图20-3(a)],全梁有对称面,并且所有外力都作用在对称面内的情形。在这种情形下梁的轴线弯成位于对称平面内的一条平面曲线[图20-3(b)],这种弯曲属于平面弯曲。本章就是讨论平面弯曲时横截面上的内力、应力和变形问题。

齿面接触疲劳强度计算

齿面接触疲劳强度计算 一、轮齿受力 分析 一对直齿圆锥 齿轮啮合传动 时,如果不考虑 摩擦力的影响,轮齿间的作用力可以近似简化为作用于齿宽中点节线的集中载荷f n,其方向垂直于工作齿面。如图6-14所示主动锥齿轮的受力情况,轮齿间的法向作用力f n可分解为三个互相垂直的分力:圆周力f t1、径向力f r1和轴向力f a1。各力的大小为: = (6-15) 式中:d m1为主动锥齿轮分度圆锥上齿宽中点处的直径,也称分度圆锥的平均直径,可根据锥距r、齿宽b和分度圆直径d1确定,即: d m1=(1-0.5)d1(6-16) 式中:称齿宽系数,通常取=0.25~0.35

圆周力的方向在主动轮上与回转方向相反,在从动轮上与回转方向相同;径向力的方向分别指向各自的轮心;轴向力的方向分别指向大端。根据作用力与反作用力的原理得主、从动轮上三个分力之间的关系:f t1 =-f t2、f r1=- f a2、f a1= -f r2,负号表示方向相反。 二、齿面接触疲劳强度计算 直齿圆锥齿轮的失效形式及强度计算的依据与直齿圆柱齿轮基本相同,可近似按齿宽中点的一对当量直齿圆柱齿轮来考虑。将当量齿轮有关参数代入直齿圆柱齿轮齿面接触疲劳强度计算公式,则得圆锥齿轮齿面接触疲劳强度的计算公式分别为 ≤(6-17) d1 ≥(6-18) 式中:z e为齿轮材料弹性系数,见表6-5;z h为节点啮合系数,标准齿轮正 确安装时z h =2 .5;为许用应力,确定方法与直齿圆柱齿轮相同。 三、齿根弯曲疲劳强度计算 将当量齿轮有关参数代入直齿圆柱齿轮齿根弯曲疲劳强度计算公式,则得圆锥齿轮齿根弯曲疲劳强度的计算公式为 ≤(6-19) m ≥ (6-20) 式中:为齿形系数,应根据当量齿数z v(z v=z/cosδ)由图6-8查得;[]为许用弯曲应力,确定方法与直齿圆柱齿轮相同。

齿轮疲劳强度计算

######################################################################## ## 渐开线圆柱齿轮疲劳强度计算法## ## ( GB/T3480-97,ISO6336-1996 ) ## ## 2014-03-14 ################郑州机械研究所################ 09:47:49 ## ------------------基本输入参数-------------------------- 小轮总扭矩(N.m)T = 1475.0 小轮转速(转/分)RPM1 = 354.0 大轮转速(转/分)RPM2 = 91.624 实际速比U = 3.8636 中心距(mm) A = 275.001 法向模数(mm)Mn = 5.0 螺旋角(度)β= 11.0 法向齿形角(度)αn = 20.0 ------------------------------------------------------------------------------------------------------ 小齿轮大齿轮 齿轮齿数Z = 22 85 总有效齿宽(mm) B = 110.0 110.0 变位系数Xn = 0.3886 0.1262 齿顶高系数Ha* = 1.0 1.0 顶隙系数Cn* = 0.25 0.25 ------------------齿轮几何参数----------------------------------------------------------- 小齿轮大齿轮 分度圆直径(mm) D = 112.059 432.955 节圆直径(mm) Dp = 113.084 436.917 基圆直径(mm) Db = 105.069 405.948 顶圆直径(mm) Da = 125.785 444.056 根圆直径(mm) Df = 103.445 421.717 齿顶厚(mm) Sa = 2.937 4.021 滑动率η= 0.991 0.991 分度圆线速度(m/s) V = 2.077 齿轮精度等级(GB 10095-1988) IQ = 6 端面重合度εα= 1.525 轴向重合度εβ= 1.336 ------------------材料及热处理等参数---------------------------------------------------------- 传动类型:减速传动 齿轮啮合类型:外啮合 螺旋角类型:斜齿 修形方式:齿向倒坡或有装配调整

抗拉强度与硬度对照表_图文.

抗拉强度与硬度上海国华公司专营宝钢产品:冷板、热板、镀锌板. 电话:021-5678 9999 宝钢资源

所谓的各种硬度,是根据硬度的等级,采用不同的测量办法测到的数值,根据一些标准的整理,供参考,详细请读标准 ⑴布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2。 ⑵洛氏硬度(HR)当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: 洛氏硬度的测量方法有三种: 1HRA,用带金刚石的压头,负荷60公斤的测量值; 2HRC,负荷150公斤的测量值; 3HRB,用带1/16寸钢球压头,负荷100公斤的测量值. ⑶维氏硬度(HV)以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 洛氏硬度中HRA、HRB、HRC的区别 洛氏硬度中HRA、HRB、HRC等中的A、B、C为三种不同的标准,称为标尺A、标尺B、标尺C。洛氏硬度试验是现今所使用的几种普通压痕硬度试验之一,三种标尺的初始压力均为98.07N(合10kgf,最后根据压痕深度计算硬度值。标尺A使用的是球锥菱形压头,然后加压至588.4N(合60kgf;标尺B使用的是直径为1.588mm(1/16英寸的钢球作为压头,然后加压至980.7N(合100kgf;而标尺C使用与标尺A相同的球锥菱形作为压头,但加压后的力是1471N(合150kgf。因此标尺B适用相对较软的材料,而标尺C适用较硬的材料。实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 但各种材料的换算关系并不一致硬度換算公式: 1.肖氏硬度(HS=勃式硬度(BHN/10+12 2.肖式硬度(HS=洛式硬度(HRC+15 3.勃式硬度(BHN= 洛克式硬度(HV 4.洛式硬度(HRC= 勃式硬度(BHN/10-3 硬度測定範圍:

硬度-强度换算关系

硬度对照表 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 1.布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 2.洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg 载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 3 维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。 根据德国标准DIN50150,以下是常用范围的钢材抗拉强度与维氏硬度、布氏硬度、洛氏硬度的对照表。

硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。 实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。 下面是本站根据由实验得到的经验公式制作的快速计算器,有一定的实用价值,但在要求数据比较精确时,仍需要通过试验测得。

提高弯曲强度的措施-19.

第19讲—提高弯曲强度的措施、薄壁截面的弯曲中心 §7-5 提高弯曲强度的措施 如前所述,弯曲正应力是影响弯曲强度的主要因素。根据弯曲正应力的强度条件σmax= 上式可以改写成内力的形式 Mmax≤[M]=Wz[σ] (b)(b)式的左侧是构件受到的最大弯矩,(b)式的右侧是构件所能承受的许用弯矩。 由(a)和(b)两式可以看出,提高弯曲强度的措施主要是从三方面考虑:减小最大弯矩、提高抗弯截面系数和提高材料的力学性能。 Mmax≤[σ] (a) Wz 1.减小最大弯矩 1)改变加载的位置或加载方式 首先,可以通过改变加载位置或加载方式 达到减小最大弯矩的目的。如当集中力作用在 简支梁跨度中间时(6-13a),其最大弯矩为 1Pl;当载荷的作用点移到梁的一侧,如距4 1,则最大弯矩变为左侧l处(图6-13b)6 5Pl,是原最大弯矩的0.56倍。当载荷的36 位置不能改变时,可以把集中力分散成较小的 力,或者改变成分布载荷,从而减小最大弯矩。

例如利用副梁把作用于跨中的集中力分散为 两个集中力(图6-13c),而使最大弯矩降低为 1Pl。利用副梁来达到分散载荷,减小最大8 弯矩是工程中经常采用的方法。 2)改变支座的位置 其次,可以通过改变支座的位置来减小最大弯矩。例如图6-14a所示受均布载荷的简支梁,Mmax= 小为12ql=0.125ql2。若将两端支座各向里移动 0.2l(图6-14b),则最大弯矩减812ql, 40 第19讲—提高弯曲强度的措施、薄壁截面的弯曲中心 Mmax= 只及前者的12ql=0.025ql2 401。图6-15a所示门式起重机的大梁,图6-15b所示锅炉筒体等,其支承点略向5 中间移动,都是通过合理布置支座位置,以减小 Mmax

提高弯曲强度的措施.

7-6 提高弯曲强度的措施 梁的设计既要保证其具有足够的强度,在荷载作用下能安全的工作,又要节约材料,减轻自重,使其经济合理。 一般情况下,梁的弯曲强度是由正应力控制的,弯曲正应力强度条件 max max z []M W σσ=≤ 是梁弯曲强度计算的主要依据。要提高梁的强度应从以下几个方面入手: 一、采用合理的截面形状 1、根据W z /A 的比值选择截面 梁能承受的弯矩与抗弯截面系数W z 成正比,而用料的多少又与截面面积A 成正比,所以W z /A 的比值越大越合理。 对截面高度相同而形状不同的截面,可用W z /A 的比值来比较: ① 高为h 宽为b 的矩形截面 2160.1676 bh W h h A bh === ② 直径为h 的圆形截面 3 2320.1258 4h W h h A h π π=== ③ 高为h 的槽形及工字形截面 (0.27~0.31)W h A = 可见,槽形及工字形截面最合理,矩形截面次之,圆形截面最差。 这一结论也可用正应力的分布规律得到解释:当距中性轴最远处应力达到相应许用应力时,中性轴上(或附近)的应力分别为零(或较小),这部分材料没有充分发挥作用。故应把这部分材料移至远离中性轴的位置。为了充分发挥材料的潜力应将截面面积布置得离中性轴远些为好。所以,工程上常常采用工字形、环形、箱形截面等截面形式。 2、根据材料的力学特性选择截面 对于用抗拉和抗压强度相同的塑性材料制成的梁,宜选用对称于中性轴的截面,如工字形、矩形和圆环形截面。 y 1y 2 -max 图7-27 对于由脆性材料制成的梁,由于抗拉强度小于抗压强度,宜采用中性轴不是对称轴的截面,且应使中性轴靠近强度较低的一侧,如铸铁等脆性材料制成的梁常采用T 形和箱形截

铁材料抗拉强度与硬度关系的分析

龙源期刊网 https://www.360docs.net/doc/e014195206.html, 铁材料抗拉强度与硬度关系的分析 作者:许可 来源:《山东工业技术》2017年第10期 摘要:本文主要对铁材料抗拉强度与硬度关系进行计算。在研究之后发现,铁材料抗拉 强度与硬度关系之间呈现正比例关联,同时也存在线性关联情况。铁材料受到制造工艺及化学成分不同因素影响,铁材料抗拉强度与硬度之间在换算处理之后,同样具有分散特性。但是在生产条件影响之下,可以通过硬度对产品生产质量进行监控。 关键词:铁材料;抗拉强度;硬度 DOI:10.16640/https://www.360docs.net/doc/e014195206.html,ki.37-1222/t.2017.10.045 0 前言 机械零部件产品质量在检验过程中,最为主要力学性能指标为硬度及抗拉强度,其中强度基本上受到材料应用价值所决定,抗拉强度是机械零件承载能力及评估主要分析参数。硬度检测方法在实际应用过程中,简化硬度检测计算流程,对机械零件并不造成任何影响。在部分情况下,材料硬度还可以通过换算关系进行检测,了解机械零件强度。因此,了解抗拉强度和硬度关系,具有重要现实意义,同时也是研究人员主要追求任务。 1 铁的抗拉强度及硬度关系 在国际标准及国家标准上,对铁抗拉强度及硬度数值都进行了明确规定,铁的抗拉强度和硬度之间呈现正比例关联。在了解到某种类别铁材料硬度数值之后,就可以通过换算方式,了解到该种类别铁材料的抗拉强度。但是不同类别铁材料在化学组成上面会存在一定差别,生产工艺不同,进而通过换算公式所计算出来的铁的抗拉强度存在一定误差。 就以45号铁材料来说,铁材料在高温回火及正火工艺处理之后,就能够获得相同硬度数值的铁材料,在通过调整材料质态方式,将铁材料抗拉强度转变为620mpa,但是铁材料在经过正太处理之后,抗拉强度仅仅为540mpa。按照研究人员所发表的研究报告可知,硬度及抗拉强度之间在进行换算过程中,可以借助布氏硬度及维氏硬度构建换算规则。材料为铁材料,在进行换算过程中,大部分铁材料都处于信度极限状态之下,抗拉强度分散系数基本上全部在200mpa左右。因此,按照铁材料生产条件,构建铁材料的抗拉强度及硬度关系模型就显著尤为重要[1]。 2 铁材料的抗拉强度与硬度关系 2.1 灰铸铁抗拉强度与硬度关系

抗拉强度与硬度对照表

抗拉强度与硬度对照表 钢轨还按抗拉强度的不同分为三个等级,有普通级钢轨(抗拉强度为586-785MPa),耐磨级钢轨(抗拉强度为883-1030MPa)以及特级钢轨(抗拉强度为1079-1226MPa)三种。 抗拉强度N/mm2 维氏硬度 布氏硬度 洛氏硬度 抗拉强度 N/mm2 维氏硬度 布氏硬度 洛氏硬度 Rm HV HB HRB Rm HV HB HRB 250 80 76 1125 350 333 35.5 270 85 80.7 1115 360 342 36.6 285 90 85.2 1190 370 352 37.7 305 95 90.2 1220 380 361 38.8 320 100 95 1255 390 371 39.8 335 105 99.8 1290 400 380 40.8 350 110 105 1320 410 390 41.8 370 115 109 1350 420 399 42.7 380 120 114 1385 430 409 43.6 400 125 119 1420 440 418 44.5 415 130 124 1455 450 428 45.3 430 135 128 1485 460 437 46.1 450 140 133 1520 470 447 46.9 465 145 138 1555 480 456 47 480 150 143 1595 490 466 48.4 490 155 147 1630 500 475 49.1 510 160 152 1665 510 485 49.8 530 165 156 1700 520 494 50.5 545 170 162 1740 530 504 51.1 560 175 166 1775 540 513 51.7 575 180 171 1810 550 523 52.3 595 185 176 1845 560 532 53 610 190 181 1880 570 542 53.6 625 195 185 1920 580 551 54.1 640 200 190 1955 590 561 54.7 660 205 195 1995 600 570 55.2 675 210 199 2030 610 580 55.7 690 215 204 2070 620 589 56.3

相关文档
最新文档