常微分方程总复习

常微分方程总复习
常微分方程总复习

常微分方程复习总结

初等积分法

一、主要概念

常微分方程:未知函数是一个变元的函数,由这样的函数及其导数(或微分)构成的等式。 方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。

微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。

通解:n 阶方程,其解中含有n 个(独立的)任意常数,此解称为方程的通解。由隐式表出的通解称为通积分。

特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。 初值问题:求微分方程满足初值条件的解的问题。

变量可分离方程: 形如 )()(d d y g x f x

y

=或 y y N x M x y N x M d )()(d )()(2211= 的方程称为变量可分离方程。

齐次微分方程:形如

)(d d x

y

x y ?=的方程,称为齐次微分方程。 线性微分方程:未知函数和它的导数都是一次的微分方程。

一阶线性微分方程:

一阶线性微分方程的形式是 )()(d d x f y x p x y =+ 如果0)(≡x f ,即0)(d d =+y x p x

y

称为一阶线性齐次方程。如果)(x f 不恒为零,则称)()(d d x f y x p x y

=+为一阶线性非齐次方程。

伯努利(Bernoulli )方程:形如 n y x f y x p x

y

)()(d d =+ (1,0≠n ) 的方程,称为伯努利

方程。

全微分方程:如果微分形式的一阶方程

0d ),(d ),(=+y y x N x y x M (1.1)

的左端恰好是一个二元函数),(y x U 的全微分,即

y y x N x y x M y x U d ),(d ),(),(d += (1.2)

则称方程(1.1)是全微分方程或恰当方程,而函数),(y x U 称为微分式(1.2)的原函数。

积分因子:假如存在这样的连续可微函数0),(≠y x μ,使方程

0d ),(),(d ),(),(=+y y x N y x x y x M y x μμ

成为全微分方程,我们就把),(y x μ称为方程(1.1)的一个积分因子。

二、主要定理

定理1.1 假如),(y x U 是微分式(1.2)的一个原函数,则全微分方程(1.1)的通积分为

C y x U =),(,其中C 为任意常数。

定理1.2 如果方程(1.1)中的),(),,(y x N y x M 在矩形区域

b y y a x x R ≤-≤-00,:

上连续可微,则方程(1.1)是全微分方程的充要条件是:在R 上有

x

N

y M ??≡??

三、基本解法

每种解法所对应的可积类型可归纳如下: 对于导数已解出的一阶方程),(y x f y =',有 1.分离变量法:(1)显式变量可分离方程为: )()(d d y g x f x

y

= ; 当0≠g 时,通过积分

??+=C x x f y g y

d )()(d 求出通解。

(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;

当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d )()

(d )()(2112

求出通解。 (3)一阶齐次微分方程为: )(d d x y

g x y = ;

令x

y

u =,代入方程得x u u g x u -=

)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u

u g u

x C )(d 1e

,即)

(e u C x ?=,用x

y

u =回代,得通解)(e x y

C x ?=. 2.常数变易法:(1)一阶线性非齐次微分方程为:)()(d d x f y x p x y

=+;

用常数变易法可以求出线性非齐次方程的通解:??+?

=-]d e )([e d )(d )(x x f C y x

x p x x p 。 (2)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x

y

n , 两端除以n y ,得 )()(d d 1x f y x p x

y y n n =+--;令n y z -=1,代入后得到以z 为未知函数的线

性方程)()(d d 11x f z x p x

z

n =+-,在求通解。

3.积分因子法:化成全微分方程,按全微分方程求解。

(1)全微分方程(或恰当方程)为:0d ),(d ),(=+y y x N x y x M ;

若二元函数),(y x U 满足:y y x N x y x M y x U d ),(d ),(),(d +=,则上式的原函数为: ),(y x U .

(2)如果存在连续可微函数0),(≠y x μ,使方程+x y x M y x d ),(),(μ 0d ),(),(=y y x N y x μ成为全微分方程,则称),(y x μ积分因子。

对于导数未解出的一阶方程0),,(='y y x F 有 4.参数法:

(1)类型Ⅰ )0),((,

0),(='='y y F y x F

若参数形式???='=)()(t y t x ψ?,则参数形式通解为:??

???+==?C t t t y t x d )()()

(?ψ?&;

或参数形式???='=)()(t y t y ψ?,则参数形式通解为:??

???=+=?)

(d )()(t y C t t t x ?ψ?&

(2) 类型Ⅱ )),((),,(y y f x y x f y '='=

若参数形式??

?

??=='=)

,(p x f y p y x

x ,则参数形式解为:???==),(0),,(p x f y C p x G

或参数形式??

?

??=='=)

,(p y f x p y y

y ,则参数形式解为:???==Φ),(0),,(p y f x C p y

对于高阶方程有

降阶法: 第一种可降阶的高阶方程 )1(.

0),,,,()()1()

(>=+k y y y

x F n k k Λ;

第二种可降阶的高阶方程 0),,,(='n

y y y F Λ; 假如方程0),,,,()

(='n y y y x F Λ的左端恰为某一函数),,,,()1(-'Φn y y y x Λ对x 的导数,则称

该方程为恰当导数方程。 例题分析 例1 填空题

(1)方程0d )1(1)d (22

=-+-y x y x y x 所有常数解是 .

解:将其化为

),(d d y x f x

y

=或),(d d x y g y x =形式,然后令方程右端的0),(=y x f 或0),(=x y g ,求出常数解,再代入方程验算,可以得到答案。

应该填写:1,1±=±=x y

(2)方程

y x x

y

sin d d 2=的所有常数解是 . 解:应该填写:πk y =,Λ,2,1,0±±=k

(3)方程y x x

y

tan d d 2=的所有常数解是 .

解:应该填写:πk y =,Λ,2,1,0±±=k

(4)一阶常微分方程的一个特解的图像是 维空间上的一条曲线. 解:应该填写:2

求下列方程的通解或通积分: 例2 0d d )2(=-+y x x y x 解:方程化为

x

y

x y 21d d +=

令xu y =,则

x

u

x

u x y d d d d +=,代入上式,得 u x

u

x +=1d d

分量变量,积分,通解为: 1-=Cx u

原方程通解为: x Cx y -=2

例3 1d d +=x

y

x y

解:齐次方程的通解为:Cx y =

令非齐次方程的特解为: x x C y )(=

代入原方程,确定出 C x x C +=ln )(

原方程的通解为: Cx y =+x x ln

例4

0d )ln (d 3=++y x y x x

y

解: 因为x

N

x y M ??==??1,所以原方程是全微分方程. 取)0,1(),(00=y x ,原方程的通积分为

C y y x x y y

x =+??0

31d d

即 C y x y =+4

41ln

例5 2

)(y y x y '+'=

解:原方程是克来洛方程,通解为:2

C Cx y +=

例6 03)(2

2=+'+''x y y y

解:原方程是恰当导数方程,可写成: 0)(3

='+'x y y 即 13

C x y y =+' 分离变量解此方程,通积分为: 24124

1

21C x x C y +-= 例7 1)ln (='-'y x y

解:令p y =',则原方程的参数形式为

?????

='+=p y p

p x ln 1 由基本关系式 y x

y

'=d d ,有 p p p

p x y y )d 11(d d 2+-?='=p p )d 1

1(-=

积分得 C p p y +-=ln 得原方程参数形式通解为

??

?

??+-=+=C p p y p p x ln ln 1 例8 0d d )e (2

=+-y x x y x x

解:积分因子为 :2

1

)(x x =μ, 原方程的通积分为

101

2d d )(e C y x x

y y x x =+-

??

即 1e ,e C C C x

y

x +==+

第2章 基本定理

一、主要概念

延展解、不可延展解:设)(1x y ?=是初值问题

?????==0

0)()

,(d d y x y y x f x

y

(2.1) 在区间R I ?1上的一个解,如果(2.1)还有一个在区间R I ?2上的解)(2x y ?=,且满足

(1)21I I ?;

(2)当)()(,211x x I x ??≡∈时;

则称解11),(I x x y ∈=?是可延展的,并称)(2x ? 是)(1x ?在I 2上的一个延展解.否则,如果不存在满足上述条件的解)(2x ?,则称11),(I x x ∈?是初值问题(2.1)的一个不可延展解, (亦称饱和解). 这

里区间I 1和I2可以是开的也可以是闭的.

奇解: 如果方程存在某一解,在它所对应的积分曲线上每点处,解的唯一性都被破坏,则称此解为微分方程的奇解. 奇解对应的积分曲线称为奇积分曲线.

包络线: 设给定单参数曲线族

0),,(:)(=C y x C φ

其中C 为参数,Φ 对所有变量连续可微.如果存在连续可微曲线L ,其上任一点均有(C )中某一曲线与L 相切,且在L 上不同点,L 与(C )中不同曲线相切,那么称此曲线L 为曲线族(C )的包络线或简称包络.

二、主要定理

定理2.2 (存在与唯一性定理) 如果方程

),(d d y x f x

y

=的右端函数),(y x f 在闭矩形域 b y y b y a x x a x R +≤≤-+≤≤-0000,:

上满足如下条件:

(1) 在R 上连续;

(2) 在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于R 上任何一对点),(y x 和),(y x 有不等式:

y y N y x f y x f -≤-),(),(

则初值问题(2.1)在区间0000h x x h x +≤≤-上存在唯一解:

00)(),(y x x y ==??

其中),(max ),,

min(),(0y x f M M

b

a h R y x ∈==.

定理2.3 如果方程),(d d y x f x

y

=的右端函数),(y x f 在区域2R D ?上连续,且对y 满足局部

李普希兹条件,则对任何D y x ∈),(00,初值问题(2.1)存在唯一的不可延展解.

定理2.4 如果方程

),(d d y x f x

y

=的右端函数),(y x f 在(有界或无界)区域D 上连续,且关于y 满足局部李普希兹条件,那么对于D 上任意一点),(00y x ,方程),(d d y x f x

y

=的以),(00y x 为初值

的不可延展解),(),(βα?∈=x x y ,当00-→+→βαx x 和时,相应积分曲线上的点

))(,(x x ?都趋于D 的边界.

定理2.6 若L 是曲线族0),,(:)(=ΦC y x C 的包络线,则它满足如下的C -判别式

??

?=Φ'=Φ0),,(0

),,(C y x C y x C

(2.2) 反之,若从(2.2)解得连续可微曲线

)(),(:C y C x ψ?==Γ

且满足:0)()(22≠'+'C C ψ?和0)),(),(()),(),((22

≠Φ'+Φ'C C C C C C y x ψ?ψ?,(称为非退化条

件),则Γ是曲线族的包络线.

三、基本解法

1.不存在奇解的判别方法:

(1)若方程在全平面上解唯一,则方程不存在奇解;

(2)若不满足解唯一的区域上没有方程的解,则方程无奇解. 2.求奇解的包络线求法.

若L 是曲线族0),,(:)(=ΦC y x C 的包络线,则其满足C —判别式(2.2).

在非蜕化条件下,从C —判别式解出的曲线)(),(:C y C x ψ?==Γ是曲线族的包络线.

四、复习要求

1.知道线素与线素场的概念,理解解的存在与唯一性定理的条件、结论,理解其证明方法. 2.了解解的延展、延展解、不可延展解的概念,了解局部李普希兹条件,理解解的延展定理,了解其证明方法.

3.了解奇解定义、包络线概念,掌握不存在奇解的判别法、包络线的C -判别式,掌握奇解的包络线求法.

4.掌握利用解的存在与唯一性定理、解的延展定理证明有关方程解的某些性质的基本方法.

本章重点:解的存在与唯一性定理,解的延展定理。

五、例题分析 例1 填空题

(1)方程

x x y x

y

e sin d d =+的任一解的最大存在区间必定是 . 解:将方程整理为:),(sin e d d y x

f x y x

y

x =-=

因为在矩形区域R :+∞<<∞-+∞<<∞-y x ,内,方程右端的),(y x f 满足解的存在、惟一性定理的条件,所以应该填写:),(∞+-∞

(2)方程y x x

y

cos sin d d ?=满足解的存在唯一性定理条件的区域是 .

解:因为在矩形区域R :+∞<<∞-+∞<<∞-y x ,内,方程右端的),(y x f 满足解的存在、

惟一性定理的条件,所以应该填写:xoy 平面

(3)李普希兹条件是保证一阶微分方程初值问题解惟一的 条件.

解:由教材第105页可以知道,应该填写:充分

(4)方程21d d y x

y

-=的奇解是 . 解:由教材第123页的例2.4.4可以知道,应该填写:1±=y

例2 单项选择题

(1)),(y x f y '

连续是保证),(y x f 对y 满足李普希兹条件的( )条件. (A )充分 (B )充分必要 (C )必要 (D )必要非充分 解:由教材第页的说明1可以知道,正确答案:A

(2)方程21y y -='过点)0,0(的解x y sin =,这个解的存在区间是( ). (A )),0(∞+ (B ))0,(-∞ (C )]2,

2[π

π- (D )),(∞+-∞

解:正确答案:C (3)方程

y x

y =d d 满足解存在惟一性定理条件的区域是( ).

(A )xoy 平面 (B )左半平面 (C )右半平面 (D )除x 轴外的全平面 解:因为y y x f =

),(在x 轴处的偏导数),('y x f y 不存在,正确答案:D

(4)常微分方程的一个不可延展解的存在区间一定是( ).

(A )),(∞+-∞ (B )闭区间 (C )开区间 (D )),0(∞+ 解:不可延展解的存在区间一定是开区间,所以正确答案:C

例3 设)(x ?在区间),(∞+-∞上连续.试证明方程

y x x

y

sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

证明 由已知条件可知,该方程在整个xoy 平面上满足解的存在惟一及延展定理条件,又存在常数解 Λ,2,1,0,

±±==k k y π.

对平面内任一点),(00y x ,若πk y =0,则过该点的解是πk y =,显然是在),(∞+-∞上有定

义.

若πk y ≠0,则))1(,(0ππ+∈k k y ,记过该点的解为)(x y y =,那么一方面解)(x y y =可以向

平面的无穷远无限延展;另一方面在条形区域k y k x y x (,),({<<π+∞<<∞- })1π+内)(x y 不能上、下穿过解π)1(+=k y 和πk y =,否则与解的惟一性矛盾.因此解的存在区间必为

),(∞+-∞.

例4 在方程

)()(d d y x f x

y

?=中,已知)(y f ,)(x ?'在),(∞+-∞上连续,且0)1(=±?.求证:对任意0x 和10

证明 由已知条件,该方程在整个xoy 平面上满足解的存在唯一及解的延展定理条件. 显然1±=y 是方程的两个常数解.

任取初值),(00y x ,其中),(0∞+-∞∈x ,10

例5 假设方程

),(d d y x f x

y

=在全平面上满足解的存在惟一性定理条件,且)(1x y ,)(2x y 是定义在区间I 上的两个解.求证:若)(01x y <)(02x y ,I x ∈0,则在区间I 上必有)(1x y <)(2x y 成

立.

证明 仅证0x x ≥方向,(反之亦然).

假设存在0x x ≥,使得)(1x y >)(2x y ()(1x y =)(2x y 不可能出现,否则与解惟一矛盾). 令)(x y =)(1x y -)(2x y ,那么

)(0x y =)(01x y -)(02x y < 0, )(x y =)(1x y -)(2x y > 0

由连续函数介值定理,存在),(0*

x x x ∈,使得

)(*x y =)(*

1x y -)(*

2x y = 0 即 )(*

1x y =)(*

2x y

这与解惟一矛盾. 例6 设)(x y 是方程

0)(d d )(d d 2

2=++y x q x y

x P x y 的非零解,其中)(),(x q x p 在),(∞+-∞上连续.求证:当0)(0=x y 时,必有0d d 0

≠=x x x

y

证明 由已知条件知方程存在零解.

该方程满足解的存在惟一性定理条件. 设)(x y 是方程的一个非零解,假如它满足 0)(0=x y ,

0d d 0

==x x x

y ,

由于零解也满足上述条件,以及方程有零解存在,那么由解的惟一性有0)(≡x y ,这与)(x y 是非零解矛盾.

例7 在方程0)()(=+'+''y x q y x p y 中,已知)(x p ,)(x q 在),(∞+-∞上连续.求证:该方程的任一非零解在xoy 平面上不能与x 轴相切.

证明 由已知条件可知,该方程满足解的存在惟一及解的延展定理条件,且任一解的存在区间都是),(∞+-∞.

显然,该方程有零解0)(≡x y .

假设该方程的任一非零解)(1x y 在x 轴上某点0x 处与x 轴相切,即有)()(01

01x y x y '== 0,那么由解的惟一性及该方程有零解0)(≡x y 可知),(,0)(1∞+-∞∈≡x x y ,这是因为零解也满足初值

条件)()(0101x y x y '== 0,于是由解的惟一性,有∈≡≡x x y x y ,0)()(1,(-∞ )∞+.这与)(1x y 是

非零解矛盾.

常微分方程期中测试试卷(1) 一、填空 1 微分方程 ) (2 2= + - +x y dx dy dx dy n 的阶数是____________ 2 若 ) , (y x M和) , (y x N在矩形区域R内是) , (y x的连续函数,且有连续的一阶偏导数,则 方程 ) , ( ) , (= +dy y x N dx y x M有只与y有关的积分因子的充要条件是 _________________________ 3 _________________________________________ 称为齐次方程. 4 如果 ) , (y x f___________________________________________ ,则 ) , (y x f dx dy = 存在唯 一的解 ) (x y? =,定义于区间h x x≤ - 0上,连续且满足初始条件 ) ( x y? = ,其中 = h_______________________ . 5 对于任意的 ) , ( 1 y x,) , ( 2 y x R ∈ (R为某一矩形区域),若存在常数)0 (> N N使 ______________________ ,则称 ) , (y x f在R上关于y满足利普希兹条件. 6 方程 2 2y x dx dy + = 定义在矩形区域R:2 2 ,2 2≤ ≤ - ≤ ≤ -y x上 ,则经过点)0,0(的解 的存在区间是 ___________________ 7 若 ) ,..... 2,1 )( (n i t x i = 是齐次线性方程的n个解,)(t w为其伏朗斯基行列式,则)(t w满足 一阶线性方程 ___________________________________ 8若 ) ,..... 2,1 )( (n i t x i = 为齐次线性方程的一个基本解组, )(t x为非齐次线性方程的 一个特解,则非齐次线性方程的所有解可表为 _________________________ 9若 ) (x ?为毕卡逼近序列{})(x n?的极限,则有≤ -) ( ) (x x n ? ? __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解 ) (x y,则经过变换___________________ ,可化为伯努利方程. 二求下列方程的解 1 3 y x y dx dy + = 2求方程 2 y x dx dy + = 经过 )0,0(的第三次近似解 3讨论方程 2 y dx dy = , 1 )1(= y的解的存在区间 4 求方程 1 ) (2 2= - +y dx dy 的奇解

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

《常微分方程》期末试卷(16) 班级 学号 姓名 得分 评卷人 一、填空题(每小题5分,本题共30分) 1.方程x x y x y e sin d d =+的任一解的最大存在区间必定是 . 2.方程04=+''y y 的基本解组是 . 3.向量函数组)(,),(),(21x x x n Y Y Y 在区间I 上线性相关的________________条件是在区间I 上它们的朗斯基行列式0)(=x W . 4.李普希兹条件是保证一阶微分方程初值问题解惟一的 条件. 5.n 阶线性齐次微分方程的所有解构成一个 维线性空间. 6.向量函数组)(,),(),(21x x x n Y Y Y 在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈. 得分 评卷人 二、计算题(每小题8分,本题共40分) 求下列方程的通解 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x 9.0e =-'+'x y y 10.求方程x y y 5sin 5='-''的通解. 11.求下列方程组的通解. ???????+=+=y x t y y x t x 4d d d d 得分 评卷人 三、证明题(每小题15分,本题共30分)

12.设)(1x y ?=和)(2x y ?=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数. 13.设)(x ?在区间),(∞+-∞上连续.试证明方程 y x x y sin )(d d ?= 的所有解的存在区间必为),(∞+-∞.

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

南京农业大学试题纸 2011-2012学年第2 学期课程类型:必修试卷类型:B Array 装 订 线 装 订 线

常微分方程模拟试题(B)参考答案 2012.7 一、填空题(每小题3分,本题共30分) 1.二 2. )()]()([1211x y x y x y C +- 3. ()0W t ≡或00()=0,W t t I ∈ 4. )(x N x N y M ?=??-?? 5.1y =± 6. n 7. 充分 8. 0 0(,)x x y y f x y dx =+ ? 9. 1 ,Re s a s a >- 10. ()+∞∞-, 二、计算题(每小题5分,本题共20分) 11. 解: 齐次方程的通解为 x C y 3e -= (3分) 令非齐次方程的特解为 x x C y 3e )(-= 代入原方程,确定出 C x C x +=5e 5 1)( 原方程的通解为 x C y 3e -=+ x 2e 5 1 (5分) 12. 解: 对应的特征方程为:012 =++λλ, 解得i i 2 3,2321221 1--=+ -=λλ (3分) 所以方程的通解为:)2 3sin 23cos (212 1 t c t c e x t +=- (5分) 13. 1=??y M ,x N ??=1 , x N y M ??=?? 所以此方程是恰当方程. (3分) 凑微分,0)(22 =++-xdy ydx ydy dx x 得 C y xy x =-+23 3 1 (5分) 14. 5,1,dy dt x y t dx dx -===-令则 1,(7)77dt t t dt dx dx t -=---原方程化为:变量分离 (3分) 2 1772 t x c t -=-+两边积分 21 7(5)7.(5)x y x c x y --+=-+-+代回变量 (5分)

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

常微分方程期末考试试卷 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (30分) 1.)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ? -dx x P e )( ,其通解为 _________ 。 2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果 _______ 。 3. 若)(x ?为毕卡逼近序列{})(x n ?的极限,则有)()(x x n ??-≤ ______ 。 4.方程22y x dx dy +=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。 5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。 6.若),,2,1)((n i t x i K =为齐线性方程的一个基本解组,)(t x - 为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。 7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ?= _______是 )()('t f x t A x +=的满足初始条件0)(0=t ?的解;向量函数)(t ?= _____ 是)()('t f x t A x +=的满足初始条件η?=)(0t 的解。 8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21Λ,它们对应的特征值分别为n λλλΛ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组 Ax x ='的一个基解矩阵。 9.满足 _______ 的点),(**y x ,称为驻定方程组。 二. 计算题 (60分) 10.求方程0)1(24322=-+dy y x dx y x 的通解。

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

常微分方程练习题及答案(复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

13级常微分方程期中考试试卷 班级__________姓名__________学号________得分__________ 一、填空题(102?') 1、微分方程0)( 22=+-+x y dx dy dx dy n 的阶数是________________________。 2、微分方程x dx dy 2=与直线32+=x y 相切的解是_____________________。 3、x e y dx dy +=的通解为___________________________________________。 4、若),(y x M 和),(y x N 在矩形区域R 内是),(y x 的连续函数,且有连续的一阶偏导数,则方程0),(),(=+dy y x N dx y x M 有只与y 有关的积分因子的充要条件是__________________________________________。 5、对于任意的),(1y x ,R y x ∈),(2(R 为某一矩形区域),若存在常数 )0(>N N 使_________________, 则称),(y x f 在R 上关于y 满足利普希兹条件。 6、如果),(y x f 在有界区域G 中连续,在G 内满足利普希兹条件,则方程),(y x f dx dy =的通过G 内任一点),(00y x 的解)(x y ?=可以向左右延拓,直到__________________________________________。 7、方程3 1-++-=y x y x dx dy 经过代换__________________后,可化为齐次方程。 8、若),(y x f 在矩形区域R 上___________________且________________则方程),(y x f dx dy =存在唯一解。 9、微分方程dy dx dx dy x y +=的奇解为_______________________________。 10、若函数组),,2,1)((n i t x i =在],[b a 上线性相关,则=)(t w ___________。

2010-2011 学年第 二 学期常微分方程考试 AB 卷答案 理学 院 年级 信息与计算科学 专业 填空题(每题4分,共20分) 1. 形如)()('x Q y x P y += ()(),(x Q x P 连续)的方程是 一阶线性微分 方程,它的通解为?? ? ???+?-? =c dx dx x P e x Q dx x P e y )()()( . 2. 形如0y y '''-=的方程是 3 阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=. 3. 形如1 111110n n n n n n n n d y d y dy x a x a x a y dx dx dx ----++++=L L 的方程为 欧拉 方程, 可通过变换t x e =把它转化成常系数方程. 4. 2 (1)0,y dx x dy ++= 满足初始条件:x =0, y =1的特解1 1ln 1y x = ++ 5.5.微分方程0000(,),(),:,dy f x y y x y R x x a y y b dx ==-≤-≤满足的解存在且唯一的条件是: (,)f x y 在R 上连续且满足利普希茨条件 一、下列微分方程的解(每题5分,共30分) 1. dx dy =2) (1y x + 解:令x+y=u ,则 dx dy =dx du -1 (3) dx du -1=21 u u-arctgu=x+c y-arctg(x+y)=c. (5) 2.()()053243 =+++xdy ydx y xdy ydx x

解:两边同乘以y x 2得: ()() 0532******* =+++ydy x dx y x ydy x dx y x (3) ()() 05324=+y x d y x d 故方程的通解为:c y x y x =+5324 (5) 3.2 ? ? ? ??-=dx dy y x 解:令 p dx dy =,则2p x y +=, 两边对x 求导,得 dx dp p p 21+= p p dx dp 21-=, (3) 解之得 ()c p p x +-+=2 1ln 2, 所以()c p p p y +-++=2 21ln 2, (4) 且y=x+1也是方程的解,但不是奇解. (5) 4. 04)5(='''-x x 解:特征方程0435=-λλ 有三重根0=λ,42λ=,52λ=- ............................3 故通解为54232221c t c t c e c e c x t t ++++=- . (5) 5. 4523x x x t ''''''--=+ 解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3) 又因为=λ0是特征根,故可以取特解行如2x At Bt =+%代入原方程解得A=14 25 ,

相关文档
最新文档