原子力显微镜

原子力显微镜
原子力显微镜

原子力显微镜

摘要:光学显微镜、电子显微镜、扫描隧道显微镜,每一次重要显微技术的发展,都为科学和社会的进步作出了巨大的贡献。而原子力显微镜的出现,则使得对非导电材料表面结构的测量达到了一个新的精度。本文简要地阐述了原子力显微镜的原理,并使用原子力显微镜对四种不同材料的表面结构进行了测量。

关键词:原子力显微镜;表面粗糙度

1. 引言

在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。扫描隧道显微镜(STM) 使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。但STM要求样品表面能够导电,从而使得STM只能直接观察导体和半导体的表面结构。为了克服STM 的不足之处,推出了原子力显微镜(AFM)。AFM是通过探针与被测样品之间微弱的相互作用力(原子力) 来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖。对比于现有的其它显微工具,原子力显微镜以其高分辨、制样简单、操作易行等特点而备受关注,并已在生命科学、材料科学等领域发挥了重大作用,极大地推动了纳米科技的发展,促使人类进入了纳米时代。

2. 实验目的

1)了解原子力显微镜的工作原理。

2)初步掌握用原子力显微镜进行表面观测的方法。

3.实验原理

1)AFM的工作原理和工作模式

(1)AFM的工作原理

在AFM中用一个安装在对微弱力极敏感的微悬臂上的极细探针。当探针与样品接触时,由于它们原子之间存在极微弱的作用力(吸引或排斥力) ,引起微悬臂偏转。扫描时控制这种作用力恒定,带针尖的微悬臂将对应于原子间作用力的等位面,在垂直于样品表面方向上起伏运动, 因而会使反射光的位置改变而造成偏移量,通过光电检测系统(通常利用光学、电容或隧道电流方法) 对微悬臂的偏转进行扫描,测得微悬臂对应于扫描各点的位置变化, 此时激光检测器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整。将信号放大与转换从而得到样品表面原子级的三维立体形貌图像。AFM 的核心部件是力的传感器

件, 包括微悬臂(Cantilever) 和固定于其一端的针尖。

根据物理学原理,施加到Cantilever 末端力的表达式为

F = KΔZ

式中,ΔZ 表示针尖相对于试样间的距离, K 为Can2tilever 的弹性系数,力的变化均可以通过Cantilever 被检测。

(2) AFM的关键部分

AFM关键部分是力敏感元件和力敏感检测装置。所以微悬臂和针尖是决定AFM灵敏度的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM 的灵敏度,微悬臂的设计通常要求满足下述条件: ①较低的力学弹性系数,使很小的力就可以产生可观测的位移; ②较高的力学共振频率; ③高的横向刚性,针尖与样品表面的摩擦不会使它发生弯曲; ④微悬臂长度尽可能短;⑤微悬臂带有能够通过光学、电容或隧道电流方法检测其动态位移的镜子或电极; ⑥针尖尽可能尖锐。

(3)AFM的工作模式

AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。

○1接触模式

接触模式包括恒力模式(constant2force mode) 和恒高(constant2height mode) 。在恒力模式中过反馈线圈调节微悬臂的偏转程度不变,从而保证样品与针尖之间的作用力恒定,当沿x 、y 方向扫描时,记录Z 方向上扫描器的移动情况来得到样品的表面轮廓形貌图像。这种模式由于可以通过改变样品的上下高度来调节针尖与样品表面之间的距离,这样样品的高度值较准确,适用于物质的表面分析。在恒高模式中,保持样品与针尖的相对高度不变,直接测量出微悬臂的偏转情况,即扫描器在z 方向上的移动情况来获得图像。这种模式对样品高度的变化较为敏感,可实现样品的快速扫描,适用于分子、原子的图像的观察。接触模式的特点是探针与样品表面紧密接触并在表面上滑动。针尖与样品之间的相互作用力是两者相接触原子间的排斥力,约为10 - 8 ~10 - 11N。接触模式通常就是靠这种排斥力来获得稳定、高分辨样品表面形貌图像。但由于针尖在样品表面上滑动及样品表面与针尖的粘附力,可能使得针尖受到损害,样品产生变形, 故对不易变形的低弹性样品存在缺点。

②非接触模式

非接触模式是探针针尖始终不与样品表面接触,在样品表面上方5~20 nm 距离内扫描。针尖与样品之间的距离是通过保持微悬臂共振频率或振幅恒定来控制的。在这种模式中,样品与针尖之间的相互作用力是吸引力——范德华力。由于吸引力小于排斥力,故灵敏度比接触模式高,但分辨率比接触式低。非接触模式不适用于在液体中成像。

③轻敲模式

在轻敲模式中,通过调制压电陶瓷驱动器使带针尖的微悬臂以某一高频的共振频率和0。 01~1 nm 的振幅在Z 方向上共振,而微悬臂的共振频率可通过氟化橡胶减振器来改变。同时反馈系统通过调整样品与针尖间距来控制微悬臂振幅与相位,记录样品的上下移动情况,即在Z 方向上扫描器的移动情况来获得图像。由于微悬臂的高频振动,使得针尖与样品之间频繁接触的时间相当短,针尖与样品可以接触,也可以不接触,且有足够的振幅来克服样品与针尖之间的粘附力。因此适用于柔软、易脆和粘附性较强的样品,且不对它们产生破坏。这

种模式在高分子聚合物的结构研究和生物大分子的结构研究中应用广泛。

图1 针尖至样品表面源自见的范德瓦耳斯力

(4)AFM中针尖与样品之间的作用力

AFM检测的是微悬臂的偏移量,而此偏移量取决于样品与探针之间的相互作用力。其相互作用力主要是针尖最后一个原子和样品表面附近最后一个原子之间的作用力。当探针与样品之间的距离 d 较大(大于 5 nm) 时,它们之间的相互作用力表现为范德华力(Van der Waals forces) 。可假设针尖是球状的,样品表面是平面的,则范德华力随1Pd2 变化。如果探针与样品表面相接触或它们之间的间距d 小于0。 3 nm ,则探针与样品之间的力表现为排斥力(Pauli exclusion forces) 。这种排斥力与d13 成反比变化,比范德华力随 d 的变化大得多。探针与样品之间的相互作用力约为10^-6 ~10^-9N ,在如此小的力作用下探针可以探测原子,而不损坏样品表面的结构细节。品与探针的作用力还有其他形式,如当样品与探针在液体介质中相接触时,往往在它们的表面有电荷,从而产生静电力;样品与针尖都有可能发生变形,这样样品与针尖之间有形变力;特定磁性材料的样品和探针可产生磁力作用;对另一些特定样品和探针,可能样品原子与探针原子之间存在相互的化学作用,而产生化学作用力。但在研究样品与探针之间的作用力的大小时,往往假设样品与探针特定的形状(如平面样品、球状探针) ,可对样品和探针精心设计与预处理,避免或忽略静电力、形变力、磁力、化学作力等的影响,而只考虑范德华力和排斥力。

2)AFM的针尖技术

探针是AFM的核心部件。如右图。目前,一般的探针式表面形貌测量仪垂直分辨率已达到0.1 nm ,因此足以检测出物质表面的微观形貌。但是,探针针尖曲率半径的大小将直接影响到测量的水平分辨率。当样品的尺寸大小与探针针尖的曲率半径相当或更小时,会出现“扩宽效应”,即实际观测到的样品宽度偏大。这种误差来源于针尖边壁同样品的相互作用以及微悬臂受力变形。某些AFM 图像的失真在于针尖受到污染。一般的机械触针为金刚石材料,其最小曲率半径约20 nm。普通的AFM 探针材料是硅、氧化硅或氮化硅(Si3N4 ) ,其最小曲率半径可达10 nm。由于可能存在“扩宽效应”,针尖技术的发展在AFM中非常重要。其一是发展制得更尖锐的探针,如用电子沉积法制得的探针,其针尖曲率半径在5~10 nm 之间。其二是对探针进行修饰,从而发展起针尖修饰技术。

探针针尖的几何物理特性制约着针尖的敏感性及样品图像的空间分辨率。因此针尖技术的发展有赖于对针尖进行能动的、功能化的分子水平的设计。只有设计出更尖锐、更功能化的探针, 改善AFM 的力调制成像(force modulation imaging) 技术和相位成像(phase imaging)技术的成像环境,同时改进被测样品的制备方法,才能真正地提高样品表面形貌图像的质量。

4.实验仪器

原子力显微镜的实验装置如图2所示。本装置分为如下几个部分:

图2 实验装置示意图

样品台包括压电陶瓷xy扫描单元与z向反馈系统,样品与针尖之间的z 向粗调、细调机构,可选用表面较为光滑的样品,做成小片状,背面适于粘贴在样品架上。

光源系统半导体激光器(650nm红光,功率10mW)、电源盒。

测量控制系统 PSD(position-sensitive detector, 3mm×3mm)光电信号处理电路、反馈控制电路、高压电源、扫描与图像处理软件。

AFM-Ⅱa型仪器特点:

(1)扫描时间较短。如果得到一幅图像需要十多分钟,在此过程中,周围环境的电干扰、光干扰、以及振动、温度变化等因素,都将直接影响到图像的准确性和完整性。

(2)卧式设计:主要是为了消除微悬臂自身的重力对纵向原子力的干扰。卧式AFM 中的重力方向与用于成像的原子力相互垂直,从而提高了仪器的灵敏度。

5.实验内容

1)依次开启:电脑-控制机箱-高压电源-激光器。

2)用粗调旋钮将样品逼近微探针至两者间距<1 mm。

3)再用细调旋钮使样品逼近微探针:顺时针旋细调旋钮,直至光斑突然向PSD移动。

4)缓慢地逆时针调节细调旋钮并观察机箱上反馈读数:Z反馈信号约稳定在150至250之间(不单调增减即可),就可以开始扫描样品。

5)读数基本稳定后,打开扫描软件,开始扫描。

6)扫描完毕后,逆时针转动细调旋钮退样品,细调要退到底。再逆时针转动粗调旋钮退样

品,直至下方平台伸出1厘米左右。

7)实验完毕,依次关闭:激光器-高压电源-控制机箱。

8)处理图像,得到粗糙度。

6.实验结果

1)铜样品

(1)铜样品的测量结果

粗糙度Ra: 14.3 nm ; Ry: 154.1 nm ; Rz: 154.1 nm 扫描范围X: 4000 nm ; Y: 4000 nm

图像大小X: 400 pixel ; Y: 400 pixel

(2)铜样品的表面形貌

图3 铜样品二维表面形貌

图4 铜样品三维表面形貌

2)导电ITO样品

(1)导电ITO样品的测量结果

粗糙度Ra: 14.9 nm ; Ry: 257.6 nm ; Rz: 257.6 nm

扫描范围X: 4000 nm ; Y: 4000 nm

图像大小X: 400 pixel ; Y: 400 pixel

(2)导电ITO样品的表面形貌

图5 导电ITO样品二维表面形貌

图6 导电ITO样品三维表面形貌

3)A4纸样品

(1)A4纸样品的测量结果

粗糙度Ra: 17.4 nm ; Ry: 195.3 nm ; Rz: 195.3 nm

扫描范围X: 4000 nm ; Y: 4000 nm

图像大小X: 400 pixel ; Y: 400 pixel

(2)A4纸样品的表面形貌

图7 A4纸样品二维表面形貌

图8 A4纸样品三维表面形貌

4)硅样品

(1)硅样品的测量结果

粗糙度Ra: 3.1 nm ; Ry: 84.5 nm ; Rz: 84.5 nm

扫描范围X: 4000 nm ; Y: 4000 nm

图像大小X: 400 pixel ; Y: 400 pixel

(2)硅样品的表面形貌

图9 硅样品的二维表面形貌

图10 硅样品的三维表面形貌

7.思考题

(1)AFM探测到的原子力的由哪两种主要成分组成?

答:一种是吸引力即范德瓦耳斯力;另外一种是电子云重叠而引起的排斥相互作用。(2)怎样使用AFM-II a和CCD光学显微镜,才能较好地保护探针?

答:装样品时,应先用粗调旋钮将样品旋至距探针间距小于1 mm后,再缓慢顺时针旋转细调旋钮,直至光斑突然向PSD移动;扫描前,要反向调节细调旋钮并观察机箱上反馈读数,使Z反馈信号稳定在-150至-250之间,这样实验时才不易发生超量程现象,从而保护探针;实验结束时,必须要先停止扫描,才能退出样品,而且细调要退到底,粗调应旋至样品平台伸出1厘米左右。

(3)原子力显微镜有哪些应用?

答:原子力显微镜可以用于研究金属和半导体的表面形貌、表面重构、表面电子态及动态过程,超导体表面结构和电子态层状材料中的电荷密度等。另外原子力显微镜在摩擦学中的有许多应用,如纳米摩擦、纳米润滑、纳米磨损、纳米摩擦化学反应和机电纳米表面加工等。在生物上,原子显微镜可以用来研究生物宏观分子,甚至活的生物组织。观察细胞等等。(4)传统的光学显微镜,电子显微镜相比,扫描探针显微镜的分辨本领主要受什么限制?

答:传统的光学显微镜和电子显微镜的分辨本领主要是由于衍射极限。由于衍射斑互相重叠导致不能分辨。而扫描探针显微镜的分辨本领主要取决于:探针针尖的尺寸;微悬臂的弹性系数,弹性系数越低,AFM越灵敏;悬臂的长度和激光光线的长度之比;探测器PSD 对光斑位置的灵敏度。对于分辨率一定的图像,扫描范围越小,获得的表面形貌越精细。(5)要对悬臂的弯曲量进行精确测量,除了在AFM中使用光杠杆这个方法外,还有哪些方法可以达到相同数量级的测量精度?

答:电学方法:

1.隧道电流检测法。根据隧道电流对电极间距非常敏感的原理,将STM用的针尖置于微悬臂的背面作为探测器,通过针尖与微悬臂间产生的隧道电流的变化就可检测由于原子间的相互作用力令微悬臂产生的形变。

2. 电容法。通过测量微悬臂与一参考电极间的电容变化来检测微弱力。当微悬臂发生形变时,它与参考电极间的空间大小发生变化,即电容发生变化,通过测量该电容的变化量就可测量微悬臂的位移。

其他光学方法,比如自差法、外差法和干涉法等。

8.参考文献

【1】黄润生,近代物理实验(第二版),南京大学出版社

原子力显微镜的原理及使用

原子力显微镜的原理及使用 通过近代物理实验课的学习,了解了许多仪器的工作原理以及使用方法,对今后的科研学习有很大的 帮助。其中原子力显微镜就是其中之一,对于做材料方面的专业来说,原子力显微镜在表征物质的表面结 构及性质起着重要的作用。前段时间我们利用AFM对用RF磁控溅射制备的PZT薄膜进行了表征,通过对AFM的使用并查找相关文献,使我对原子力显微镜有了更加深刻的认识。 原子力显微镜,英文:Atomic Force Microscope ,简写: AFM。是一种利用原子,分子间的相互作用力来观察物体表面微观 形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操 控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样 品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描 样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品 表面的形貌或原子成分。 它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运 动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控 制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电 流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针 尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分 辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。 一、仪器结构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置 检测部分、反馈系统。 1、力检测部分 在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是 使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品 的特性,以及操作模式的不同,而选择不同类型的探针。 2、位置检测部分 在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量 的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作 信号处理。 3、反馈系统 在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作 反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针 尖保持一定的作用力。 AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇特的材料, 当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与 所加的电压的大小成线性关系。也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分 别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面 扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。 原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作用,这作用力会使微悬臂摆动, 再利用激光将光照射在悬臂的末端,当摆动形成时,会使反射光的位置改变而造成偏移量,此时激光检测 器会记录此偏移量,也会把此时的信号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性 以影像的方式给呈现出来。 二、工作原理: 将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于 针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬 臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法

原子力显微镜的应用

1.引言 随着人类科研的不断发展, 纳米尺度上物质的结构、相互作用以及一些特殊的现象等越来越受到关注, 所以各种研究方法和仪器手段也应运而生。原子力显微镜(Atomic Force Microscope,简称AFM)利用其微悬臂上尖细探针与样品的原子之间的作用力,从而达到检测的目的。其具有原子级的分辨率[1]。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不能观察非导体的不足。 图1 原子力显微镜 原子力显微镜的原理及其在材料科学上的应用 摘要 本文介绍了原子力显微镜的发展过程、探测原理等方面,从原子力显微镜对于材料表面形貌分析,粉体材料分析,纳米材料分析等方面,综述了原子力显微镜技术在材料科学学方面的应用,并展望原子力显微镜在未来的发展 关键词 原子力显微镜工作模式特点表面形貌 Abstract Thisarticle provide information of AFM(Atomic Force Microscope),about the development,the principle,from AFM on analyzing surface of material ,dusty material and nanometer size material. And look into the future of AFM Key word AFM working model characteristic surface

2.仪器工作原理 AFM通常由氮化硼作为一个灵敏的弹性微悬臂,在其尖端有一个用来在样品表面上扫描的很尖细的探针。假设有两个原子,一个是在微悬臂的探针尖端,另一个是在样品的表面,它们之间的作用力会随着距离的变化而变化。当原子和原子很接近时,彼此的电子云排斥力作用会大于原子核与电子云之间的吸引作用,其合力表现为排斥作用。反之,若两原子分开到一定距离时,其电子云的排斥作用小于彼此原子核与电子云之间的吸引力作用,故其合力表现为吸引作用。原子力显微镜就是利用微小探针与待测原子之间的这种交互作用力的微妙变化,来显现表面原子的形貌。[2] 在原子力显微镜中,根据利用原子间的排斥力或吸引力方式的不同,发展出了两种工作模式: (1)利用原子之间的排斥力的变化而产生样品表面轮廓,从而发展了接触式原子力显微镜(Contact AFM),其探针与样品表面的距离约为零点几个纳米。 ( 2 )利用原子之间的吸引力的变化而产生 样品表面轮廓,从而发展了非接触式原子 力显微镜(Non-Contact AFM)其探针与样 品表面的距离约为几到几十纳米。 图2 原子与原子之间的交互作用 在原子力显微镜系统中,使用一个灵活的 微悬臂来感应针尖与样品之间的交互作用 力,该作用力随样品表面形态而变化,它 会使微悬臂随之摆动。将一束激光照射在 微悬臂的末端,当微悬臂摆动时,会使反 射激光的位置改变而造成偏移量,用激光 检测器记录此偏移量,同时将此信号传递 给反馈系统,以利于系统做适当的调整, 从而将样品表面特征以影像的方式显现出 来[3]。(如图 3) 。 图3 原子力显微镜的探测原理示意图 3.原子力显微镜的结构 3.1力检测系统 原子力显微镜使用微小悬臂来检测原 子之间力的变化量。微悬臂通常由一个 100到500μm长和大约500nm到5μm厚 的硅片或氮化硅片制成。微悬臂顶端有一 个尖锐针尖,用来检测样品-针尖间的相 互作用力。 图4 原子力显微镜微悬臂 3.2位置检测系统

原子力显微镜

6-5 原子力显微镜 【实验简介】 扫描隧道显微镜工作时要检测针尖和样品之间隧道电流的变化,因此它只能用于导体和半导体的研究。而在研究非导电材料时必须在其表面覆盖一层导电膜。导电膜的存在往往掩盖了样品表面结构的细节。为了弥补扫描隧道显微镜的这一不足,1986年宾尼希等发明了第一台原子力显微镜AFM(atomic force microscopy)。原子力显微镜不仅可以在原子水平测量各种表面形貌,而且可用于表面弹性、塑性、硬度、摩擦力等性质的研究。 【实验目的】 1.学习和了解原子力显微镜的结构和原理; 2.学习扫描隧道显微镜的操作和调试过程,并以之来观察样品的表面形貌; 【实验原理】 1.原子力显微镜 与STM不同,原子力显微镜测量的是针尖与样品表面之间的力。将微小针尖放在悬臂的一端,当针尖与样品间距小到一定程度时,由于针尖与样品的相互作用(引力、斥力等),使悬臂发生弯曲形变。如图使样品与针尖之间作扫描运动,测量悬臂的形变位移,即可得到 图6-5-1 原子力显微镜示意图 样品表面的形貌信息。 由于微悬臂的位移很小,对它的测量是一个关键技术。最早发明者宾尼希等人利用隧道电流对间距的敏感性来测量悬臂的位移,但由于隧道效应对悬臂的功函数(由于污染等原因)变化同样敏感,所以稳定性较差。现在大多数均采用光学方法或电容检测法。本实验采用光

图6-5-2 原子力显微镜光路图 束偏转检测方法,如图2所示。激光束经微悬臂背面反射、再经平面反射镜至四相限接受器,当微悬臂弯曲时激光束在接受器上的位置将发生移动,由四象限接受器检测出悬臂弯曲位移,便可得到样品的表面形貌。 2.轻敲模式成象技术 常规的接触模式扫描由于针尖对样品的作用力较大,会在软样品表面形成划痕,或使样品变形,对粉体颗粒样品,会使样品移动,或将样品碎片吸附在针尖上,分辨率较差,而理想的非接触模式由于工作程短,又是难于有效实施的。 轻敲扫描模式的特点是在扫描过程中由压电驱动器将微悬臂激发到共振振荡状态,针尖随着悬臂的振荡,极其短暂地与样品表面进行接触,同时由于针尖与样品的接触时间非常短,因此剪切力引起的对样品的破坏几乎完全消失,可以清晰观测完好的表面结构而不受表面高度起伏的影响。AFM轻敲扫描模式,特别适用于检测生物样品及其它柔软、易碎、粘附性较强的样品。并对针尖损耗相对最少。 【实验装置】(见扫描隧道显微镜) 【实验内容及步骤】 1.扫描光栅样品 注意:所有插件栏的操作都应当是鼠标单击 1.1 放针尖。把针尖架插入探头; 1.2 放样品(用镊子操作,注意不要让镊子碰到样品表面)。 1.3打开电脑。开启控制箱电源。打开软件,切换到在线工作模式(此时仪器会自动识别当前针尖类型,软硬件自动切换到相应工作模式,头部液晶屏也会立即显示出当前工作模

原子力显微镜操作详细流程

原子力显微镜操作简要说明 一、设备开机 1、打开原子力显微镜主机电源(在光学平台下方)。 2、开启电脑、运行软件(软件10,如有问题可换9重新运行)。 3、在软件界面点击 SPM init 进行设备初始化,如显示SPM OK可继续操作,如不显示SPM OK重启软件。 4、点open door开操作门,点灯泡按钮照亮。 二、样品准备 1、将表面洁净样品使用专用双面胶粘贴至设备配备的圆形载物片上(最好两个台子一起使用,以便旋转样品)。 2、通过检测组件上的按钮或者软件点open door开启样品室舱门,点灯泡按钮照亮,点击软件界面上的AFM-STM退针钮使显微镜探头缩回。 3、使用专用镊子将样品连同载物片放入磁性样品台上,小心调整样品区域之中间。小心不要碰触探头、激光源等。 4、点击软件界面的AFM-STM使探头移回。关闭舱门。 三、操作程序 1、运行软件的camera功能,点击绿色的play键。运行approach,点击蓝色step move,将样品降低到安全距离。 2、运行软件的aiming功能,点击tools-motors-video calibration-右下角specify laser step 1-Alt+左键-确定-手动Alt+左键点击红十字中心,使激光与十字匹配。 3、运行AFM钮,使针头伸出。点击Shift+左键点击针悬臂梁的中间或偏上三分之一处,点击move laser使激光移动到点击位置,然后用Laser X和Y将Laser 调到最大,点击Aiming,使DFL、LF为0。 4、运行软件的Resonance功能,选择semicontact模式,在probes里选择对应针尖,点击Auto,调节探针悬臂的共振频率。如产生共振,调节Gain和lockgain 的大小(保证其乘积大小不变),确定setpoint为典型值Mag的一半,Gain0.5-1之间。 5、运行landing,观察way值变化。 6、运行软件的Approach功能,自动完成下针。使探针下降至检测距离。 7、点击Scanning按钮,开始样品扫描,扫描图样将自动保存至指定文件夹。注意: 1、除去扫描过程,其他改变任何程序或移动样品的操作都应先关闭反馈键使ON 变为OFF。操作过程中确保XY是闭环状态? 2、取放样品时均应首先软件操作使探头缩回。 3、扫描结果的优劣决定于当前探针状态(是否断针和污染)和所选用的反馈灵 敏度Gain。在确保不损伤仪器以及珍贵探针的情况下进行优化调节。

原子力显微镜的工作原理及基本操作

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:原子力显微镜的工作原理及基本操作学生所在院(系): 学生所在学科: 学生姓名: 学号: 学生类别:应用型 考核结果阅卷人

原子力显微镜的工作原理及基本操作 一、实验目的 1.了解原子力显微镜的工作原理 2.掌握用原子力显微镜进行表面观测的方法 二、原子力显微镜结构及工作原理 2.1 AFM的工作原理 AFM是用一个一端装有探针而另一端固定的弹性微悬臂来检测样品表面信息的,当探针扫描样品时,与样品和探针距离有关的相互作用力作用在针尖上,使微悬臂发生形变。AFM系统就是通过检测这个形变量,从而获得样品表面形貌及其他表面相关信息 1.原子力作用机制 当两个物体的距离小到一定程度的时候,它们之间将会有原子力作用.这个力主要与针尖和样品之间的距离有关.从对微悬臂形变的作用效果来分,可简单将其分为吸引力和排斥力,它们分别在不同的工作模式下、不同的作用距离起主导作用.探针与样品的距离不同,作用力的大小也不相同,针尖/样品距离曲线如图1所示. 图1 针尖/样品距离曲线 2.原子力显微镜的成像原理 AFM的微悬臂绵薄而修长,当对样品表面进行扫描时,针尖与样品之间力的作用会使微悬臂发生弹性形变,针尖碰到样品表面时,很容易弹起和起伏,它非常的灵敏,极小的力的作用也能反应出来.也就是说如果检测出这种形变,就可以知道针尖-样品间的相互作用力,从而得知样品的形貌。

图2 光束偏转法的原理图 微悬臂形变的检测方法一般有电容、隧道电流、外差、自差、激光二极管反馈、偏振、偏转方法。偏转方法是采用最多的方法,也是原子力显微镜批量生产所采用的方法.图2就是光束偏转法的原理图。 3.原子力显微镜的工作模式 AFM主要有三种工作模式:接触模式(ContactMode)、非接触模式(Non-contact Mode)和轻敲模式( Tapping Mode),如图3. 图3 三种工作模式 接触模式中,针尖一直和样品接触并在其表面上简单地移动.针尖与样品间的相互作用力是两者相接触原子间的排斥力,其大小约为10-8~10-11N。 非接触模式是控制探针一直不与样品表面接触,让探针始终在样品上方5~20nm 距离内扫描.因为探针与样品始终不接触,故而避免了接触模式中遇到的破坏样品和污染针尖的问题,灵敏度也比接触式高,但分辨率相对接触式较低,且非接触模式不适合在液体中成像。 轻敲模式是介于接触模式和非接触模式之间新发展起来的成像技术,类似与非接触模式,但微悬臂的共振频率的振幅相对非接触模式较大,一般在0.01~1nm.分辨率几乎和接触模式一样好,同时对样品的破坏也几乎完全消失,克服了以往常规模式的局限。 4.原子力显微镜的构成 SPA-300HV型显微镜主要包括以下四个系统: 减震系统、头部系统、电子学控制系统、计算机软件系统(图4为结构图)。

原子力显微镜使用说明书

SII 操作说明书 Nanopics NPX100M001 原子力显微镜 湖南大学机械与汽车精密制造工程实验室翻译

1.1版本 1999年11月 1.2版本 2000年9月 在使用该仪器之前请认真阅读该操作手册并按里面的说明操作。把该说明书放置在仪器旁边,当遇到仪器操作的问题时请参考之。 该产品的技术受国际交易控制法和国际贸易控制法的保护,未经日本政府权威机构的书面允许不得泄漏。 ?1999,2000日本精工Seiko公司。所有的权利都受保护 未经许可不得复制该手册 该说明书内容改变不再通知

前言 感谢您选择了Nanopics产品。该手册为使用注意事项和指导说明,将有助于您安全地使用本仪器,为了充分发挥该仪器的功能,请务必彻底地阅读操作说明书,必要时参考该说明书。 用途 在操作该仪器之前请仔细阅读说明书的安全指南和警告标志,并按照说明书及仪器上所示的注意事项操作,以获得一个安全的使用环境。 保修 该仪器的保修期为从交货之日起一年内。在该期间内提供免费保修,但由于不按操作说明书操作而产生的损坏除外。保修内容的详细信息请参阅5.4节的保修部分。 用户登记 为了方便使SII向您提供软件不断升级及维护服务通知,请返回Nanopics用户信息。在该说明书内有一张用户登记卡,请按卡上的传真号码寄回。若不寄回该卡则可能对该仪器的升级信息的通知及免费维修等带来不便,故建议您及时寄回。

安全指导 为了正确使用该仪器,请注意以下事项 1.在操作之前参考主要设备及附件的操作说明书,按照说明书上的指导要求操作,可保证操作的安全简便。 2.请把操作说明及安全指导书放在仪器旁边,以便于参考。 3.请注意仪器上的所有警告标志,参考后续部分的警告栏信息。 4.该仪器通过三根插线接地,为了避免触电请不要随意乱动或拔下接地线。 5.在修理设备的任何部件之前,请关掉所有的电源。 6.为了防止温升,在腔内置有通风冷却扇,请不要取下或阻碍其运转。 7.为了避免触电类事件发生,请不要把您的手或身体其他部分靠近仪器的开关,特别是通风部分。 8.请把仪器放置在稳定的位置。 9.不要在粉尘过多或温度过高的环境中使用该仪器。 10.不要改置改仪器,除非特殊情况下向SII代理商请求被许可或者在警告栏的指导下。打开或除去罩子会产生大量的电流,从而发生危险事件,如漏电或着火。

原子力显微镜及其应用

原子力显微镜及其应用 原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,原子力显微镜的优点是在大气条件下,以高倍率观察样品表面,可用于几乎所有样品(对表面光洁度有一定要求),而不需要进行其他制样处理,就可以得到样品表面的三维形貌图象。并可对扫描所得的三维形貌图象进行粗糙度计算、厚度、步宽、方框图或颗粒度分析。 原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。 一、基本原理 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 二、原子力显微镜的特点 1.高分辨力能力远远超过扫描电子显微镜(SEM),以及光学粗糙度仪。样品表面的三维数据满足了研究、生产、质量检验越来越微观化的要求。 2.非破坏性,探针与样品表面相互作用力为10-8N以下,远比以往触针式粗糙度仪压力小,因此不会损伤样品,也不存在扫描电子显微镜的电子束损伤问题。另外扫描电子显微镜要求对不导电的样品进行镀膜处理,而原子力显微镜则不需要。 3.应用范围广,可用于表面观察、尺寸测定、表面粗糙测定、颗粒度解析、突起与凹坑的统计处理、成膜条件评价、保护层的尺寸台阶测定、层间绝缘膜的平整度评价、VCD涂层评价、定向薄膜的摩擦处理过程的评价、缺陷分析等。 4.软件处理功能强,其三维图象显示其大小、视角、显示色、光泽可以自由设定。并可选用网络、等高线、线条显示。图象处理的宏管理,断面的形状与粗糙度解析,形貌解析等多种功能。 三、应用实例 1.应用于纸张质量检验。2.应用于陶瓷膜表面形貌分析。3.评定材料纳米尺度表面形貌特征 1

扫描电子显微镜与原子力显微镜技术之比较_陈耀文

中国体视学与图像分析 2006年 第11卷 第1期CH I N ESE JOURNAL O F S TER EOLO GY AND I M AGE ANALYS I S Vo l .11No.1M a rch 2006 53  收稿日期:2005-08-01 基金项目:国家自然科学基金资助(No .30470900);汕头大学研究与发展基金资助(No .L00015)作者简介:陈耀文(1964-),男,副教授,研究方向:医学图像处理与识别,E 2mail:y wchen@stu .edu .cn 文章编号:1007-1482(2006)01-0053-06 ?综述? 扫描电子显微镜与原子力显微镜技术之比较 陈耀文1 , 林月娟1 , 张海丹1 , 沈智威1 , 沈忠英 2 (1.汕头大学中心实验室, 广东 汕头 515063; 2.汕头大学医学院, 广东 汕头 515031) 摘 要:SE M 和AF M 技术是最常用的表面分析方法。本文介绍了SE M 和AF M 两种技术的原理, 描述了这两种技术在样品形貌结构、成分分析和实验环境等方面的性能,比较了两种技术的特性和不足,充分利用两种技术的互补性,将两种技术结合使用,有助于更加深刻地认识样品的特性。关键词:原子力显微镜;扫描电子显微镜;表面形貌;化学成分中图分类号:TG115.21+ 5.3,R319 文献标识码:A The co m par ison of SE M and AF M techn i ques CHEN Yaowen 1 , L I N Yuejuan 1 , ZHANG Haidan 1 , SHEN Zhewei 1 , SHEN Zhongying 2 (1.Central Laborat ory,Shant ou University,Guangdong Shant ou 515063,China;2.Medical College,Shant ou University,Guangdong Shant ou 515031,China ) Abstract:Scanning electr on m icr oscopy (SE M )and at om ic f orce m icr oscopy (AF M )are powerful t ools f or surface investigati ons .This article described the p rinci p les of these t w o techniques,compared and contrasted these t w o techniques with res pect t o the surface structure and compositi on of materials,and en 2vir on ment .SE M and AF M are comp le mentary techniques,by having both techniques in an analytical fa 2cility,surface investigati ons will be p r ovided a more comp lete rep resentati on . Key words:at om ic f orce m icr oscopy;scanning electr on m icr oscopy;surface structure;compositi on 显微镜由于受到衍射极限的限制,其分辨率只能达到光波半波长数量级(0.3μm ),无法观察更小的物体。1924年,德布罗意提出了微观粒子具有波粒二象性的概念,科学家们在物质领域找到了一种波长更短的媒质—电子,并利用电子在磁场中的运动与光线在介质中的传播相似的原理,研制出以电子为光源的各类电子显微镜。扫描电子显微镜(Scanning Electr on M icr oscopy,SE M )的设计思想,早在1935年便已被提出来了,1942年,英国首先制成实验室用的扫描电镜,主要应用于大样品的形貌分析,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。随着电子工业技术水平的不断发展,到1965年开始生产商品扫描电镜,近数十年来,SE M 各项性能不断提高,如分辨率由初期的50nm 发展到现在约0.5nm ,功能除样品的形貌分析之外,现在可获得特征X 2射线,背散射电子和样品电流等 信息。 1982年,Gerd B innig 和Heinrich Rohrer 在I B M 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(Scanning Tunneling M icr oscope,ST M ),使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。然而,由于ST M 的信号是由针尖与样品之间的隧道电流的变化决定的,只适用于研究电子性导体和半导体样品,为了克服ST M 的不足之处,ST M 的发明者B innig 等又在1986年发明了原子力显微镜(A t om ic Force M icr oscope,AF M )。AF M 是通过探测探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息,分辨率可达原子级水平。之后,以ST M 和AF M 为基础,衍生出扫描探针显微镜(Scanning Pr obe M icr oscope,SP M )家族,包括扫描隧道显微镜、原子力显微镜、磁力显微镜、静电

AFM原子力显微镜技术及应用实验报告

原子力显微技术观测薄膜形貌 姓名:吴涵颖学号:5404312065 班级:工业工程122 一、实验目的: Ⅰ、学习和了解AFM的结构和原理。 Ⅱ、掌握AFM的操作和调试过程,并以之来观察薄膜表面的形貌。 Ⅲ、学习用计算机软件来处理原始数据图像。 二、实验原理简析: 1. AFM基本原理 原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。 在原子力显微镜的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。如图一显示。 (1)力检测部分在原子力显微镜系统中,所要检测的力是原子与原子之间的范德华力。使用微悬臂来检测原子之间力的变化量。如图2所示,微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。 (2)位置检测部分在原子力显微镜系统中,当针尖与样品之间有了作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。聚焦到微悬臂上面的激光反射到激光位置检测器,通过对落在检测器四个象限的光强

进行计算,可以得到由于表面形貌引起的微悬臂形变量大小,从而得到样品表面的不同信息。 (3)反馈系统在原子力显微镜系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。 2.AFM 有三种不同的工作模式: 接触模式( contact mode) 、非接触模式(noncontact mode) 和共振模式或轻敲模式(Tapping Mode) 。 (1)接触模式: 从概念上来理解,接触模式是AFM最直接的成像模式。AFM 在整个扫描成像过程之中,探针针尖始终与样品表面保持亲密的接触,而相互作用力是排斥力。扫描时,悬臂施加在针尖上的力有可能破坏试样的表面结构,因此力的大小范围在10 - 10~10 - 6 N。若样品表面柔嫩而不能承受这样的力,便不宜选用接触模式对样品表面进行成像。 (2)非接触模式 非接触模式探测试样表面时悬臂在距离试样表面上方5~10 nm 的距离处振荡。这时,样品与针尖之间的相互作用由范德华力控制,通常为10 - 12 N ,样品不会被破坏,而且针尖也不会被污染,特别适合于研究柔嫩物体的表面。这种操作模式的不利之处在于要在室温大气环境下实现这种模式十分困难。因为样品表面不可避免地会积聚薄薄的一层水,它会在样品与针尖之间搭起一小小的毛细桥,将针尖与表面吸在一起,从而增加尖端对表面的压力。 (3)敲击模式 在敲击模式中,一种恒定的驱使力使探针悬臂以一定的频率振动。当针尖刚接触样品时,悬臂振幅会减少到某一数值。在扫描过程中,反馈回路维持悬臂振幅在这一数值恒定,亦即作用在样品上的力恒定,通过记录压电陶瓷管的移动得到样品表面形貌图。对于接触模式,由于探针和样品间的相互作用力会引起微悬臂发生形变,也就是说微悬臂的形变作为样品和针尖相互作用力的直接度量。同上述轻敲式,反馈系统保持针尖—样品作用力恒定从而得到表面形貌图。 原子力显微镜是用微小探针“摸索”样品表面来获得信息,所以测得的图像是样品最表面的形貌,而没有深度信息。扫描过程中,探针在选定区域沿着样品表面逐行扫描。 实验扫描的是光栅,纳米铜微粒以及纳米微粒,选用的是轻敲式。 敲击模式优点:敲击模式在一定程度上减小样品对针尖的粘滞现象,因为针尖与样品表面接触时,利用其振幅来克服针尖"样品间的粘附力。并且由于敲击模式作用力是垂直的,表面材料受横向摩擦力和剪切力的影响都比较小,减小扫描过程中针尖对样品的损坏。所以对于较软以及粘性较大的样品,应选用敲击模式。 三、实验步骤: 一、实验前准备: ①样品制备 1)薄膜样品制备 把之前实验制备得的铜微粒纳米材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片上,自然晾干。 2)纳米微粒制备 把纳米微粒材料分散到溶剂中,比较稀的状态下,然后涂于解离后的云母片

原子力显微镜及其在各个研究领域的应用

高技术 原子力显微镜及其在各个研究领域的应用An Ato mic Force Micro sco p e and I ts A pp lication 刘延辉王弘孙大亮王民姚伟峰杨雪娜 (山东大学晶体材料国家重点实验室济南250100) 在当今的科学技术中,如何观察、测量、分析尺寸小于可见光波长的物体,是一个重要的研究方向。在众多的科学领域里,人们希望实时地看到具体的真实变化过程,而不仅仅是根据前后的现象和关系来推理,这就需要高分辨率的显微镜。适应这种需要,许多用于表面结构分析的现代仪器问世,如透射电子显微镜(TEM)、扫描电子显微镜(SEM)、场离子显微镜(FIM)、俄歇电子能谱仪(AES)、光电子能谱(ESCA)等,但是大多数技术都无法真正地直接观测物体的微观世界。在这之后,原子力显微镜出现了。 一、原子力显微镜的结构和工作原理 1982年,G erd Binnin g和H einrich R ohrer在I BM 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(scannin g tunnelin g m icrosco p e,ST M),这是扫描探针显微镜这一大家族的第一个成员,其发明人Binnin g和R ohrer因此获得1986年的诺贝尔物理奖。扫描隧道显微镜的工作原理是:当探针与样品表面间距小到纳米级时,经典力学认为探针与样品在这时是不导电的,但按照近代量子力学的观点,由于探针尖端的原子和样品表面的原子有波动性,两者的波函数相互叠加,故在它们间会有电流,该电流称隧道电流。ST M就是通过检测隧道电流来反映样品表面形貌和结构的。ST M要求样品表面能够导电,从而使得ST M只能直接观察导体和半导体的表面结构;对于非导电的物质则要求样品覆盖一层导电薄膜,但导电薄膜的粒度和均匀性难以保证,且导电薄膜掩盖了物质表面的细节。 为了克服ST M的不足处,Binnin g、Quate和G er2 ber决定用微悬臂作为力信号的传播媒介,把微悬臂放在样品和ST M的针尖之间,于1986年推出了原子力显微镜(atom ic force m icrosco p e,AFM)。AFM 是通过探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息。因此,AFM除导电样品外,还能够观测非导电样品的表面结构,且不需要用导电薄膜覆盖,其应用领域更为广阔。它得到的是对应于样品表面总电子密度的形貌,可以补充ST M对样品观测得到的信息,且分辨率亦可达原子级水平,其横向分辨率可达2nm,纵向分辨率可达0.01nm。 AFM原理图 AFM的核心部件是力的传感器件,包括微悬臂(C antilever)和固定于其一端的针尖。 根据物理学原理,施加到C antilever末端力的表达式为:F=KΔZ。式中,ΔZ表示针尖相对于试样间的距离,K为C antilever的弹性系数。 力的变化均可以通过C antilever检测。根据力的检测方法,AFM可以分成两类:一类是检测探针的位移;另一类是检测探针的角度变化。由于后者在Z 方向上的位移是通过驱动探针来自动跟踪样品表面形状,因此受到样品的重量及形状大小的限制比前者小。 微悬臂和针尖是决定AFM灵敏度的核心。为了能够准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM的灵敏度,微悬臂的设计通常要求满足下述条件:(1)较低的力学弹性系数,使很小的力就可以产生可观测的位移;(2)较高的力学共振频率;(3)高的横向刚性, 针尖与样品表面的摩擦不会使它发生 9 科技导报3/2003

(AFM)原子力显微镜原理介绍

原子力显微镜(AFM)原理 一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM公司的Binnig与史丹佛大学的Quate于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 图1、原子与原子之间的交互作用力因为彼此之间的距离 的不同而有所不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1”所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作

用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones的公式中到另一种印证。 为原子的直径为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E同时也说明了空间中两个原子之间距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM),探针与试片的距离约数十到数百?。 二、原子力显微镜的硬件架构: 在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。

原子力显微镜操作规程及注意事项

原子力显微镜操作规程及注意事项 ※※原子力显微镜属于精密且贵重大型实验仪器,操作需倍加小心※※一.开机及实验主要操作步骤: 1. 打开总电源开关。 2. 打开计算机主机以及显示器电源开关。 3. 打开控制机箱电源开关,见右图。 4. 打开HEB(Head Electronics Box)的激光开光,见下图。 5. 打开MAC Mode或AC Mode Controller电源开关,见下图。 6. 打开PicoView或者Picoscan控制软件。 7. 根据样品需要,从控制软件界面中选择合适的成像模式,mode→STM、AFM、 AC AFM、MAC 和TopMac。 8. 根据样品需要,从控制软件界面中scanner选择合适的扫描头型号(100 m和10 m)。 9. 取出扫描头,放置于扫描头基座上进行安装(注意:轻拿轻放!!!)。

10. 根据成像模式需要选择合适的nose。 11. 将nose安装在scanner上,需要双手同时垂直用力,以O型圈没入扫描头为准。 12. 用一个手将弹簧钥匙(Spring Key)放入弹簧一侧可以把弹簧翘起,另一只手 利用镊子夹起针尖安装到nose上,弹簧一般压在针尖的1/3-1/2处。

13. 安装扫描头,连接插线,并拧紧右下方紧固螺栓,此时扫描头下方出现红色激 光,建议用户放一白纸。 14. 利用扫描头上的两个螺栓上下左右调整激光的位置,使激光对在针尖背面(详 见激光调整过程)。

15. 安装样品时,确保针尖和样品之间有足够的距离,防止样品撞坏针尖。利用Close 键初步逼近样品,可以缩短针尖逼近时间。 16. 安装探测器,调整螺丝,使deflection和LFM参数满足该模式的要求。

原子力显微镜在化学中的应用

高分子材料研究方法 姓名:管明章 专业:材料学 学号:200804054

原子力显微镜的原理及其在化学里的应用 扫描隧道显微镜(STM)能在多种实验环境下高分辨地实时观察导体和半导体的表面结构,提供了许多其他表面分析技术不能提供的新信息。但是STM只能直接观察导体和半导体的表面结构,对于非导体材料往往采取覆盖导电膜的方法进行间接观察,而导电膜的存在往往掩盖了表面结构的细节,而且即使是导电材料,STM观察到的是对应于表面费米能级处的态密度,当表面存在非单一电子态时,STM得到的是表面形貌和表面电子性质的综合结果。1986年Binnig等发明了第一台AFM[1]弥补了STM的不足。它不仅能给出样品的表面形貌,而且可得到样品表面在垂直方向的绝对高度。 1 原理[1,2] 原子力显微镜是利用检测样品表面与细微的探针尖端之间的相互作用力(原子力)测出表面的形貌。 探针尖端在小的轫性的悬臂上,当探针接触到样品表面时,产生的相互作用,以悬臂偏转形式检测。样品表面与探针之间的距离小于3-4nm,以及在它们之间检测到的作用力,小于10-8N。激光二极管的光线聚焦在悬臂的背面上。当悬臂在力的作用下弯曲时,反射光产生偏转,使用位敏光电检测器偏转角。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。 完整的悬臂探针,置放于在受压电扫描器控制的样品表面,在三个方向上以精度水平0.1nm或更小的步宽进行扫描。一般,当在样品表面详细扫绘(XY轴)时,悬臂的位移反馈控制的Z轴作用下保存固定不变。以对扫描反应是反馈的Z 轴值被输入计算机处理,得出样品表面的观察图象(3D图象)。 图1 AFM的组成部分示意图 AFM的组成部分示意图见图1。 A:样品;B:AFM探针尖;C:探测器;D:微悬臂;E:调制压电陶瓷;F:氟橡胶;G: 压电晶体管;H: STM反馈;I:基架(铝)。 AFM必须具备以下要素:在弹性常数很小的悬臂上镶有非常尖锐的探针,具有低的弹性常数、高的力学共振频率、高的横向刚性、短的悬臂长度;探测悬臂能上下弯曲;监测和控制悬臂弯曲的反馈系统;机械扫描系统(主要是压电晶体管)是AFM最为关键的部件,是所得扫描信息的准确性与精确性的控制因素,它通过移动使样品相对探针作垂直方向的精密移动,以得到清晰图象;将所测数据转化图象的显示系统。一台具有标准扫描头(25μm)的AFM(如美国Burleigh公

原子力显微镜 细胞 分析

原子力显微镜在细胞生物学领域的应用 材料科学与工程学院 5120519012 蒋沐阳 摘要原子力显微镜是近年来生物领域的重要观测工具,它优良的观测性能和强大清晰的观测分辨率能够满足细胞生物领域不同的观测需求。本文将阐述原子力显微镜在细胞观测中的工作原理,以及待观测细胞需要经过怎样的固定处理。另外本文也将展现原子力显微镜在分析细胞的生命历程以及细胞、分子间的各种相互作用力的性能。 关键字原子力显微镜,细胞生物,成像分辨率,力-距离曲线 前言 几百年来,人类为了观察微小物体创造出了一代又一代显微镜,从最原始的光学显微镜,到以电子显微镜(SEM)为代表的第二代显微镜,再到以扫描隧道显微镜(TEM)为代表的新型显微技术,都显示出了各自代表时代科学家的智慧。而在1986年,作为扫描隧道显微镜的改进产品,原子力显微镜(AFM)的出现,更是突出的显现了显微观测技术作为人类视觉感官功能的延伸与增强的重要性。[1]不同于扫描隧道显微镜只能应用于导电物体表面,原子力显微镜在非导电物质的观测上效果出色,并且具有高分辨、制样简单、操作易行的特点。它在纳米尺度上的成像分辨率极佳,横向达到0.1~0.2nm,纵向则高达 0.01nm,[2]这样的性能使得前几代显微镜望尘莫及,也极大地推动了纳米科学的发展。因为原子力显微镜在观测过程中能够保持样品的自然状态,防止其发生变形或变性,并且能够实现对生物样品的连续动态分析与成像,所以它的出现对于微观分析要求极高的生命科学领域无疑是一块大大的宝藏,发明至今,原子力显微镜已经帮助科学家们在细胞生物学领域取得了长足的进步。 1 原子力显微镜原理简介 简单地说,原子力显微镜(Atomic Force Microscopy)是通过控制并检测样品与显微镜配备的针尖间的相互作用力来实现高分辨成像的。[2]它将扫描的针尖制作在一个对微弱力极为敏感的V字型的微悬臂上,微悬臂的另一端固定住,使得针尖趋近样品并与样品表面轻轻接触。通过压电陶瓷管的伸缩可以控制原子间的作用力恒定,微悬臂由此可以随着样品表面的起伏而震动,通过光学检测方法可以得到样品形貌的信息。 2 原子力显微镜在细胞表面成像手段 原子力显微镜有三种工作方式:接触式(Contact Mode),非接触式(Non-Contact Mode)和轻敲式(Tapping Mode)。[3]在接触式状态下,针尖与样品的距离始终保持在零点几纳米的斥力区域,正因为这样的距离接近接触,所以能够得到非常稳定、高分辨的图像;而在非接触式状态下,针尖与样品的距离则大大远于接触式,主要检测原子间的范德华力和静电力等长程力,对样品无破坏作用,但是分辨率也比接触式低;介于两者之间的是轻敲模式。在轻敲模式下,针尖与样品有一个间断的接触,微悬臂的振动可以保证测量的准确性。因为针尖同样品有接触,所以得到的分辨率几乎接近于接触式,而又因为接触非常短暂,所以不大会破坏样品表面,特别适宜于分析柔软、粘性和脆性的样品,在液体中的成像表现也良好。综合上述分析,原子力显微镜在细胞表面的成像往往采用轻敲模式。

相关文档
最新文档