折弯计算

折弯计算
折弯计算

折弯刀决定折弯半径

折弯件的最小弯曲半径材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

●弯曲半径是指弯曲件的内侧半径,t是材料的壁厚。

●t为材料壁厚,M为退火状态,Y为硬状态,Y2为1/2硬状态。

表1公司常用金属材料最小折弯半径列表

折弯补偿

K-因子的来源如钣金材料供应商,试验数据,经验和手册等。如果我们要用K-因子的方法建立我们的钣金模型,我们就必须找到满足工程需求的K-因子值的正确来源,从而得到完全满足所期望精度的物理零件结果。

D1 = L1 – (R +T)TAN(A/2)

D2 = L2 – (R+ T)TAN(A/2)

当弯曲角度为90度时,由于TAN(90/2)=1,此方程可以得到进一步简化:BA = 2(R+ T)-BD

BA = Pi(R +K*T)A/180

了获得更为准确的结果,应该对整个零件的单个折弯直接使用BA值,或者使用折弯表描述整个范围内不同的A、R、T的所对应的不同BA、BD或K-因子值等

、折弯扣除法

折弯扣除,通常是指回退量,也是一种不同的简单算法来描述钣金折弯的过程。还是参照图1和图2,折弯扣除法是指零件的展平长度LT等于理论上的两段平坦部分延伸至“尖点”(两平坦部分的虚拟交点)的长度之和减去折弯扣除(BD)。因此,零件的总长度可以表示为方程(2):

LT = L1 L2 - BD (2)

折弯扣除同样也是通过以下各种途径确定或提供的:钣金材料供应商、试验数据、经验、带方程或表格的针对不同材料的手册等。

四、折弯补偿与折弯扣除之间的关系

由于SolidWorks通常采用折弯补偿法,对熟悉折弯扣除法的用户来说了解两种算法的关系就很重要了。实际上利用零件的折弯和展开的两种几何形状是很容易推导出两个值之间的关系方程的。回顾一下,我们已有两个方程式:

LT = D1 D2 BA (1)

LT = L1 L2 - BD (2)

以上两个方程右边相等可以变化成方程(3):

D1 D2 BA = L1 L2 – BD (3)

在图1的几何形状部分做几条辅助线,形成两个直角三角形,变为如图3所示。

角度A代表弯曲角,或者说是零件在折弯过程中扫过的角度。此角也描述了表示折弯区域形成的圆弧的角度,在图3中显示为两半组成。如果内侧弯曲半径用R表示,用T表示钣金零件的厚度。用一个直角三角形来帮助清楚表达各种几何关系,如图3中的绿色直角三角形。根据图示的直角三角形各尺寸及三角函数原理,我们很容易得到以下方程:

TAN(A/2) = (L1-D1)/(R T)……………………………………………………….................... ...........................*

经过变换,可得D1的表达式为:

D1 = L1 – (R T)TAN(A/2) (4)

利用同样的方法,利用另一半直角三角形的关系,可以得到D2的表达式为:D2 = L2 – (R T)TAN(A/2) (5)

将方程(4)、(5)代入方程(3)可以得到以下方程:

L1 L2-2(R T)TAN(A/2) BA = L1 L2-BD

化简后可以得到BA与BD之间关系式:

BA = 2(R T)TAN(A/2)-BD (6)

当弯曲角度为90度时,由于TAN(90/2)=1,此方程可以得到进一步简化:BA = 2(R T)-BD (7)

方程(6)和方程(7)为那些只熟悉一种算法的用户提供了非常方便的从一种算法转换到另一种算法的计算公式,而需要的参数只是材料的厚度、折弯角度/折弯半径等。特别是对SolidWorks的用户来说,方程(6)和(7)同时提供了将折弯扣除转换到折弯补偿的直接计算方法。折弯补偿的值既可以用于整个零件/独立折弯,也可以形成一张折弯数据表。

一. 目的:

统一展开计算方法, 做到展开的快速准确.

二. 适用范围:

晟铭钣金部

三. 展开计算原理:

1. 板料在弯曲过程中外层受到拉应力, 内层受到压应力, 从拉到压之间有一既不受拉力又不受压力的过渡层称为中性层; 中性层在弯曲过程中的长度和弯曲前一样, 保持不变, 所以中性层是计算弯曲件展开长度的基准.

2. 中性层位置与变形程度有关, 当弯曲半径较大, 折弯角度较小时, 变形程度较小, 中性层位置靠近板料厚度的中心处; 当弯曲半径变小, 折弯角度增大时, 变形程度随之增大, 中性层位置逐渐向弯曲中心的内侧移动. 中性层到板料内侧的距离用λ表示.

四. 展开计算方法:

展开计算的基本公式: 展开长度 = 料内 + 料内 + 补偿量

一般折弯1 (R=0, θ=90°):

L=A+B+K

1. 当

2.

(1) 当0.3

(2) 当1.5≦T<2.5时, K=0.35T

(3) 当 T≧2.5时, K=0.3T

3. 对于其它有色金属材料 (如Al﹑Cu等): 当 T>0.3时, K=0.5T

4. 对于SUS材料,当 T>0.3时,K=0.25T

5. 当CRS料T≧2.5时,K=0.5T

一般折弯2 (R≠0, θ=90°):

L=A+B+K (K值取中性层弧长)

1. 当T<1.5时, λ=0.5T

2. 当T≧1.5时, λ=0.4T

注: 当用折刀加工时:

1. 当R≦

2.0时, 按R=0处理.

2. 当2.0

3.0时, 按R=3.0处理.

3. 当R≧3.0时, 按原值处理.

一般折弯 3 (R=0, θ≠90°):

L=A+B+K’

1. 当T0.3 时, K’=0

2. 当T0.3时, K’= ( / 90) * K

注: K为90°时的补偿量.

一般折弯4 (R≠0 , θ≠90°):

L=A+B+K (K值取中性层弧长)

1. 当T 1..5 时, λ=0.5T

2. 当T 1..5时, λ=0.4T

注: 当用折刀加工时:

1. 当R

2.0时, 按R=0处理.

2. 当2.0

3.0时, 按R=3.0处理.

3. 当R≧3.0时, 按原值处理.

Z折1 (直边段差):

1. 当H5T时, 分两次成型时, 按两个90°折弯计算.

2. 当H5T时, 一次成型, L=A+B+K

注: K值依附件一中参数取值.

Z折2 (非平行直边段差):

展开方法与平行直边Z折方法相同 (如上栏), 高度H取值见图示.

Z折3 (斜边段差样品方桉):

1. 当H2T时:

(1) 当θ≦70°时, L = A + B + C + K (此时K=0.2).

(2) 当θ>70°时, 按Z折1 (直边段差) 的方式展开.

2. 当H2T时, 按两段折弯展开 (R=0, θ≠90°).

Z折3 (斜边段差量产方桉):

1. 当H2T时:

(2) 当θ≦70°时,

T≦1.5时, 将两侧倒R=T圆弧偏移0.5 T,得到中性层,按中性层展开

T>1.5时,连接两清角处,加上两θ角处的K值得到变形区

(2) 当θ>70°时, 按Z折1 (直边段差) 的方式展开.

2. 当H2T时, 按两段折弯展开 (R=0, θ≠90°).

Z折4 (过渡段为两圆弧相切):

1. H≦2T段差过渡处为非直线段两圆弧相切展开时, 取基体外侧两圆弧相切点处作垂线, 向内侧偏移一个料厚按图示处理, 然后按Z折1 (直边段差) 方式展开.

2. H>2T, 请示后再按指示处理.

抽孔与抽牙孔:

抽孔尺寸计算原理为体积不变原理, 即抽孔前后材料体积不变; 一般抽孔 , 按下列公式计算, 式中参数见右图 (设预冲孔径为X, 并加上修正系数–0.1):

1. 若抽孔为抽牙孔 (抽孔后攻牙), 则S取值原则如下:

(1) T≦0.5时, 取S=100%T

(2) 0.5

(3) T≧0.8时取S=65%T

注: 一般常见抽牙预冲孔按附件一取值.

2. 抽孔展开处理:

2.1抽孔与沙拉孔铆合时, 抽孔外径=沙拉孔底孔孔径-0.3, 壁厚

=0.5T (通常情况下)

2.2若客户图纸上抽孔没标抽孔孔径尺寸, 展开时以下列情形处理:

(1) 当T'≧0.7T时, 取T'=0.7T, 并保証抽孔内径.

(2) 当0.5T

(3) 当T'≦0.5T时, 取T'=0.5T, 并保証抽孔外径.

注: 若计算出的预冲孔孔径<1.0, 则取预冲孔径为1.0.

反折压平:

L= A+B-0.4T

1. 压平的时候, 可视实际的情况考虑是否在折弯前压线, 压线位置

为折弯变形区中部.

2. 反折压平一般分两步进行:

(1) V折30°

(2) 反折压平

故在作展开图折弯线时, 须按30°折弯线画, 如图所示:

N折:

1. 1. 当N折加工方式为垫片反折压平, 则按L=A+B+K 计算, K值依附件一中参数取值.

当 2. N折以其它方式加工时, 展开算法参见“一般折弯(R 4 (R

≠0 , θ≠90°)”.

3. 3. 如果折弯处为直边 (H段), 则按两次折弯成形计算: L= L=A+B+H+2K (K=90°展开系数)

备注:

1. 标注公差的尺寸设计值: 取上下极限尺寸的中间值作设计标准值.

2. 对于方形抽孔和外部包角的展开, 其角部的处理方法参照《产品展开工艺处理标准》, 其直壁部分按90°折弯展开.

附件一: 常见展开标准数据

1. 直边段差展开系数一览表

2. N折展开系数一览表

3. 攻牙时不同材料厚度的预冲孔径和前加工上、下模尺寸关系:

攻牙规格料厚抽牙高度上冲头下模预冲孔

M3 T=0.6 1.5 2.6 3.6 1.4

T=0.8 3.8 1.5

T=1.0 4.0 1.6

T=1.2 4.2 1.6

T=1.5

攻牙规格料厚抽牙高度上冲头下模预冲孔

M3.5 T=0.6 1.8 3.2 4.0 1.6

T=0.8 4.2 1.8

T=1.0 4.4 2.0

T=1.2 4.6 2.0

T=1.5 5.0 2.4

M4 T=0.6 2.1 3.6 4.4 1.8 T=0.8 4.6 2.0

T=1.0 4.6 2.0

T=1.2 4.8 2.2

T=1.5 5.2 2.4

M5 T=0.6 2.5 4.6 5.6 2.0 T=0.8 5.8 2.2

T=1.0 6.0 2.4

T=1.2 6.2 2.6

T=1.5 6.5 3.0

4#40 T=0.6 1.9 2.4 3.4 1.2 T=0.8 3.4 1.4

T=1.0 3.6 1.5

T=1.2 3.8 1.6

T=1.5 4.2 1.8

6#32 T=0.6

T=0.8

T=1.0

T=1.2

T=1.5 2.4 3.2 4.0 1.6

4.2 1.8

4.4 1.8

4.6 2.0

4.8 2.4

8#32 T=0.6 2.4 3.6 4.6 1.8

T=0.8 4.8 2.0

T=1.0 5.0 2.2

T=1.2 5.2 2.4

T=1.5 5.5 2.8

晟铭钣金部铆合标准参数表

料厚项目沙拉孔大径沙拉孔小径沙拉孔倒角度抽孔外径抽孔高度预冲孔直径

0.1 5.4 5.1 120° 4.8 0.6 4.3

0.2 5.7 5.1 120° 4.8 0.8 4.1

0.3 5.9 5.1 120° 4.8 1.0 3.9

0.4 6.2 5.1 120° 4.8 1.2 3.6

0.5 6.5 5.1 120° 4.8 1.4 3.4

0.6 6.8 5.1 120° 4.8 1.6 3.2

0.7 7.0 5.1 120° 4.8 1.8 2.9

0.8 7.3 5.1 120° 4.8 2.0 2.6

0.9 7.6 5.1 120° 4.8 2.2 2.4

1.0 7.9 5.1 120° 4.8

2.4 2.0

1.2 8.4 5.1 120° 4.8

2.8 1.2

备注: 当T>1.2时,不能导用标准铆合参数,可根据抽孔展开公式计算预冲孔

1折弯

1.1折弯件的最小弯曲半径

材料弯曲时,其圆角区上,外层收到拉伸,内层则受到压缩。当材料厚度一定时,内r 越小,材料的拉伸和压缩就越严重;当外层圆角的拉伸应力超过材料的极限强度时,就会产生裂缝和折断,因此,弯曲零件的结构设计,应避免过小的弯曲圆角半径。公司常用材料的最小弯曲半径见下表。

●弯曲半径是指弯曲件的内侧半径,t是材料的壁厚。

●t为材料壁厚,M为退火状态,Y为硬状态,Y2为1/2硬状态。

表2公司常用金属材料最小折弯半径列表

1.2弯曲件的直边高度

1.2.1一般情况下的最小直边高度要求

弯曲件的直边高度不宜太小,最小高度按(图4.2.1)要求:h>2t。

图4.2.3.1 弯边侧边带有斜角的直边高度

1.3折弯件上的孔边距

孔边距:先冲孔后折弯,孔的位置应处于弯曲变形区外,避免弯曲时孔会产生变形。孔壁至弯边的距离见表下表。

表3折弯件上的孔边距

1.4局部弯曲的工艺切口

1.4.1折弯件的弯曲线应避开尺寸突变的位置

局部弯曲某一段边缘时,为了防止尖角处应力集中产生弯裂,可将弯曲线移动一定距离,以离开尺寸突变处(图4.4.1.1 a),或开工艺槽(图4.4.1.1 b),或冲工艺孔(图4.4.1.1 c) 。注意图中的尺寸要求:S≥R ;槽宽k≥t;槽深L≥t+R+k/2。

图4.5.1 带斜边的折弯边应避开变形区

1.6打死边的设计要求

打死边的死边长度与材料的厚度有关。如下图所示,一般死边最小长度L≥3.5t+R。其中t为材料壁厚,R为打死边前道工序(如下图右所示)的最小内折弯半径。

弯曲件的回弹,目前主要是由生产厂家在模具设计时,采取一定的措施进行规避。同时,从设计上改进某些结构促使回弹角简少如下图所示:在弯曲区压制加强筋,不仅可以提高工件的刚度,也有利于抑制回弹。

折弯系数折弯扣除K因子值的计算方法折弯系数折弯扣除K因子值的计算方法

SolidWorks的钣金设计技术基础摘要:机械制造业信息化推进大会召

开各类磨床的发展历程我国轴承工业处于“上挤下压”的尴尬环境中差

动变速器式位移传感器的结构优化及其数字接口电路设采用刀具补偿G41

铣轮廓实例加工中心操作面板上各个按键的功用三菱FX2N系列PLC对T68镗

床的改造经典设计SE钻尖硬质合金钻头研制成功钎焊法制造金刚石单层

工具的研究新型水钻磨轮、磨盘在使用中的问题与对策巧妙运用AutoCAD

中的cal函数模块化的镗孔刀具刀柄系统五轴加工中心进行整体加工刀具

涂层的选用方法高压调节门裂纹修复工艺山特维克可乐满新刀片问世以

技术创新加强公司核心竞争力高性能新型金刚石绳锯在广西桂林研发成功

模具制造快速而准确丝锥热处理的工艺细节 [标签:tag] 一、钣金的计算

方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后

零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际

长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算

法。通常这些规则要考虑到材料的类型与厚度,折.

一、钣金的计算方法概论

钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。

另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,

每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。

总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。

为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍SolidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述:

1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系

2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法

3、 K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围

二、折弯补偿法

图1

为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。

折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1):

LT = D1 D2 BA (1)

折弯区域(图中表示为淡黄色的区域)就是理论上在折弯过程中发生变形的区域。简而言之,为确定展开零件的几何尺寸,让我们按以下步骤思考:

1、将折弯区域从折弯零件上切割出来

2、将剩余两段平坦部分平铺到一个桌子上

3、计算出折弯区域在其展平后的长度

4、将展平后的弯曲区域粘接到两段平坦部分之间,结果就是我们需要的展开后的零件

稍有难度的部分就是如何确定展平的弯曲区域的长度,即图中由BA表示的值。很显然,BA的值会随不同的情形如材料类型、材料厚度、折弯半径与角度等而不同。其它可能影响BA值的因素还有加工过程、机床类型、机床速度等等。

BA值到底从何而来?实际上通常有以下几种来源:钣金材料供应商,实验数据,经验

钣金件折弯展开计算方法

一、折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 二、展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算 方法 当内R 角为0.5 时折弯系数(K )=0.4*T , 前提是料厚小于5.0MM , 下模为5T L1+L2-2T+0.4*T =展开 <2>钝角展开的计算方法 如图,当R=0.5时的展 开计算 A+B+K=展开 K= ×0.4 a=所有折弯角度 1800-2 900

<3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系 数(K),如右图: 当内R角为0.5时折弯系数(K) =0.4*T,L1和L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小尖刀,下模根据SOP及材料厚度选择V槽角度为300的下模。 先用 4.4.1所选的模具将折弯角度折到约300-650. 展开=L1+L2-0.5T 死边

钢材折弯计算公式

1 目的 统一展开计算方法,做到展开的快速准确. 2 适用范围 五金模厂 3 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 ***************************************** 4.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T 上式中取:λ=T/4K=λ*π/2=T/4*π/2=0.4T

图一 ***************************************** 4.2 R=0, θ=90°(T≧1.2,含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3 K=λ*π/2 =T/3*π/2 =0.5T 图二 *****************************************

L=(A-T-R)+(B-T-R)+(R+λ)*π/2 (=A+B-2T-2R+(R+T/3)*π/2) 当R ≧5T时λ=T/2 1T≦ R <5Tλ=T/3 0 < R

钣金加工计算公式集合

钣金折弯计算公式 1.生产车间经验值 2.PROE计算公式 PROE钣金展开经验公式 经验公式(车间老师傅的算法,在实际中略有不同,需要调整) 前提条件:r<2 壁厚<2.5 折弯角度90°

展开长度L=L1+L2-2T+0.5T (1)L1 L2为外径T为板厚 也即L=L1'+L2'+0.5T (2) L1' L2'为径T为板厚 还即L=L1"+L2"+2r+0.5T (3) L1" L2"为直段长度r为折弯径 我这里是用的0.5T,大多数人有用0.3T的 如果r/T>2,就直接用中性层K=0.5计算好了再看PROE中的展开 PROE中的展开长度就是: L=L1"+L2"+DL L1" L2"为直段长DL为弧段展开长 请记住这个DL,这个DL就是我们要制作的折弯表的值! 再回过来看看上贴的第三个公式 L=L1"+L2"+2r+0.5T 很容易导出: DL=2r+0.5T DL为弧段展开长r为折弯径现在要制作折弯表了 折弯系数DL弧长=2(R+KT)*3.14*(折弯角/360) K为K因子 T为厚 R为侧半径 折弯系数DL弧长=2R+0.2T =K=0.41因子折弯扣除L=2R-0.2T 折弯系数DL弧长=2R+0.3T =K=0.46因子折弯扣除L=2R-0.3T 折弯系数DL弧长=2R+0.35T =K=0.5因子折弯扣除L=2R-0.35T 钣金展开经验计算方法

声明:本计算方法为本人经验算法,只在本人现工作之处适用,照搬可能会有偏差。先说一个名词:折弯余量 折弯余量这个名词我在论坛别的贴子已经说过,这里再重复一下: 一个已成形的钣金折弯,它有三个尺寸:两个轮廓尺寸和一个厚度尺寸,定义两个轮廓尺寸为L1、L2,厚度尺寸为T,我们都已知道,L1+L2是要大于展开长度L的,它们的差值就是折弯余量,我定义为K,那么一个弯的展开尺寸L=L1+L2-K。一般冷轧钢板的K值(条件:90度弯,标准折弯刀具) T=1.0 K=1.8 T=1.2 K=2.1 T=1.5 K=2.5 T=2.0 K=3.5 T=2.5 K=4.3 T=3.0 K=5.0 3. 3 展开计算原理 板料在弯曲过程中外层受到拉应力,层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准. 中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的侧移动.中性层到板料侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料+料+补偿量

板材折弯计算公式

一、展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受 压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形 程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 二、计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 1、 R=0,折弯角θ=90°(T<1.2,不含1.2mm);图一 L=A+B-2T+0.4T 2、R=0, θ=90° (T≧1.2,含1.2mm);图二 L=A+B-2T+0.5T 图一图二 3、R≠0 θ=90°;图三 L=(A-T-R)+(B-T-R)+(R+λ)*π/2 当R ≧5T时λ=T/2 1T≦ R <5T λ=T/3 0 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同) 4、R=0 θ≠90°;图四 λ=T/3 L=[A-T*tan(a/2)]+[B-T*tan(a/2)]+T/3*a (a单位为rad,以下相同) 图三图四

5、R≠0 θ≠90°;图五 L=[A-(T+R)* tan(a/2)]+[B-(T+R)*tan(a/2)]+(R+λ)*a 当R ≧5T时λ=T/2 1T≦ R <5T λ=T/3 0 < R 6、 Z折1;图六 计算方法请示上级,实际计算时可参考以下几点原则: (1)当C≧5时,一般分两次成型,按两个90°折弯计算.(要考虑到折弯冲子的强度) L=A-T+C+B+2K (2)当3T; L=A-T+C+B+K/2 图五图六 7、 Z折2;图七 C≦3T时<一次成型>: L=A-T+C+B+D+K 图七

折弯展开计算公式【超简单】

折弯展开计算公式【超简单】 内容来源网络,由深圳机械展收集整理! 更多折弯等钣金设备展示,就在深圳机械展! 在钣金展开中,影响展开长度计算精度的因素有: 折弯内弧半径r下模V型槽宽,板料实际厚度t',和弯曲曲角度α。自由折弯板料在展开长度计算时,没有明确的公式来计算折弯系数,只能查到不同折弯内弧半径的折弯系数。而内弧半径与加工工艺有关,使用不同的下模V型槽宽,内弧半径也不相同,导致无法获得折弯系数的准确性。一般是凭经验判断折弯系数,不同的人判断的折弯系数也不相同。 在钣金中折弯中,经常用到形式分为L折N折和Z折几种。下面我们对几种钣金的展开做个探讨。 1、L折,L折分90°折和非90°折。 在90°折方面,根据经验折弯系数总结如下表

在非90°方面,根据经验折弯系数总结如下。 L=A+B+补偿量*仅供参考 T=0.8 R=0.5 120°≤q≤160° 补偿量为0.1 160°<q≤180° 可忽略不计 T=1.0 R=0.5 120°≤q≤145° 补偿量为0.2 145°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计

T=1.2 R=0.5 补偿量与T=1.0相同 T=1.5 R=0.5 120°≤q≤130° 补偿量为0.3 130°<q≤150° 补偿量为0.2 150°<q≤170° 补偿量为0.1 170°<q≤180° 可忽略不计 180& deg;-q L=A+B+------ (2*∏*r) 360°

钢材折弯计算公式

1目的 统一展开计算方法,做到展开的快速准确. 2 适用范围 五金模厂 3 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 ***************************************** 4.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T

上式中取:λ=T/4K=λ*π/2=T/4*π/2=0.4T 图一 ***************************************** 4.2 R=0, θ=90° (T≧1.2,含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3 K=λ*π/2 =T/3*π/2 =0.5T

图二 ***************************************** 4.3 R≠0θ=90° L=(A-T-R)+(B-T-R)+(R+λ)*π/2 (=A+B-2T-2R+(R+T/3)*π/2)当R ≧5T时λ=T/2 1T≦ R <5Tλ=T/3 0 < R

钣金件折弯展开计算方法(改正版)

?折床工作原理 折弯就是将上、下模分别固定于折床的上、下工作台,利用液压伺服电机传输驱动工作台的相对运动,结合上、下模的形状,从而实现对板材的折弯成形。 ? ? ? ?展开的定义和折弯常识 ★折弯展开就是产品的下料尺寸,也就是钣金

在折弯过程中发现形变,中间位置不拉伸,也叫被压缩的位置长度,也叫剪口尺寸。 ★折弯V槽选择公式:当R=0.5时,V=5T;当R>0.5时V=5T+R 折弯展开会根据上模和下模的不同而发生相应的变化,在更换模具时必须考虑进去。 ★折床的运动方式有两种: 上动式:下工作台不动,由上面滑块下降实现施压; 下动式:上部机台固定不动,由下工作台上升实现施压。 ★工艺特性 1.折弯加工顺序的基本原则:l由内到外进行折弯;由小到大进行折弯;先折弯特殊形状,再折弯一般形状。 2.90°折弯及大于90°小于180°折弯选模:一般在SOP没有特殊要求或没有 特殊避位的最好选用刀口角度为88°或90的折弯上模,这样可以更好的保证折弯角度的稳定性。

三、折弯展开尺寸计算方法,如右图: <1>直角展开的计算方法 当内R角为0.5时折弯系数(K)=0.4*T,前提是料厚小于5.0MM,下模为5T L1+L2-2T+0.4*T=展开 <2>钝角展开的计算方法 如图,当 R=0.5时的展开计算 A+B+K=展开

K= 1800-2/900 ×0.4 a=所有折弯角度 <3>锐角展开的计算方法 900折弯展开尺寸=L1+L2-2T+折弯系数(K),如右图: 当内R角为0.5时折弯系数(K)=0.4*T,L1和

L2为内交点尺寸 展开=L1+L2+K K=( 180—@) /90 *0.4T <4>压死边的展开计算方法 选模:上模选用刀口角度为300小 尖刀,下模根据SOP及材料厚度选 择V槽角度为300的下模。先用 4.4.1所选的模具将折弯角度折到约 300-650.

折弯计算公式

买两本书,一本是钣金手册,桔黄色皮的,很厚,另外一本是冷加工手册,绿色封面的,薄一些。 如果是简单的直角折弯,一般来说,算料的时候,数一下有多少个弯就行了,每个弯减一个板厚。 L=外形长-2*R/tan(α/2)+α/180*3.1416*R 其中,α为30度可者90度,R为弯曲半径 展开尺寸是把每段相加,在减去你每道弯有1,8倍SECC,SPCC和如果折弯数连续有4折以上的建议你先试样。折弯件上面折边如果要开孔,一般将它们画出来,找到延长线(按照中线),按几何法计算: L=外形长-2*R/tan(α/2)+α/180*3.1416*R ;其中,α为30度或90度,R为弯曲半径;如你折的是1.0的板子,折弯件的宽度加高度再减1.0X折弯的刀数。 理论计算法:1,圆角很小(R<0.5δ)的弯曲件展开法。 L=L1+L2+Kδ ,式中K——介于0.48~0.5之间,软料取下限,硬料取上限。多角弯曲时:L=L1+L2+.......+Ln+K1δ(n-1), 式中 L1,L2.....Ln——各直边的内线长度(毫米),n——直边的数量。K1——在双角弯曲时,介于0.45~0.48之间;在多角弯曲时为0.25(对于塑 性更大的材料可减至0.125). 如何算折弯尺寸 现在经常要算一些板金及铁线的下料,但碰到折弯的地方,算出来总会差1—2mm(一般用1.6x厚度来减),如果碰上角度问题,那就差更远了。哪位师傅能帮忙讲解一下如何算?越详细越好! 我也有个折弯公式,但不会用。BA=P(R+KT)A/180 算你问对人了。我发明的一个最简单公式: L=k*(1.6r+0.5t) 其中:L----圆弧部分的展开长度;mm k----圆心角除以直角的值; r----工件园角的内半径;mm t----工件板厚;mm 计算板金下料时经常总是相差1-2mm,我想可能有两个原因: 1、可能你在计算长度时,不是用中性层来计算,因为板材在折弯时,里 层组织受压,外层组织受拉,一定要用中性层来计算。 2、你可能没有考虑折弯时的变薄系数,系数可以《板金下料手册》中 查到。 建议去买一本《板金下料手册》来看,里面有详细的介绍。 直角展开公司:0,28*1,57*t(料厚) 角度展开公司:0,28*1,57*t(料厚)*角度/90度 反折平:1,5t(料厚) 以上为五金模具设计经验值。希望能帮上你 Q235B材料的话一般是用材料厚度的1.75至2倍,要求不高的话就用2倍计算,要求高的话那就要看下模大小,还有材料的拉申度的,这个就要在实际工作中去试了,不同批次的材料都不一样的,有时就是同一张钢板上剪下来的也会不一样。比如我做过一批出口产品,414的材料4.75mm,在折四次的情况下公差要在50丝之内,我用的是1.85倍,下模36,供参考。 折弯一次的:外型尺寸相加减去两个材料厚度再加一个材料厚度X折弯系数。

折弯展开计算总结

一、钣金折弯基本理论: 钣金在折弯成型,平面直线部分长度不变,折弯部分靠内壁材料受压缩,靠外壁材料受拉伸,中间存在一理想过渡面既不受压也不受拉,称为中性层,这位置特点是折弯前跟折弯后零件长度不变。 中性层是折弯计算的理论依据跟基准。一般把中性层到折弯内壁的距离跟板厚的比值定义为K系数,方便各种板厚材料比较。 二、钣金折弯计算方法: 以下是折弯计算的两种方法,方法很简单,认真看过基本理论都会懂。 1、折弯补偿法

LT = D1 + D2 + BA ———方程(1) LT、D1、D2、BA 如图1、2表示,结合中性层理解。 2、折弯扣除法 LT = L1 + L2 – BD ———方程(2) LT、L1、L2如图1、2表示,BD指扣除值,也就是回退量。3、折弯补偿BA与折弯扣除BD的关系 TAN(A/2) = (L1-D1)/(R+T) ———方程(3) 同理TAN(A/2) = (L2-D2)/(R+T) ———方程(4) 由方程(1)到(4)得出补偿量BA与扣除量BD的关系为:BA = 2(R+T)TAN(A/2)-BD ———方程(5) 假设90度折弯,BA = 2(R+T)-BD 即BA + BD= 2(R+T) 三、K系数的引入: 一般把中性层到折弯内壁的距离t跟板厚T的比值定义为K系数

K= t / T 结合图1 得出BA = Pi(R+K*T)A/180 获取K系数的来源有如钣金材料供应商,试验数据,经验和手册等,而影响K主要是材料(种类,厚度等)跟加工(折弯半径,下模槽宽,机床步进速度等) Inventor软件钣金展开规则包含“线性”,“折弯表”,“自定义表达式”,样式中的K系数值就是本文所指K系数。 四、总结 折弯中性层理论和K系数的引入方便理解展开长度的计算,明白K 系数值的影响要素 两种方法计算折弯展开公式如下 折弯补偿法: LT = D1 + D2 + BA = D1 + D2 + Pi(R+K*T)A/180 折弯扣除法: LT = L1 + L2 – BD = L1 + L2 –(2(R+T) – Pi(R+K*T)A/180) 公司为方便快速计算转化,利用材料种类,板厚,折弯半径跟V型槽宽直接查询扣除值。一次折弯就要扣一次扣除值,折弯线位置是扣除值的一半,折弯线一般是用成型后最大的尺寸减去半个折弯扣除。就是基准边到折弯线的垂直尺寸。

钣金件折弯系数计算法

折弯系数折弯扣除K因子值的计算方法 一、钣金的计算方法概论 钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。 另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。 总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。 为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍S olidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述: 1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系 2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法 3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围 二、折弯补偿法 为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。图2是该零件的展开状态。 图1 折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区 域的长度。展平的折弯区域的长度则被表示为“折弯补偿”值(BA)。因此整个零件的长度就表示为方程(1): LT = D1 + D2 + BA(1)

折弯系数最简单的算法

折弯系数最简单的算法 钣金折弯时计算钣金展开料长度或做cad钣金展开时,总是希望提高效率,计算越简单越好。折弯系数计算公式用最简单最好。实际上,如果不要求精准的钣金误差,可以用简单的方法就可计算折弯系数了。 总结前面文章的内容发现,折弯系数最简单的计算方法就属90度折弯系数经验公式:1.7倍料厚计算方法了。这个公式是怎么使用的?用在90钣金折弯加工中,一个直角弯减去1.7倍的料厚。比如:材料是1mm铁板,折弯角度是90度,折弯尺寸分别是100和50,那么计算展开方法是:100+50-1.7=148.3mm。计算的就是展开长度了。这个1.7有人说是1.6或1.65倍,对的,是可以轻微调整的。因为每家钣金厂用的折弯模具都不完全相同,是有轻微误差的,不用调整也可以使用,要求高也可以稍微调整一下。 折弯系数最简单计算公式 钣金折弯不只是90度折弯,还有非90度的折弯呢,有最简单的计算方法吗? 这个还真没有,准确的计算非90度折弯系数有个计算公式,就是利用中性层的概念,计算折弯那段圆弧的弧长,而最终求出折弯系数。网络上有好多例子,前面文章也有计算方法。

这里说一个特殊的角度,可以用简单方法计算折弯系数。当钣金折弯角度为135度时,折弯系数可以减去0.5倍的材料厚度。比如:材料是1mm铁板,折弯角度是135度,折弯尺寸分别是100和50,那么计算展开方法是:100+50-0.5=149.5mm。其它钣金厚度也可以同样用这个方法计算。只适用于135度,其它角度不可用。 135度钣金折弯系数最简单算法 钣金折弯中还有个一个特殊角度折弯,就是钣金褶边,也叫压死边,可以用简单方法计算。折弯系数等于0.4倍钣金厚度。比如:材料是1mm铁板,折弯是压死边,折弯尺寸分别是100和10,那么计算展开方法是:100+10-0.4=109.6mm。这样计算是经验公式,都很准确,有些钣金厂因设备不同可能也有出入。

板材折弯计算公式

冲压展开原理 3 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 ***************************************** 4.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T 上式中取:λ=T/4 K=λ*π/2 =T/4*π/2 =0.4T 图一 ***************************************** 4.2 R=0, θ=90° (T≧1.2,含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3 K=λ*π/2 =T/3*π/2 =0.5T 图二 ***************************************** 4.3 R≠0 θ=90° L=(A-T-R)+(B-T-R)+(R+λ)*π/2 当R ≧5T 时 λ=T/2 1T ≦ R <5T λ=T/3 0 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)

钣金折弯计算公式

冲压展开原理 目的 统一展开计算方法,做到展开的快速准确. 2 适用范围 五金模厂 3 展开计算原理 板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关,当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小,折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 4 计算方法 展开的基本公式: 展开长度=料内+料内+补偿量 ***************************************** 4.1 R=0,折弯角θ=90°(T<1.2,不含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.4T 上式中取:λ=T/4 K=λ*π/2 =T/4*π/2 =0.4T 图一 ***************************************** 4.2 R=0, θ=90° (T≧1.2,含1.2mm) L=(A-T)+(B-T)+K =A+B-2T+0.5T 上式中取:λ=T/3

K=λ*π/2 =T/3*π/2 =0.5T 图二 ***************************************** 4.3 R≠0 θ=90° L=(A-T-R)+(B-T-R)+(R+λ)*π/2 当R ≧5T时λ=T/2 1T≦R <5T λ=T/3 0 < R (实际展开时除使用尺寸计算方法外,也可在确定中性层位置后,通过偏移再实际测量长度的方法.以下相同)

相关主题
相关文档
最新文档