静态应力-应变测量实验指导

静态应力-应变测量实验指导
静态应力-应变测量实验指导

实验静态应力-应变测量

一、实验目的

1、掌握用电阻应变片组成测量电桥的方法;

2、掌握应变数据采集分析仪的使用方法;

3、验证电桥的和差特性及温度补偿作用;

4、验证测量应变值与理论计算值的一致性。

二、实验原理

1、计算机测试系统:被测信号通过传感器转为电信号(电压或电流信号),通过信号调节环节使输出大小与被测信号大小完全对应。信号调节环节还设置不同的滤波频率,对干扰谐波进行过滤,使信号调理输出消除杂波影响。经过调理环节的标准电压接入多路转换器,进入采样保持器及转换芯片进行数字化转换,转换后的数字信号在接口电路里锁存,再进入计算机,经过运算处理后显示、绘图或打印。

2、电桥的和差特性:电桥的输出电压与电阻(或应变)变化的符号有关。即相邻臂电阻或应变变化,同号相减,异号相加;而相对臂则相反,同号相加,异号相减。

3、利用桥路的和差特性可以提高电桥灵敏度、补偿温度影响,从复杂应力状态中测取某一应力、消除非测量应力。

三、主要仪器及耗材

等强度梁实验台、WS-3811应变数据采集分析仪、计算机、砝码

四、实验内容和步骤

1.了解所采用的静动态应变数据采集仪的正确使用(见附录);

2.接线;(参照附录)

3.组桥方法和顺序,按图(3-1)所示的组桥方法和顺序组成各种测量电桥。

4.测量;

a) 平衡电桥;

b) 加载及卸载:把每一级加载及卸载后的读数值计入表中。

c) 根据(图3-1)的组桥方法和顺序分别加、卸载测量。并将所测的应变值分别记入

表中,然后将各表(各种组桥方式)的数据进行比较。

五、实验报告要求

1.简叙实验方法,按表列出试验数据;

2.根据试验数据计算机械滞后及非线性。

3.计算在测量载荷下,梁的理论应变值并与实测值相比较。

4.根据试验记录和计算结果说明电桥加减特性。

5、写出实验结果,分析、讨论等部分;

6、说明温度对电阻应变值的影响,应如何消除该影响。

六、思考题

1、利用和差特性,在测量中所起到哪些作用?

2、在测量中为什么要进行温度补偿,进行温度补偿必须满足哪些条件? (附录)WS-3811应变数据采集仪:

WS-3811数字式应变数据采集仪采用最新数字技术,能直接把应变量转换为数字量,能通过网络接口(TCP/IP协议)把数据传输给计算机,克服了常规应变仪只能输出模拟量(还需要另配采集仪)的缺陷,便于试验室和野外测试工作,由于该应变仪采用了网络接口,可实现多台组网操作,方便扩展。

1、测量方式;计算机程控;

2、桥路形式:半桥(公共补偿片),半桥,全桥;

3、桥路电阻:120Ω、240Ω、350Ω、500Ω、1000Ω;

4、灵敏系数:1.00~9.99;

5、采样速率:1点/秒(脱机使用),10点/秒(联机使用);

6、稳定度:±3με/2h. 1με/℃;

7、程控应变量程: ±20000με;

8、线性度:0.1%FS;

9、平衡方式:(程控)自动平衡;

10、漂移:时间零点漂移:≤3me/4小时;

温度漂移:小于1me/℃(工作温度范围内);

11、工作环境:0~40℃;20~85%RH;

12、电源:AC220V/50Hz;DC5V 功率:3W;

实验六 真实应力—应变曲线的测定(有一张白纸)

实验六 真实应力—应变曲线的测定 一、实验目的 1. 学习掌握测定与绘制真实应力—应变曲线的方法。 2. 掌握简化形式的真实应力—应变曲线的绘制方法。 3. 比较实测曲线与简化曲线,认识简化曲线的误差分布特点。 二、实验条件 1. 实验设备:60T 万能材料试验机; 2. 量具:外径千分尺,游标卡尺,半径规; 3. 材料:20钢和45钢退火状态拉伸试件各一件。 三、实验步骤及方法 1. 测定和绘制真实应力—应变曲线。 真实应力—应变曲线)(εf S = A F S /= ()A A /ln 0=ε 其中,F ——瞬时载荷(kg 或N ); A ——瞬时断面积(mm 2); A 0——试件原始断面积(mm 2)。 由此可见,在均匀变形阶段,只需测定瞬时载荷和相应的瞬时断面积,就可作出真实应力—应变曲线。但是,在产生缩颈以后,由于应力状态发生变化,出现了三向拉应力,因而产生了所谓“形状硬化”,使实测曲线失真,为此,需进行修正。按齐别尔修正公式: )81/(ρ d S S + '= 式中,S ——取出形状硬化后的真实应力; S'——包含形状硬化在内的真实应力; d ——缩颈处的瞬时断面直径;

ρ——缩颈处试件外形瞬时曲率半径。 因此,在产生缩颈之后,除以测定瞬时载荷F 、缩颈处瞬时直径d 以外,还需要测定相应瞬时试件外形的曲率半径ρ,才能绘制出实测的真实应力—应变曲线。 2. 绘制简化真实应力—应变曲线 (1)n B S ε=简化真实应力—应变曲线 式中,B ——材料常数; n ——加工硬化指数。 因为b n ε=,b b b S B ε ε/= 于是上式可写为:b b b S S εεε??? ? ??= 式中,S b ——刚产生缩颈时即失稳点的真实应力; b ε——失稳点的真实应力。 由此可见,只要准确测定失稳点的真实应力和真实应变,就能作出该种简化应力应变曲线。 (2)简化真实应力—应变曲线,即真实应力—应变曲线在塑性失稳点上所作的切线。由于该切线斜率为b σ,所以这条直线是很容易作出来的(参照教材有关内容)。 四、实验报告要求 1. 实验前应预习实验指导书和教材有关章节,并按附表格式预先绘制实验用记录表格二张,分别用以记录20钢和45钢试件的测量数据。 2. 实验后,整理记录数据,进行有关计算,最后将记录和计算数据填入实验报告的表格中。 3. 用坐标纸绘制实测的真实应力—应变曲线及两种简化的真实应力—应变曲线。 4. 对上述三种曲线进行分析比较,以实测曲线为基准,讨论其误差分布和适用范围。

铸造残余应力的测定实验报告

铸造残余应力的测定实验报告 1. 实验目的 (1) 了解铸造残余应力的产生原因。 (2) 了解用应力框测定铸造残余应力的方法。 (3) 了解退火对消除残余应力的效果。 2. 实验原理 2.1 铸造应力 铸件在凝固和冷却过程中由于各部分体积变化不一致导致彼此制约而引起的应力称为铸造应力。铸造应力可分为三种,即热应力、相变应力和收缩应力。铸造应力可能是暂时性的,当引起应力的原因消除以后,应力随之消失,称为临时应力;否则为残余应力。铸造应力对铸件质量有重要影响,如果铸造应力超过材料的屈服强度,铸件则产生变形;如果铸造应力超过材料的强度极限时,铸件则产生裂纹。残余应力还会降低铸件的使用性能,如失去精度、在使用过程中造成断裂或产生应力腐蚀等。 2.2 铸造应力的测定方法——应力框试验法 图1为测定铸造残余应力的框形铸件,由于I 杆和II 杆截面尺寸差别大,因而铸造后细杆I 中形成压应力,粗杆II 中形成拉应力。若在A-A 截面处将粗杆锯开,锯至一定程度时,由于截面变小,粗杆被拉断。受弹性拉长的粗杆长度较自由收缩条件下的长度缩短,其缩短量?L 和铸造残留应力成正比,其值可根据锯断前、后粗杆上小凸台的长度(L 0 ,L 1)差求出,即?L =L 1一L 0。铸造残留应力σ1和σ2的计算公式为: 细杆残留应力σ1=-E )21(2101F F L L L +-,粗杆残留应力σ2=-E ) 21(1 2 1F F L L L +- 图1应力框铸件图 式中: σ1,σ2——细杆、粗杆中的铸造应力(MPa ); L 0,L 1——锯断前、后小凸台的长度(mm );

F1,F 2——细杆、粗杆的横截面积(mm2); L——杆的长度,L=130mm; E——弹性模量,普通灰铸铁取9×104MPa,球墨铸铁取1.8×105MPa。 2.3减小及消除残余应力的方法 铸造应力导致铸件翘曲变形甚至开裂,特别是铸件中的残余应力,如不消除,将降低零件的加工精度,在使用中会继续变形,降低机械性能和使用性能。因此应设法减小和消除残余应力。 (1)减小铸造应力的措施和途径 ①选用弹性模量E和热膨胀系数α小的合金作为铸件材质。 ②减小铸件冷却过程中的温差: (a)在铸件厚实部位放置冷铁或蓄热系数大的型砂,加速厚实部分的冷却。 (b)对铸件厚实部分的铸型或砂芯实行强制冷却。 (c)在铸件壁薄处开内浇道,使铸件各部分温度趋于一致。 (d)提高浇注时铸型的温度。 (e)将铸件于红热状态开箱取出,尽快置于已加热到500~600℃的保温炉中,保持一定时间使铸件各部分温度趋于一致,然后随炉缓冷至200~250℃出炉。 ③改善铸型和砂芯的溃散性。 ④改进铸件结构,避免形成较大应力和应力集中。 (2)消除铸件中残余应力的方法 消除铸件中残余应力的方法有自然失效、人工时效和共振时效等方法。 ①自然失效 将有残余应力的铸件放置在露天场地,经半年乃至一年以上,让残余应力逐渐自然消退,这种方法称为自然时效。 ②人工时效 人工时效又称热时效或消除内应力退火。把铸件加热到合金的弹塑性状态的温度范围内,保持一定时间,使残余应力得以消除,然后缓慢冷却,以免重新产生残余应力。 ③共振时效 共振时效的原理是:在激振器的周期性外力即激振力作用下,与铸件发生共振,因而使铸件获得相当大的振动能量。在共振过程中交变应力与残余应力叠加,产生局部屈服,引起塑性变形,使铸件中的残余应力逐渐松弛甚至消失,达到稳定铸件尺寸的目的。 3.实验内容 本次实验测定应力框铸件(灰口铸铁)铸态及其退火热处理后的残余应力,测定步骤如下: (1)造型(3个应力框试样); (2)浇注(铁水温度为1330~1350℃); (3)用热分析装置测试一个铸型中应力框铸件厚、薄壁的冷却曲线。 (4)浇注后30min打箱,用钢丝刷刷去应力框铸件表面型砂; (5)将其中1个应力框放入热处理炉中,在550℃保温3小时后炉冷; (6)将上述2个应力框铸件的粗杆小凸台上成锐角相交的四个棱柱面锉平; (7)用卡尺测量小凸台长度L0; (8)在小凸台A-A截面处从1、2、3三面依次锯开粗杆(见图1),注意各锯口应在垂 直于杆轴线的同一平面内。

圆管扭转应力试验--2112

实验五 圆管扭转应力实验 一、实验目的 1、用应变电测法测定材料的切变弹性模量G 。 2、验证切应力公式 二、实验设备与仪器 1、材料力学多功能实验台 2、静态电阻应变仪。 3、直尺和游标卡尺 三、实验原理和方法 在剪切比例极限内,切应力与切应变成正比,这就是材料的剪切胡克定律,其表达式为: γτG = (5-1) 式中,比例常数G 即为材料的切变模量。由上式得 γ τ=G (5-2) 式中的τ和γ均可由实验测定,其方法如下: 1、τ的测定:试件贴应变片处是空心圆管,横截面上的内力如图A(a )所示。试件贴片处的切应力为 : t W T = τ (5-3) 式中,W t 为圆管的抗扭截面系数。 2、γ的测定:在圆管表面与轴线成±45°方向处各贴一枚规格相同的应变片(见图A(a )),组成图A(b )所示的半桥接到电阻应变仪上,从应变仪上读出应变值γε(由电测原理可知应变值γε应当是45°方向线应变的2倍)即: ?=452εεr (5-4)

另一方面,圆轴表面上任一点为纯剪切应力状态(见图A(c ))。根据广义胡克定律有: []2 21)(145γττμτμτε==+=--=G E E o 因此: r εγ= (5-5) 把(式5-3)、(式5-4)和(式5-5)代入(式5-2),可得: γ εt W T G = 图A 实验采用等量逐级加载法:设各级扭矩增量为i T ?,应变仪读数增量为ri ε?,从每一级加载中,可求得切变模量为:ri t i W T G ε??= 同样采用端直法,材料的切变模量是以上i G 的算术平均值,即:∑==n i i G n G 1 1 四、实验步骤 1、测量并记录有关尺寸。 2、组桥接线。 3、用手稍微转动加力螺杆,检查装置和应变仪是否正常工作。 4、加载分四级进行,每级加载500N (500 N →1000 N →1500 N →2000 N ),分别记录每级载荷下的应变值。 五、实验结果处理 从三组实验数据中,选择较好的一组,按实验记录数据求出切变模量i G ,即:ri t i W T G ε??= 采用端直法,材料的切变模量为G ,即:∑==n i i G n G 1 1

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

应力与应变概念及实验应变片原理

( ,那么 。

或者

化,应变片的电阻变化就用该电路来测量。 惠斯通电桥由四个同等阻值的 或 , 有应变(形变)产生时,记应变片电阻的变化量 : ,即: 所以如果测

变片,在电子行业的应变测量中不经常使 如下图所示。 R4则上面的式子可写成下面的形式

)处于相同的温度条件下,由温度引 动态模拟法是最理想的温度补 为了解决这个问题,

在热膨胀系数为βs的被侧物表面贴上敏感栅热膨胀系数为βg的应变片。则温度每变化1℃,其所表现出来的应变εT如下式所示: 其中,α:电阻元件的温度系数;K5:应变片的应变片常数 上式中,K5为由敏感栅材料决定的应变片常数,βs、βg分别为由各自材料决定的被测物与敏感栅的热膨胀系数,这三项均为定值,则通过调整α就可以使由温度引起的应变变为零。此时, 在箔材的制作过程中可以通过热处理对α的值进行控制。而且它是与特定的被测物的热膨胀系数βs相对应的,如果用在不适用的被测物时,不仅不会补偿温度引起的应变还会引起较大的测量误差。 导线的温度补偿 使用自我温度补偿片可以解决应变片所受的温度影响问题。但是从应变片到测量仪之间的导线也会受到温度的影响,这个问题并没有解决。如图a所示单应变片双线的联接方式将导线的电阻全部串联入了应变片中。导线较短时不会有太大的问题,但如果导线较长就会产生影响。 为了减小导线的影响,可以使用3 线联接法。如图b所示,在应变片导线的一根上再联上一根导线,用3根导线使桥路变长。 这种联接方式与双线式不同的地方是导线的电阻分别由电桥的相邻两边所分担。图b 中,导线电阻r1串联入了应变片电阻Rg,r2串联入了R2,r3成为电桥的输出端。这样,

实验方法:应力与应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线

(3) 求出材料常数B 值和n 值,根据B 值作出真实应力-真实应变近似理论硬化 曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

车架应力应变实验报告

车架应力应变实验 一、 实验目的: (1) 熟悉应变片的粘贴方法 (2) 学会策略电路的连接 (3) 了解数据采集仪的操作 二、 工作原理: 用以金属材料为敏感元件的应变片,测量试件应变的原理是基于金属丝的应变效应,即金属丝的电阻随其变形而改变的一种物理特性。将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 应变片的结构:它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。 A l R ρ =

ρ=导线电阻率 L=导线长度 A=导线横截面积 电桥:将电阻、电感、电容等参量的变化转换为电压或电流输出的一种测量电路。 当输出电压i U =0时,表示电桥处于平衡,可得R 1R 3=R 2 R 4,直流电桥平衡,若在四个电阻处均接应变片,并使R 1R 3=R 2 R 4 若无应变,则输出电压i U =0 若产生应变, 43214 231i ) )((U R R R R R R R R U ?++-= ερ ρ )21(u d R dR ++=A dA l dl d R dR -+=ρρ??? ????-?+?-??+=?])(4433221 1221210i R R R R R R R R R R R R U U

三、实验流程图 本小组进行实验位置为第9测点,位置如图所示: 四、实验仪器 1.应变片 2.502胶水 3.万用表 4.电烙铁、焊锡、松香 5.绝缘胶带纸、脱脂棉、丙酮、0#砂纸、导线 6.接线盒 7.Synergy16通道采集仪 五、实验操作步骤 1.应变片的准备 贴片前,将待用的应变片进行外观检查,检查是否有锈斑等缺陷,基底和覆盖层有无损坏,引线是否完好。然后用万用表进行阻值测量。 目的在于检查敏感栅是否有断路、短路,阻值相差不得超过。同一次测 量的变计,灵敏系数必须相同。经测得阻值为120±0.5Ω。 2.车架表面处理准备 对于钢铁等金属构件,首先是清除表面油漆、氧化层和污垢;然后磨平或锉

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

真实应力—应变曲线拉伸实验精选文档

真实应力—应变曲线拉伸实验精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力—应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 000 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0εσε+=+==A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。

真应力-真应变曲线

真应力-真应变曲线(true stress-logarithmic strain curves) 表征塑性变形抗力随变形程度增加而变化的图形,又称硬化曲线。它定量地描述了塑性变形过程中加工硬化增长的趋势,是金属塑性加工中计算变形力和分析变形体应力-应变分布情况的基本力学性能数据。 硬化曲线的纵坐标为真应力,横坐标为真应变。试验时某瞬间载荷与该瞬间试件承力面积之比称真应力(或真抗力,即真实塑性变形抗力)。硬化曲线可用拉伸、扭转或压缩的方法来确定,其中应用较广的为拉伸法。根据表示变形程度的公式不同,用拉伸图计算所得硬化曲线有3种,如图1所示。第1种是S-δ曲线,表示真应力与延伸率之间的关系。第2种是S-φ曲线,是真应力与断面收缩率的关系曲线。第3种是S-ε曲线,是真应力与对数变形之间的关系曲线。由于φ与ε的变化范围为0~1,所以第2、3种硬化曲线可直观地看出变形程度的大小,使用时较为方便。 S-δ曲线的制作先作圆柱试件拉伸试验获取拉伸图(拉力P与试件绝对仲长Δl的关系图),如图2a所示。然后按下述方法计算出曲线上各点的真应力S和对应的断面收缩率φ,根据所获数据绘制S-φ曲线,如图2b所示。

按式(4)与(6)可求出试件出现细颈前的那段曲线,因为该曲线的变形沿试件长度上是均匀的,符合体积不变条件。 当拉伸力达最大时,变形迅速集中并形成细颈,细颈部位受三向拉仲应力作用而逐渐变小,最终发生破断。由于形成细颈后变形发展得极不均匀,每瞬间参加变形的体积不知,故不能用公式计算这个阶段中曲线上任意点处的应力与应变;实用中只能按细颈中断口部位面积F f及断裂时的拉伸力P f来算出断点处的真实断裂应力S K及真实断裂应变φK,然后将该点与出现细颈前所算出的点,用光滑曲线联结即可组成一条完整的曲线(图2b)。

真实应力—应变曲线拉伸实验

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力 —应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 000 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0 εσε+=+== A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。 2、修正真实应力—应变曲线 在拉伸实验中,当产生缩颈后,颈部应力状态由单向变为三向拉应力状态,产生形状硬化,使应力发生变化。为此,必须修正真实应力—应变曲线。 修正公式如下:

梁应力应变测量

梁应力应变测量

梁应力应变测量 一、实验目的 1、了解电阻应变片的结构及种类; 2、掌握电阻应变片的粘贴技巧; 3、掌握利用电阻应变片测量应力应变的原理; 4、掌握动态测试分析系统的使用及半桥、全桥的接法; 二、实验内容 进行悬臂梁的应变测量 三、实验原理 1、电阻应变片的测量技术 将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 2、电阻应变式传感器 电阻应变式传感器可测量应变、力、位移、加速度、扭矩等参数。具有体积小、动态响应快、测量精度高、使用简便等优点。电阻应变式传感器可分为金属电阻应变片和半导体应变片两类。 常用的金属电阻应变片有丝式和箔式两种。它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。

图1 电阻应变片结构 图2 电桥 3、应变片的测量电路 在使用应变片测量应变时,必须有适当的方法检测 其阻值的微小变化。为此,一般是把应变片接入某种电路,让它的电阻变化对电路进行某种控制,使电路输出一个能模拟这个电阻变化的电信号,之后,只要对这个电信号进行相应的处理(滤波、放大、调制解调等)就行了。 常规电阻应变测量使用的应变仪,它的输入回路叫 做应变电桥 ① 应变电桥:以应变片作为其构成部分的电桥。 ② 应变电桥的作用:能把应变片阻值的微小变化 转换成输出电压的变化。 U ) )((U 432142310?++-=R R R R R R R R )--KU(41][4U U 4321443322110εεεε+=?-?+?-?=R R R R R R R R 常用电桥连接方法有三种: (1)单臂半桥接法: R1作为应变片

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

悬臂梁的应力测试应变片课程设计

题目:应变片课程设计 悬臂梁的应力测试 2015 年 1 月

一、力学篇应变实验课程设计细则 ------------------- 3 二、实验器材 ------------------------------------- 4 三、实验预想步骤 --------------------------------- 4 四、实验操作步 ----------------------------------- 5 五、实验数据及分析 ------------------------------- 8 六、电阻应变片的选择 ----------------------------- 8 七、电阻应变片的粘贴工艺 ------------------------ 18 八、实验心得 ------------------------------------ 20

前言 应变式传感器可以用来检测:位移压力力矩应变温度湿度光强辐射热加速度液体流量等物理参数。目前是国内外应用量最为广泛的一种传感器,它在世界上占各类传感器80%以上。 本次课程设计根据实验室条件和应变式传感器的特点,从应变片粘贴工艺要求设计机械结构测点布置应变片电源电路应变片补偿电路检测误差分析构建圆筒偏载试验等为题,使学生从简单受力结构分析入手,运用计算机模拟软件确定测点布置,结合动手具体粘贴应变片,对应变片实测数据校准整定;从而完成一个完整的测试工作。 一、任务设计与要求 1 应用力学知识(理论力学材料力学),运用软件ansys分析简支梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 2 应用力学知识(理论力学材料力学),运用软件ansys分析悬臂梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 3 应用力学知识(理论力学材料力学),运用软件ansys分析传动轴受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性;

弯扭实验报告材料-最终版

【实验名称】 弯扭组合受力下的圆管应力和力测定实验 【实验背景】 在工程中受弯扭复合作用的构件比比皆是。现仅举几例加以说明: 1.工厂中用于机械加工的车床、铣床等主轴就是一种典型的复合受力形式,主轴的力——弯矩、扭矩、轴力等。 2. 汽车在崎岖道路上行驶时,车架处于复合受力状态下。其力有弯矩、扭矩。 3. 自行车的拐臂,由于脚踏板的受力点与拐臂不在同一中心线上,拐臂的力既有弯矩,又有扭矩。 一般来说,对复合受力的构件,其截面上的力既有弯矩和剪力又有扭矩,有时还有轴力。所以,复合受力条件下的构件属于平面应力状态。对于这类构件,工程中一般要解决下列两

类问题。 1.强化校核:测定危险点的应力状态,确定主应力值和主方向。 2.优化设计:分离截面上的力,确定各力的贡献大小。 【实验目的】 1.学习电测实验的全过程。本实验从按实验要求制定贴片方案,粘贴电阻片、引线、编号到测量所贴电阻片的应变,以及用不同组桥方式分离力的一整套实验过程都由同学自己来完成。 2.学习测定一点应力状态的方法。 3.学习利用各种组桥方式测量力的方法。 4.学习电阻片的粘贴方法。 5.进一步熟悉电测法的基本原理与操作方法。 【实验仪器】 1.电子万能实验机 2.静态电阻应变仪 3.弯矩复合受力实验装置一套 4.钢板尺、游标卡尺 【实验原理】 一.测主应变的大小及方向 为了用实验的方法测定薄壁圆筒弯曲和扭转时表面一点处的主应力大小和方向,首 先要测量该点处的主应变ε1和ε3的大小和方向,然后用广义克定律算得一点处的主 应力σ1和σ3。根据平面应变状态分析原理,要确定一点处的主应变,需要知道该点 处沿x和两个互相垂直方向的3个应变分量εX,εy和γxy。由于在实验中测量剪应 变很困难,而用电阻应变片测量线应变比较简便,所以通常采用一点处沿x轴成3个不 同方向且已知夹角的线应变。 为了简化计算,实际上采用互成特殊角的三片应变片组成的应变花,中间的应变片与x 轴成0°,另外2个应变片分别与x轴成±45°。用电阻应变仪分别测得圆筒变形后应变花的3个应变值,即ε0°,ε-45°,ε45°,则有

相关文档
最新文档