自动驾驶技术的超声波传感器应用

自动驾驶技术的超声波传感器应用

自动驾驶技术的超声波传感器应用

超声波主要用于泊车测距、辅助刹车等,量程较短等,然而在倒车辅助过程中,超声波传感器通常需同控制器和显示器结合使用,从而以声音或者更为直观的显示告知驾驶员周围障碍物的情况,解除驾驶员泊车、倒车和起动车辆时前后左右探视所引起的困扰,并帮助驾驶员扫除视野死角和视线模糊的缺陷,提高驾驶安全性。

使用效果上,超声波雷达穿透性强,测距的方法简单,成本低。不过,由于超声波是一种机械波,其使用效果会受传播介质的影响,例如受天气情况的影响,在不同的天气情况下,超声波的传输速度不同,而且传播速度较慢。另外,当汽车高速行驶时,使用超声波测距无法跟上汽车的车距实时变化,误差较大,影响测量精度。

随着科学技术的快速发展,超声波将在传感器中的应用越来越广。在人类文明的历次产业革命中,传感技术一直扮演着先行官的重要角色,它是贯穿各个技术和应用领域的关键技术,在人们可以想象的所有领域中,它几乎无所不在。如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。

展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,超声波传感器在汽车的应用可谓是不可抗拒的存在,总所周知自动驾驶,感知传感器非常关键,目前自动驾驶汽车测距与避障,主要采用传感器超声波、毫米波、摄像头和激光三种方式。这三种方式根据测距场景的不同,可以在自动驾驶中进行融合运用。下面工釆网小编来具体说说超声波传感器在汽车应用中扮演这怎样的角色。

超声波主要用于泊车测距、辅助刹车等,量程较短等,然而在倒车辅助过程中,超声波传感器通常需同控制器和显示器结合使用,从而以声音或者更为直观的显示告知驾驶员周围

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 自动驾驶汽车的硬件架构、传感器、线控等硬件系统 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 自动驾驶汽车硬件系统概述 从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解: 一、自动驾驶系统的硬件架构 二、自动驾驶的传感器 三、自动驾驶传感器的产品定义 四、自动驾驶的大脑 五、自动驾驶汽车的线控系统

自动驾驶事故分析 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。 从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。

目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿

超声波传感器的使用注意事项

探测范围和大小 要探测的物体大小直接影响超声波传感器的检测范围。传感器必须探测到一定声级的声音才可以进行输出。大部件能将大部分声音反射给超声波传感器,这样传感器即可在其最远传感距离检测到此部件。小部件仅能反射较少的一部分声音,从而导致传感范围大大缩小。 探测物体的特点 使用超声波传感器探测的理想物体应体积大、平整且密度高,并与变换器正面垂直。最难探测的物体是体积小且由吸音材料制成的物体,或者与变换器呈一定角度的物体。 如果液面静止且与传感器表面垂直,探测液体就很容易。如果液面波动大,可延长传感器的响应时间,从而取波动变化的平均值以获得更一致的读数。但是,超声波传感器还不能精确探测表面为泡沫状的液体,因为泡沫会使声音的传播方向发生偏离。这时可以使用超声波传感器的反向超声模式,探测形状不规则的物体。在反向超声模式下,超声波传感器会探测一个平整背景,如墙壁。任何穿过传感器和墙壁之间的物体都会阻断声波。传感器即可通过探测该干扰来识别物体的存在。 温度导致的衰减 传感器还设计了温度补偿功能,以调节环境温度的缓慢改变。但是,它不能调节温度梯度或环境温度的快速变化。 周围是否有振动 无论是传感器本身的振动还是附近机器的振动,都可能会影响测量距离时的精确度。可在安装传感器时用橡胶防振装置来减少这类问题。有时也可使用导轨来消除或降低部件振动。 环境导致的误测 附近的物体可能会反射声波。要准确探测目标物体,必须降低或消除附近声音反射表面的影响。为了避免误测附近物体,许多超声波传感器都装有LED指示灯,用于在安装时指示操作人员,以确保正确安装传感器并降低误测风险。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路

自动驾驶传感器竞争格局解析

自动驾驶传感器竞争格局解析 自动驾驶汽车作为汽车未来的重要发展方向,成为汽车零部件产业链的重要增长点。国内外的汽车零部件供应商积极布局自动驾驶传感器领域,在车载摄像头、毫米波雷达和激光雷达三大核心部件,以及产业链上下游的拓展为零部件供应商带来增长机遇。国内外部分综合实力较强的汽车零部件公司在自动驾驶汽车传感器上进行多产品布局,可以为下游客户提供综合性的自动驾驶解决方案,形成较强的竞争力。这些公司包括国外的博世、大陆集团、法雷奥、海拉、德尔福、富士通天、奥托立夫等公司和国内的德赛西威、华域汽车和保隆科技等公司。 国际公司中,博世的自动驾驶传感解决方案技术领先,其可以为客户提供包括近距离摄像头、多功能立体摄像头、77/79GHz毫米波雷达等多种产品,同时博世通过投资以及自主开发的方式研制激光雷达产品。 大陆集团是全球排名前五的车载摄像头模组供应商和排名前三的毫米波雷达供应商,同时其规划2020年后将实现激光雷达的量产。 法雷奥是全球排名前三的车载摄像头模组供应商,其毫米波雷达和激光雷达产品稳步发展,其中和Ibeo合作研制的激光雷达已经量产。此外,海拉、德尔福等公司的自动驾驶传感器业务也稳步发展。 国内公司中,德赛西威2017年实现高清车用摄像头的量产,毫米波雷达产品将于2019年实现量产。华域汽车前视摄像头完成综合工况道路验证测试,毫米波雷达产品已经实现量产供货。保隆科技预计将于2019年量产车载摄像头,其毫米波雷达产品也已发布。 竞争格局:国际企业领先,国内企业跟进 摄像头:国际零部件公司市场份额较高 车载摄像头产业链较长,上下游拥有众多环节,每个环节都涉及国内外众多厂商和公司。相较于消费电子等所用的摄像头,车规级的摄像头对

自动驾驶技术IMU的基础知识和应用场景

自动驾驶技术IMU的基础知识和应用场景 前面我们介绍了MEMS 陀螺仪的一些基本概念,也说明了陀螺仪和加速度计是构成IMU惯性测量单元的主要部件。在查找IMU的过程中,我们经常会看到DOF,自由度的概念,今天我们就从DOF开始进一步理解IMU的基础知识和应用场景。 想象一个笛卡尔坐标系,形下图所示,具有x轴、y轴和z轴,传感器能够测量各轴方向的线性运动,以及围绕各轴的旋转运动。这就是所有惯性测量单元的根本出发点,所有惯性导航系统都是据此而构建。 这些器件带有一个三轴加速度计,显然这是指x轴、y轴和z轴。加速度计会测量线性速度的变化,也会响应重力。加速度计会根据其方向而对重力作出响应,如下图所示,这使得我们能够基于非常简单的三角公式估算其方向。利用arcsin公式,我们可以使用一个轴,而利用arctan公式,我们可以将笛卡尔坐标系中两个彼此正交的轴合并。二者的主要区别在于:arcsin方法能够测量+/- 90度,而arctan方法能够测量+/- 180度,也就是全部360度,这样您将知道您在哪一个象限。 陀螺仪对旋转角速率进行积分,您就能估算角位移。大致上说,加速度计具有很好的长期偏置稳定性和长期精度,但会对线性振动作出响应。当进行角度估计时,线性振动会表现出来,有时候需要滤波,这会给其他方面带来负担,或者有时候振动太高,超出加速度计测量范围,从而完全破坏角度估计。 因此,陀螺仪没有对线性振动的一阶响应,但因为它对输出进行积分,所以任何偏置误差都会转换为角度估计的漂移。任何系统的基本调整空间在于使用此类传感器的根本出发点。加速度计的长期稳定性更好,但易受振动影响。陀螺仪不易受振动影响,但长期稳定性较差,会导致估算更快地漂移。 IMU应用实例之工业检查系统 想象屏幕上方的灰色条是生产车间的天花板。天花板安装了某种摄像或照相设备,该设备

自动驾驶行业分析之全球篇

2018年自动驾驶行业分析 之全球篇 撰写时间:2018年6月

目录

第1章概述 自动驾驶驾驶的概念与定义 自动驾驶的定义 目前的自动驾驶可分为两类。一类是目前非常火爆的无人驾驶,更强调的是车的自主驾驶以实现舒适的驾驶体验或人力成本的节省,典型的例子为百度和Google的无人车;一类是ADAS(全称为Advanced Driver Assistance System,即高级辅助驾驶系统),发展历史已久,早在1970年就已进入车厂布局中。两者都是利用安装在车上的各式各样传感器收集数据,并结合地图数据进行系统计算,从而实现对行车路线的规划并控制车辆到达预定目标。随着人们对安全、舒适的驾驶体验的不断追求,自动驾驶成为汽车的新方向。 图表1:ADAS与无人驾驶的区别 不过,ADAS也可以视作无人驾驶汽车的前提,随着ADAS实现的功能越来越多,渐进式可实现无人驾驶。 自动驾驶分级

关于汽车智能化的分级,业界统一采用SAE International的标准,即国际汽车工程师协会制定的标准。 SAE的标准把自动驾驶分为了L0~L5,其中L0指的是人工驾驶。标准具体规定如下: 图表2:自动驾驶分级 数据来源:SAE 目前市场上L3级别的自动驾驶汽车已经准备上路,汽车供应链正在投入下一个阶段L4级别自动驾驶汽车的研发。 自动驾驶产业链 产业链结构图 自动驾驶产业链相对较长,主要分为上中下游。上游主要为原材料,包括锂、钴、铜以及半导体等;中游为各种软硬件产品,包括传感器、自动驾驶平台等;下游为整车集成,以及车队管理系统,车载娱乐、车内办公等附加服务。

超声波传感器及其应用

超声波传感器及其应用 摘要 本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。 关键词:超声波传感器疾病诊断测距系统液位测量

Ultrasonic sensors and its application Abstract This paper mainly introduces the characteristics of ultrasonic, principle and application of ultrasonic sensors, etc. In this paper, the ultrasound and sound waves, ultrasonic sensors in medical treatment, industrial production, level measurement, ranging in many fields such as system has been widely used. Due to the unique characteristics of ultrasonic has, ultrasonic sensors in production and life embodies its importance, has certain value. key words: ultrasonic sensors Disease diagnosis Distance measuring system level

(完整word版)自动驾驶核心技术之三:环境感知

自动驾驶核心技术之三:环境感知 自动驾驶四大核心技术,分别是环境感知、精确定位、路径规划、线控执行。环境感知是其中被研究最多的部分,不过基于视觉的环境感知是无法满足无人驾驶要求的。环境感知主要包括三个方面,路面、静态物体和动态物体。对于动态物体,不仅要检测还要对其轨迹进行追踪,并根据追踪结果,预测该物体下一步的轨迹(位置)。这在市区,尤其中国市区必不可少,最典型场景就是北京五道口:如果你见到行人就停,那你就永远无法通过五道口,行人几乎是从不停歇地从车前走过。人类驾驶员会根据行人的移动轨迹大概评估其下一步的位置,然后根据车速,计算出安全空间(路径规划),公交司机最擅长此道。无人车同样要能做到。要注意这是多个移动物体的轨迹的追踪与预测,难度比单一物体要高得多。这就是MODAT(Moving Object Detection and Tracking)。也是无人车最具难度的技术。图:无人车环境感知框架 这是基于激光雷达的环境感知模型,搞视觉环境感知模型研究的人远多于激光雷达。不过很遗憾地讲,在无人车这件事上,视觉不够靠谱。让我们来看计算机视觉的发展历程,神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理,解决各种

机器学习的问题。1986 年Rumelhart,Hinton 和Williams 在《自然》发表了著名的反向传播算法用于训练神经网络,直到今天仍被广泛应用。不过深度学习自80年代后沉寂了许久。神经网络有大量的参数,经常发生过拟合问题,即往往在训练集上准确率很高,而在测试集上效果差。这部分归因于当时的训练数据集规模都较小,而且计算资源有限,即便是训练一个较小的网络也需要很长的时间。神经网络与其它模型相比并未在识别的准确率上体现出明显的优势,而且难于训练。因此更多的学者开始采用诸如支持向量机(SVM)、Boosting、最近邻等分类器。这些分类器可以用具有一个或两个隐含层的神经网络模拟,因此被称作浅层机器学习模型。它们不再模拟大脑的认知机理;相反,针对不同的任务设计不同的系统,并采用不同的手工设计的特征。例如语音识别采用高斯混合模型和隐马尔可夫模型,物体识别采用SIFT 特征,人脸识别采用LBP 特征,行人检测采用HOG 特征。2006年以后,得益于电脑游戏爱好者对性能的追求,GPU性能飞速增长。同时,互联网很容易获得海量训练数据。两者结合,深度学习或者说神经网络焕发了第二春。2012 年,Hinton 的研究小组采用深度学习赢得了ImageNet 图像分类的比赛。从此深度学习开始席卷全球,到今天,你不说深度学习都不好出街了。深度学习与传统模式识别方法的最大不同在于它是从大数据中自动学习特征,而非采用手工设

超声波传感器在使用中的常见问题及处理方法

超声波传感器应用起来原理简单,也很方便,成本也很低。但是目前的超声波传感器都有一些缺点,比如,反射问题,噪音,交叉问题。 反射问题 如果被探测物体始终在合适的角度,那超声波传感器将会获得正确的角度。但是不幸的是,在实际使用中,很少被探测物体是能被正确的检测的。其中可能会出现几种误差:三角误差、镜面反射、多次反射。 噪音 虽然多数超声波传感器的工作频率为40-45Khz,远远高于人类能够听到的频率。但是周围环境也会产生类似频率的噪音。比如,电机在转动过程会产生一定的高频,轮子在比较硬的地面上的摩擦所产生的高频噪音,机器人本身的抖动,甚至当有多个机器人的时候,其它机器人超声波传感器发出的声波,这些都会引起传感器接收到错误的信号。这个问题可以通过对发射的超声波进行编码来解决,比如发射一组长短不同的音波,只有当探测头检测到相同组合的音波的时候,才进行距离计算。这样可以有效的避免由于环境噪音所引起的误读。 交叉问题 交叉问题是当多个超声波传感器按照一定角度被安装在机器人上的时候所引起的。超声波X发出的声波,经过镜面反射,被传感器Z和Y获得,这时Z 和Y会根据这个信号来计算距离值,从而无法获得正确的测量。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/e016856237.html,。

超声波传感器的设计与应用演示教学

超声波传感器的设计 与应用

传感器课程设计 (2010级) 题目:超声波传感器的设计与应用 学员姓 名:xxx 学 号:201003011020 学员姓 名:xxx 学 号:201003011027 学员姓 名:xxx 学 号:201003011003 xxx

二〇一三年九月

目录 ...............................................................................................................................................第一章超声波传感器简介........................................................................................ 1.1超声波传感器是什么 (2) 1.2超声波传感器应用前景 (2) 第二章超声波传感器设计 (3) 2.1设计目标描述 (3) 2.2 设计指标 (3) 2.3 传感器结构概述 (4) 2.4 传感器设计原理 (4) 2.4.1 物理部分设计 (4) 2.4.2 电路部分设计 (7) 第三章硬件设计 (8) 3.1 单片机设计 (8) 3.2 传感器设计 (11) 3.3 单片机与传感器连接 (12) 第四章软件设计 (13) 4.1 总体设计思路 (13) 4.2 软件程序 (13) 第五章测试结果与分析 (21) 第六章结论 (22) 参考文献 (24)

第一章超声波传感器的设计 1.1超声波传感器是什么 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 1.2超声波传感器应用前景 随着科学技术的快速发展,超声波将在传感器中的应用越来越广。在人类文明的历次产业革命中,传感技术一直扮演着先行官的重要角色,它是贯穿各个技术和应用领域的关键技术,在人们可以想象的所有领域中,它几乎无所不在。传感器是世界各国发展最快的产业之一,在各国有关研究、生产、应用部门的共同努力下,传感器技术得到了飞速的发展和进步。但就目前技术水平来说,人们可以具体利用的传感技术还十分有 限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,超声波传感器作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以

人工智能在自动驾驶技术中的的应用

人工智能在自动驾驶技术中的应用 摘要:随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能等术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 关键词:人工智能;自动驾驶;智能汽车;图像识别 0. 引言 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 1. 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机

自动驾驶传感器布置如何布置

前言:无人驾驶汽车的研究越来越多,各环境感知传感器的分布位置也不同,到底这些传感器要遵循一个什么样的布置原则? 智能驾驶汽车环境感知传感器主要有超声波雷达、毫米波雷达、激光雷 达、单/双/三目摄像头、环视摄像头以及夜视设备。目前,处于开发中的典型智能驾驶车传感器配置如表 1所示。 表 1 智能驾驶汽车传感器配置 ?环视摄像头:主要应用于短距离场景,可识别障碍物,但对光照、天气等外在条件很敏感,技术成熟,价格低廉; ?摄像头:常用有单、双、三目,主要应用于中远距离场景,能识别清晰的车道线、交通标识、障碍物、行人,但对光照、天气等条件很敏感,而且需要复杂的算法支持,对处理器的要求也比较高; ?超声波雷达:主要应用于短距离场景下,如辅助泊车,结构简单、体积小、成本低; ?毫米波雷达:主要有用于中短测距的 24 GHz 雷达和长测距的 77 GHz 雷达 2 种。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透 雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠声波定位,声波出现漫反射,导致漏检率和误差率比较高; ?激光雷达:分单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的 3D 地图,抗干扰能力强,是智能驾驶汽车发展的最佳技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。 ?不同传感器的感知范围均有各自的优点和局限性(见图 1),现在发展的趋势是通过传感器信息融合技术,弥补单个传感器的缺陷,提高整个智能驾驶系统的安全性和可靠性。

图 1 环境感知传感器感知范围示意图 全新奥迪A8配备自动驾驶系统的传感器包括 -12个超声波传感器,位于前后及侧方 -4个广角360度摄像头,位于前后和两侧后视镜 -1个前向摄像头,位于内后视镜后方 -4个中距离雷达,位于车辆的四角 -1个长距离雷达,位于前方 -1个红外夜视摄像头,位于前方

超声波传感器的设计与应用

传感器课程设计 (2010级) 题目:超声波传感器的设计与应用

学员:xxx 学号:201003011020 学员:xxx 学号:201003011027 学员:xxx 学号:201003011003

xxx 二〇一三年九月

目录 ...............................................................................................................................................第一章超声波传感器简介..................................................................................... 1.1超声波传感器是什么 (2) 1.2超声波传感器应用前景 (2) 第二章超声波传感器设计 (3) 2.1 设计目标描述 (3) 2.2 设计指标 (3) 2.3 传感器结构概述 (4) 2.4 传感器设计原理 (4) 2.4.1 物理部分设计 (4) 2.4.2 电路部分设计 (7)

第三章硬件设计 (8) 3.1 单片机设计 (8) 3.2 传感器设计 (11) 3.3 单片机与传感器连接 (12) 第四章软件设计 (13) 4.1 总体设计思路 (13) 4.2 软件程序 (13) 第五章测试结果与分析 (21) 第六章结论 (22) 参考文献 (24)

第一章超声波传感器的设计 1.1超声波传感器是什么 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在不透明的固体中,它可穿透几十米的深度。 超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 1.2超声波传感器应用前景 随着科学技术的快速发展,超声波将在传感器中的应用越来越广。 在人类文明的历次产业革命中,传感技术一直扮演着先行官的重要角色,它是贯穿各个技术和应用领域的关键技术,在人们可以想象的所

自动驾驶汽车硬件系统概述

自动驾驶汽车硬件系统概述 如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。 上周,来自百度自动驾驶技术部高级产品经理—王石峰,在Apollo开发者社群内分享了有关自动驾驶汽车硬件系统的内容,让开发者学习Apollo技术的同时,进一步了解自动驾驶汽车的硬件架构、传感器、线控等硬件系统。 这段视频想必大家都看过很多次了,这里就不再播放了。 根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。 目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。 软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世

人工智能在自动驾驶应用中的5大关键技术分析

人工智能在自动驾驶应用中的5大关键技术分析 随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。 本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。 1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。 五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 人工智能在自动驾驶技术中的应用概述人工智能发展六十年,几起几落,如今迎来又一次

超声波传感器原理

超声波传感器原理 [日期:2007-06-05]来源:作者:[字体:大中小]超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-1802:40

polaroid6500系列超声波距离模块的硬件电路如图2所示: tl851是一个经济的数字12步测距控制集成电路。内部有一个420khz的陶瓷晶振,6500系列超声波距离模块开始工作时,在发送的前16个周期,陶瓷晶振被8.5分频,形成49.4khz的超声波信号,然后通过三极管q1和变压器t1输送至超声波传感器。发送之后陶瓷晶振被4.5分频,以供单片机定时用。tl852是专门为接收超声波而设计的芯片。因为返回的超声波信号比较微弱,需要进行放大才能被单片机接收,tl852主要提供了放大电路,当tl852接收到4个脉冲信号时,就通过rec 给tl851发送高电平表明超声波已经接收。 2.3at89c51单片机 本系统采用at89c51来实现对polaroid600系列传感器和polaroid6500系列超声波距离模块的控制。单片机通过p1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测int0引脚,当int0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。超声波测距的硬件示意图如图3所示:

3、系统软件设计 系统程序流程图如图4所示: 工作时,微处理器at89c51先把p1.0置0,启动超声波传感器发射超声波,同时启动内部定时器t0开始计时。由于我们采用的超声波传感器是收发一体的,所以在发送完16个脉冲后超声波传感器还有余震,为了从返回信号识别消除超声波传感器的发送信号,要检测返回信号必须在启动发射信号后2.38ms才可以检测,这样就可以抑制输出得干扰。当超声波信号碰到障碍物时信号立刻返回,微处理器不停的扫描int0引脚,如果int0接收的信号由高电平变为低电平,此时表明信号已经返回,微处理器进入中断关闭定时器。再把定时器中的数据经过换算就可以得出超声

超声波传感器简介

超声波传感器 基本介绍 人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。常用的超声波频率为几十KHZ-几十MHZ。超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置是声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 ①

超声波传感器及应用

超声波传感器及应用 我要打印我要留言查看留言 来自:转载 原理简述: 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的, 它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标 包括; (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端 的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 (2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用 超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 结构与工作原理

无人驾驶汽车激光雷达传感器方案

一、主流传感器对比 激光雷达: 激光雷达具有高精度、高分辨率的优势,同时具有建立周边3D模型的前景,然而其劣势在于对静止物体如隔离带的探测较弱且目前技术落地成本高昂。由于激光雷达可广泛应用于ADAS系统,例如自适应巡航控制(ACC)、前车碰撞警示(FCW)及自动紧急制动(AEB),因此吸引了不少具有先进技术的初创公司竞争,同时传统供应商也积极布局投资希望能够达成战略合作关系以便快速获得先进技术。 毫米波雷达: 与激光雷达相比,毫米波雷达具有探测距离远,不受天气状况影响以及成本低的优势。由于毫米波雷达采用硅基芯片,不会特别昂贵,也不涉及复杂工艺,同时正处于第二次工艺转型的重要时期,预计成本仍有下降空间。 相比激光雷达暂时高不可攀的成本以及较低的技术壁垒和自身可全天候工作的优势,毫米波雷达可以说是目前初创公司进入自动驾驶市场的一个门槛较低的入口。 摄像头: 车载摄像头是最基本常见的传感器,价格低廉且应用广泛同时具备雷达无法完成的图像识别功能,不仅可以识别路牌,在自动驾驶系统的图像处理方案中也是不可或缺的一部分。 鉴于目前激光雷达的高成本,摄像头配合高精度地图是另一种较低成本的技术路线。除了与高精度地图配合为自动驾驶提供定位服务,摄像头还可以在地图采集过程中作为低成本且数据传输量小(摄像头捕捉的是小尺寸的2D画面)的数据收集器。 二、视觉主导还是激光雷达主导? 据清华大学邓志东教授介绍,自动驾驶环境感知的技术路线主要有两种:一种是以特斯拉为代表的视觉主导的多传感器融合方案,另一种以低成本激光雷达为主导,典型代表如谷歌

Waymo。 1、视觉主导,以特斯拉为代表:摄像头+毫米波雷达+超声波雷达+低成本激光雷达。 摄像头视觉属于被动视觉,受环境光照的影响较大,目标检测与SLAM较不可靠,但成本低。目前,特斯拉已经在其量产车上列装了Autopilot 2.0固件,而且成本较低,只有7000美金左右,8个摄像头组成单目环视,有1个毫米波雷达和12个超声波雷达,希望从L2跳跃到L4。 经过半年的努力,特斯拉近期已经完成了将路测大数据从Mobileye单目视觉技术过渡到基于Nvidia Drive PX2计算硬件平台的特斯拉Vision软件系统上,并且在今年3月底发布了8.1软件版本,它用深度学习的方法在短期内基本达到了Mobileye的技术水平,这是以前很难想象的。特斯拉的自动驾驶技术究竟怎么样,一个重要的观察点就是看它能否在2017年年底,如期从洛杉矶开到纽约,实现全程4500公里且无人工干预的完全自主驾驶。 2、激光雷达主导,以Google Waymo为代表:低成本激光雷达+毫米波雷达+超声波传感器+摄像头。 激光雷达是主动视觉,它的目标检测与SLAM比较可靠,但是却丢失了颜色和纹理且成本高昂。目前谷歌Waymo自己组建团队研发激光雷达的硬件,把成本削减了90%以上,基本上是7000美金左右,同时他们已经开始在美国凤凰城地区对500辆L2级别的车进行社会公测,大大地推进了该类技术路线的落地实践。 激光雷达主导的解决方案未来可以沿如下两个方向继续推进商业化进程: 一个是发展摄像头与激光雷达的硬件模组,把两者结合起来,既有激光雷达,又有彩色摄像头,可以直接获得彩色激光点云数据。 另一个是进一步降低激光雷达的硬件成本,比如研发固态激光雷达并真正实现产业化,届时成本会下降到几百美金。

超声波传感器 资料

超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。基于超声波特性研制的传感器称为“超声波传感器”,广泛应用在工业、国防、生物医学等方面。 中文名超声波传感器 所属类别传感器物理学 原理超声波的特性 组件压电材料 工作频率压电晶片的共振频率 适用领域工业、国防、生物医学 目录 .1组成部分 .2性能指标 .?工作频率 .?工作温度 .?灵敏度 .?指向性 .3相关应用 .?主要应用 .?具体应用

.4工作相关 .?工作原理 .?工作程式 .?工作模式 .5系统构成 .6检测方式 .7检测好坏 .8液位测试 .9其他 .?区分 .?注意事项 .?暴露问题 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。 性能指标 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: 工作频率 工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 工作温度 由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。

超声波传感器的原理及应用前景展望

超声波传感器的原理及应用前景展望 一、原理简述: 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标,包括; (1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

(2)工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。 (3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 二、结构与工作原理 超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。 1、超声波测距仪: HpAWK超高能声波测距技术HpAWK系列产品使超声波测距技术有了重大的突破,它不仅拓宽了超声波测距技术的应用场合(适用极恶劣工的工作环境),而且使用智能调节技术,大大提高了超声波产品的可靠性及性能指标,让用户使用无后顾之忧。。 优秀的回波处理技术,5-50KHZ的超高强发波频率使HAWK物位计最大量程可达到0米,适用介质温度为–20℃— +175℃。智能的全自动调节发波频率,自动的温差补偿功能使其工作更加稳定可靠。HpAWK系列产品还拥有灵活多变的工作方式(供电电源可为VDC、24VDC、110VAC、220VAC;二/三/四线制同一仪表中可随意组合。它还拥有先进的远程GSM、CDMA、互联网调试功能,使得用户随时可以得到技术支持。

相关文档
最新文档