AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理
AT自动变速箱的结构及工作原理

AT自动变速箱的结构及工作原理:

令狐采学

现在自动变速箱一般都是液力变矩器式自动变速箱,也就是俗称的“AT”自动变速箱。它主要由两大部分构成:1、和发动机飞轮连接的液力变矩器。2、紧跟在液力变矩器后方的变速机构。

液力变矩器一般是由泵轮、定叶轮、涡轮以及锁止离合器组成的。锁止离合器的作用是当车速超过一定速度时,采用锁止离合器将发动机与变速机构直接连接,这样可以减少燃油消耗。

液力变矩器的作用是将发动机的动力输出传递到变速机构。它里面充满了传动油,当与动力输入轴相连接的泵轮转动时,它会通过传动油带动与输出轴相连的涡轮一起转动,从而将发动机动力传递出去。其原理就像一把插电的风扇能够带动一把不插电的风扇的叶片转动一样。

AT自动变速箱每个档位都由一组离合片控制,从而实现变速功能。现在的AT自动变速箱采用电磁阀对离合片进行控制,使得系统更简单,可靠性更好。AT自动变速箱的传动齿轮和手动变速箱的传动齿轮并不相同。AT自动变速箱采用的是行星齿轮组实现扭矩的转换。

AT自动变速箱的换挡控制方式如上图所示。变速箱控制电脑通过电信号控制电磁阀的动作,从而改变变速箱油在阀体油道的走向。当作用在多片式离合片上的油压达到致动压力时,多片式离合片接合从而促使相应的行星齿轮组输出动力。

行星齿轮组包括行星架、齿圈以及太阳轮。当上面提到的三个部件中的一个被固定后,动力便会在其他两个部件之间传递。

汽车发动机构造课程标准

《汽车发动机构造》课程标准 课程类型理实一体课课程性质必修课程 修读学期第3学期课程学时64学时 1.课程定位与设计思路 1.1课程定位 本课程是汽车检测与维修专业的必修课程。该课程通过理实一体化的教学方式,采取案例分析、拆装练习、实操故障等教学方法使学生掌握汽车发动机构造和原理、汽车发动机新技术和简单故障的排除方法,同时,培养学生沟通、协调能力和团队合作精神。 汽车发动机构造课程开设在第三学期。通过教、学、做使学生掌握汽车发动机拆装与检测的具体操作步骤、注意事项、材料及工具的使用方法,建立汽车检修规范化、标准化、系统化的工作思维模式。 1.2设计思路 本课程的内容安排保证了汽车类专业所需的最基本、最主要的汽车结构基础知识,汽车拆装技能和简单的维修知识,同时体现了专业特点;培养学生分析问题和解决实际问题的能力。主要讲授汽车结构原理等知识,包括汽车发动机基本结构、发动机电控系统、发动机性能分析、前沿发动机技术等内容。使学生获得汽车结构的基础知识,掌握汽车拆装的一般方法,对汽车的简单故障具有初步的分析能力,为今后继续学习和应用汽车新技术打下一定的基础。同时作为本专业先开专业课程在对学生职业素养养成、职业操作规范意识的培养有着重要的作用。 2.课程目标 本课程主要讲授汽车发动机总成相关知识和维修技能,包括机械和电控两部分。通过教、学、做使学生掌握汽车发动机总成维修的具体操作步骤、注意事项、材料及工具的使用方法,建立汽车动机总成维修规范化、标准化、系统化的工作思维模式,具备按照规范的流程独立完成汽车发动机总成相关维修工作的能力。 2.1能力目标 (1) 要求学生能够对汽车的汽车发动机总成进行常规保养、初步诊断、简单维修。能够评估汽车现有的汽车发动机系统,根据客户的陈述和故障的症状,能够制定初步的

汽车自动变速器结构原理与故障分析

第一章汽车自动变速器技术发展 1.1汽车自动变速器的发展历程 1914年德国奔驰汽车公司推出第一台全自动齿轮变速器,第一次实践了汽车的自动变速。但是,由于当时技术复杂和价格昂贵,这种技术并未得到普遍认可。20世纪30年代为了解决城市公共汽车频繁起步带来的麻烦,提高乘坐舒适性,自动变速器技术开始与公共汽车。第二次世界大战期间,利用自动变速器的军用越野车大大提高了越野通用性,体现出自动变速器的另一个长处。1940年美国通用奥兹莫比尔汽车公司在其批量生产的轿车上装用了带有液力元件的自动变速器直到1948年Dynaflow全自动变速器的问世,现代汽车自动变速器的雏形基本形成随后的近半个世纪以来,自动变速器技术逐渐发展,自动换挡系统从全液压控制型电子液压控制执行型,特别是近二十年伴随计算机技术的飞速发展,自动变速控制技术日臻成熟,自动变速器在轿车和城市大型客车上的使用已开始普及。 经过几十年的发展,自动变速器已经出现了多种类型,其中包括液力机械式自动变速器(Automatic Transmission ,简称AT) 、机械式自动变速器(Automatic Mechanical Transmission ,简称AMT)和无级自动变速器(Continuously Variable Transmission ,简称CVT)等三种结构形式 1.2自动变速器的分类及功能 1.2.1液力自动变速器 液力自动变速器已走过了六十多年的历史,其技术成熟,性能可靠。对液力自动变速器的研究,主要围绕提高效率而展开。20 世纪60年代研究重点是采用多元件工作轮,)"70年代是使用闭锁离合器,80年代则采取增加行星齿轮变速器档位的方法及使用电子控制。最近几年,传统的液力自动变速器通过采用CAD/CAM 技术来提高液力变矩器效率,增加行星齿轮变速器的档位以及电子技术的应用,液力自动变速器的性能已相当完善。现在的液力自动变速器可通过微电脑对整个传动系统进行控制。 由各种电子传感器和微电脑组成的电控单元,根据各传感元件输入的信号确定换档和锁定时机,发出信号,控制执行元件,电磁阀动作,完成电控单元下达的换档、锁止等命令。2002年,通用汽车公司和福特汽车公司达成协议,共同开发用于前轮驱动汽车的6档自动变速器,预计其燃油经济性将比传统4档自动变速器提高4%——8%,此种变速器有望在2005年后投入使用。ZF分司也正在研究)档自动变速器——7P-transimssion,该变速器用由双片飞轮组成的湿式 离合器代替变换器,能提高加速性能和燃油经济性,减小排放,而且与5档自动变速器相比,体积更小,质量更轻。液力自动变速器的应用范围广,可装备轿车、客车、货车等各种车型,在汽车自动变速器行业中占有主导地位。 1.2.2电控机械式自动变速器 继1984年日本五十铃公司在世界上率先研制成功电子控制全机械式有级自动变速器“NAVI-5”并装于ASKA轿车上后,世界上许多汽车制造公司竞相进行了类似的开发研制工作。1996年宝马M3轿车所采用的“M序列式变速器”,以全新

手动变速箱的基本工作原理

手动变速箱的基本工作原理 作者:佚名点击数:叵1461更新时间:2007-9-25 11:45:08 ;' " LL:- 、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及 最大扭矩在一定的转速区岀现。比如,发动机最大功率岀现在5500转。变速箱可以在汽车行驶过程中在发动 机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速 箱应具有灵活的变速比。无级变速箱(CVT )就具有这种特性,可以较好的发挥发动机的动力性能。 、CVT 离含㈱幵向节菱速醫 轩逸新型CVT无极变速箱 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速

一个5档的变速箱提供5种不同的变速比,在输入轴和输岀轴间产生转速差。见下表: 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

换档义 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时, 中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。见下图:

变速箱的工作原理(简易)

变速箱的工作原理 变速箱的原理一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 国产AUDI 2.8 CVT 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。 级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的:

输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。 轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色)。 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图:

汽车发动机构造与维修课程标准汇总

《汽车发动机构造与维修》课程标准 一、课程定位 《汽车发动机构造与维修》是汽车检测与维修技术针对汽车修理工岗位能力进行的一门核心课程。本课程构建于《电工电子学》、《机械制造基础》、《机械设计基础》等课程的基础上,也是进一步学习《汽车发动机电控系统检修》、《汽车电气与电子系统检修》等专业核心技能课程的基础。主要培养学生会利用现代诊断和检测设备进行汽车发动机的故障诊断、故障分析、零部件检测及维修更换等专业能力,同时注重培养学生的社会能力和方法能力。 二、工作任务和课程目标 (一)工作任务及职业能力 通过本专业岗位需求分析,确定工作领域、工作任务和职业能力,详见表1。 表1工作任务与职业能力分析表 工作领域工作任 务 职业能力学习项目 汽车发动机构造与维修汽车发 动机总 论 能描述发动机总体结构及布置形式; 能描述汽油机工作原理; 能描述柴油机工作原理。 任务一:发动机总体构造与原理分析; 任务二:发动机总体认识; 曲柄连 杆机构 构造与 维修 能正确拆装曲柄连杆机构; 能对连杆、缸体等主要机件进行检验、 修理; 能正确选配活塞环; 能对曲柄连杆机构进行常见项目维护; 能对曲柄连杆机构常见故障进行诊断。 任务一:曲柄连杆机构构造与维修分析; 任务二:曲柄连杆机构的拆装; 任务三:曲轴飞轮组的检查和维修; 任务四:气缸体、气缸盖的检查与维修; 任务五:连杆的检验与校正; 任务六:活塞组的检查与维修; 任务七:气缸压力的测量; 配气机 构构造 与维修 能正确拆装配气机构; 能对气门及气门座进行检验、修理; 能按正确方法调整气门间隙; 能对配气机构进行维护; 能对配气机构常见故障进行诊断。 任务一:配气机构的结构与原理; 任务二:配气机构的拆装与检修; 任务三:气门与气门座的修理; 任务四:配气机构的故障诊断与排除;

GF6变速箱结构及原理

GF6自动变速器结构及原理 一.自动变速器简介 1904年,美国通用汽车公司的凯迪拉克采用了手动的三挡行星齿轮变速器。 1926年,别克小轿车开始使用液力机械传动的变速器。 1940年,美国通用正式装备OLDSMOBILE 顺风轿车Hydra-Matic 自动变速器。该变速器被认为是自动变速器的代表,是世界上第一个真正意义上的自动变速器。 1998年上海通用汽车率先在国产的别克新世纪轿车上推出4T65E 自动变速器。 随着新技术的发展应用,自动变速器结构也不断改进,逐步成熟。自动变速器与机械式变速器相比,它有以下主要优点: 1)提高发动机和传动系的使用寿命。自动变速器是液体工作介质“软”性连接。液力传动起一定的吸收、衰减和缓冲的作用,大大减少冲击和动载荷。例如,当负荷突然增大时,可防止发动机过载和突然熄火。汽车在起步、换挡或制动时,能减少发动机和传动系所承受的冲击及动载荷,因而提高了有关零部件的使用寿命。 2) 提高汽车通过性。采用自动变速器的汽车,在起步时,驱动轮上的驱动转矩是逐渐增加的,可防止很大的振动,减少车轮的打滑,使起步容易,且更换平稳。它的稳定车速可以降低。举例来说:当行驶阻力很大时(如爬陡坡),发动机也不至于熄火,使汽车仍能以极低速度行驶。在特别困难的路面行驶时,因换挡时没有功率间断,不会出现汽车停车的现象。 3) 具有良好的自适应性。自动变速器能自动适应汽车驱动轮负荷的变化。当行驶阻力增大时,汽车自动降低速度,使驱动轮力矩增加。当行驶阻力减小时,减小驱动力矩,增加车速。 4) 操纵轻便。不需要离合器和来回的换挡,大大减轻了驾驶员的劳动强度。 自动变速器主要缺点 1)结构较复杂。相应的维修技术也较复杂,要求有专门的维修人员,具有较高的修理水平和故障检查分析的能力。 2)效率不够高。传动效率比机械式变速器低,使汽车的燃油经济性有所降低。

变速箱工作原理

变速箱工作原理 2019.03 汽车变速器,由大小齿轮构成,按大小排列成塔状。 一般地,变速器有四根轴组成,第一根轴是动力进入轴,插在离合器内,只要离合器踏板抬起来,它就转,与发动机的转速同步。第二根轴在变速器的底部,其中一个齿与第一轴的一个齿永远啮合,跟着转,上面有大小不同的许多齿轮。第三根轴与第一根轴同心安置,上面大小不同的齿轮可以前后滑动,与第二轴的齿轮啮合,得到不同的转速和扭矩。第三轴是动力输出轴。 第四根轴是倒车轴,第二根轴要得到反向旋转,必须增加一个齿轮。这个齿轮专门安装在一根轴上。 变速器的齿轮,永远啮合的,用斜齿,为什么要用斜齿,说起来就费劲了。滑动的,起变速作用的,只能用直齿。 现在的汽车变速器,一般安装有同步器,作用是避免变档时齿轮发出响声,容易啮合成功。因为同步器结构复杂,增加成本,一般只安装在高速档上,高级轿车会全部安上同步器,当然由你买单啦。 这是拆开盖子的变速器,左边是离合器,第一个斜齿,是第一轴的。下面的第二轴看不见,除了第一轴上的那个齿轮,其余

齿轮全部是第三轴上的,由此也可以看出第三轴很长。第一轴是空心的,第三轴的一端要插入第一轴空心部分,以支承自身。 有小齿的,是同步器,密密的小齿是同步器的标志。 齿轮边上磨得发亮的凹槽,是变速叉叉的位置,变速杆带动变速叉前后移动,就使齿轮前后移动。 变速器在同一时间里,只能有一对齿轮啮合,否则就别死不可转动了。这个任务由变速器盖子实现。变速器盖结构简单,没有什么高科技,但却充满了智慧,非常巧妙,决定着变速叉的动作。机械就是这样,讲究一个巧劲。简单的东西能完成复杂的使命,另外的例子就是枪械,上面没有什么电路板,其动作却是智慧的结晶。 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。

汽车自动变速器工作原理的简要分析(论文)

技师专业论文 工种:汽车修理工 题目:汽车自动变速器工作原理的简要分析 姓名:刘金峰 身份证号:372501************ 等级:技师 准考证号:0811081500000002100 培训单位:山东省第二技术学院鉴定单位:山东省职业技能鉴定中心日期:2008 年11 月8 号

摘要 液力变矩器是一种能随汽车行驶阻力的不同而自动改变输出扭矩的无级变速器;行星齿轮辅助变速器由超速档行星齿轮机构和辛普森复合行星齿轮两部分组成;液压控制系统;电子控制系统;执行元件。 关键词:液力变矩器超速档行星齿轮机构辛普森复合行星齿轮执行元件

汽车自动变速器工作原理的简要分析 众所周知,由于车用发动机的扭矩和转速变化范围较小,而复杂的使用条件又要求汽车的车轮驱动力和车速能在相当大的范围内变化,所以,需在汽车的动力传动系统中设置变速器。 汽车变速器一般有两种形式,一种是普通的手动变速器,汽车驾驶员根据需要进行换挡操作,每次换挡操作都须操纵离合器。这对汽车驾驶员来说,无论在精神上,还是体力上,都是一个很大的负担;同时,对交通安全也是一个不利因素。另一种是自动变速器,它可根据车辆的行驶速度和驾驶员踩下加速踏板的程度,自动实现换挡而不需要离合器。 汽车自动变速器种类繁多,但是,其基本工作原理大致相同,基本结构差异也不大。现以我校汽车新技术车间的A340E型自动变速器为例来说明其结构原理:A340E型自动 变速器,是一4 挡电子控制自动变速器,主要由带锁止离合器的液力变矩器、超速挡行星齿轮机构、辛普森复合行星齿轮机构、液压控制系统和电子控制系统等组成。各部分的作用原理分述如下: 液力变矩器:它有一个工作腔,其中有三个叶片,即泵轮、涡轮和导轮。泵轮与发动机曲轴相联接,把输入的机械能转变为自动变速器油的能量,使油液的动量矩增加,其作用类似离心泵的叶轮,所以称其为泵轮。涡轮与自动变速器中的行星齿轮变速器输入轴相联接,将自动变速器油的能量转变为机械能输出,涡轮因其使油液的动量矩减小,作用类似于水涡轮,故被称为涡轮。导轮不转动时,变速器壳体的反作用扭矩通过它作用于自动变速器油,使油液的动量矩改变,换言之,导轮在液力变矩器中起导向作用,使自涡轮流出的油液改变方向后流向导轮,形成液体循环,所以称其为导轮。根据液力变矩器的工作特性可知,随着涡轮与泵轮之间的转速差增大或减小,液力变矩器所产生的增扭作用亦加强或削弱。例如,当汽车起步,上坡或遇到较大行驶阻力时,若发动机转速和负荷不变的话汽车行驶速度(也即液力变矩器的涡轮转速)将下降,造成泵轮与涡轮之间的转速差增大,转速比减小,液力变矩器因之产生较大的扭矩增大作用,结果使汽车的驱动轮获得较大的驱动力矩,保证汽车能克服阻力,继续行驶。反之当汽车所遇到的行驶阻力突然变小时,若发动机转速和负荷不变,则车速升高,使泵轮与涡轮之

自动变速器的结构和工作原理

自动变速器的结构和工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章自动变速器的结构和工作原理 第一节液力变矩器的基本原理简介 液力变矩器是一种液力传动装置,它以液体为工作介质来进行能量转换。它的能量输入部件称为泵轮,以“B”表示;它和发动机的输出轴相连,并将发动机输出的机械能转换为工作介质的动能。能量输出部件为涡轮,以“T”表示;它将液体的动能又还原为机械能输出。 一、液力偶合器的工作原理 如图2-1所示为液力偶合器原理图。泵轮2固定在发动机曲轴上,为能量输入端,涡轮4固定在输出轴5上,为输出端。泵轮和涡轮之间有2-4mm的间隙,整个偶合器充满了液体工作介质。 1-发动机曲轴,2-泵轮,3-偶合器壳体,4-涡轮,5-偶合器输出轴 图2-1 液力偶合器 1、泵轮的运动 ⑴发动机启动后,曲轴1旋转并带动泵轮2同步旋转。充满在泵轮叶片间的工作液体随着泵轮同步旋转,这是工作液体绕传动轴的牵连运动。 ⑵在离心惯性力的作用下,工作液体在绕传动轴坐牵连运动的同时,它沿叶片间的通道从内缘向外缘流动,这是流体和叶片间的相对运动,并于泵轮的外缘流入涡轮。 2、涡轮的运动 工作液体流入涡轮后,把从泵轮处获得的能量(动量)传递给涡轮,使涡轮旋转。从涡轮外缘(涡轮入口)流入的液体,既随涡轮旋转作牵连运动,又从外缘向内缘(涡轮出口)流动,这是涡轮叶片和流体的相对运动,最后,流体经涡轮内缘又流回泵轮。 二、液力偶合器和液力变矩器的能量转换原理 1、液力偶合器的能量转换

流体在偶合器(变矩器)内的循环流动是一个相当复杂的三维流动,流体与工作叶片间的相互作用也相当复杂。因此,分析这类问题时,在流体力学方面作了一系列假定后,一般用一元流束理论来描述。对于专业性较强的一些描述方式和术语,由于篇幅有限,不作介绍,请读者参考有关著作。 当发动机转速(即为泵轮转速)不变时,下述效率公式(1-2)中的分母是一个常数;随着涡轮转速的升高,传动比变大,效率也高。反之,随着涡轮转速的降低,偶合器的效率也随之下降。需要指出的是,从理论上讲,当n1=n2时i=0,效率最高。这只有在涡轮轴上没有负载时才可能出现。而实际是,当n1=n2,偶合器的泵轮和涡轮之间没有速度差;泵轮里的液体随泵轮作旋转运动产生的离心惯性力和涡轮里的液体随涡轮运动产生的离心惯性力大小相等而方向相反;偶合器内的液体不流动,也没有环流,偶合器也就失去了能量传递的作用。 2、变矩器的能量传递原理(见图2-2) 液力变矩器与液力偶合器在结构上的最大区别就是液力变矩器比液力偶合器多加装了一个固定的流体导向装置——导轮。图2-2所示为最简单的液力变矩器的结构简图。它由泵轮 1、涡轮2和导轮3等三个基本组件组成。 当泵轮1由发动机驱动旋转时,工作液体泵轮的外端出口b 甩出(R2即表示泵轮叶片出口在中间旋转曲面上的半径)而进入涡轮,然后自涡轮的C 端(R3表示涡轮叶片出口在中间旋转曲面的半径)流出而进入导轮,再经导轮a 端流入泵轮而形成环流。 偶合器的传动比偶合器的效率 : 则液力偶合器的效率为,则:,输出扭矩为入扭矩为根据动量矩定理,设输:i :) 21()11(12120 0ηη-===-=i n n n M n M M M M M i i o i

变速器工作原理

手动档变速器工作原理ZT 发动机是汽车的心脏,它为车辆的行驶提供源源不断的动力,车辆变速器的主要作用就是改变传动比,将合适的牵引力通过传动轴输出到车轮上以满足不同车辆在工况下的需求。 下面,我们就从结构最简单最传统的手动变速器说起。一般的手动变速箱的基本结构包括了动力输入轴和输出轴这两大件,再加上构成变速箱的齿轮,这就是一个手动变速箱最基本的组件。动力输入轴与离合器相连,从离合器传递来的动力直接通过输入轴传递给齿轮组,齿轮组是由直径不同的齿轮组成的,不同的齿轮组合则产生了不同的齿比,平常驾驶中的换挡也就是指换齿轮比。输入轴的动力通过齿轮间的传递,由输出轴传递给车轮,这就是一台手动变速箱的基本工作原理。 接下来,让我们通过一个简单的模型来给大家讲讲,手动变速箱换挡的原理。下图是一个简易的3轴2档变速箱的结构模型

输入轴(绿色)也叫第一轴,通过离合器和发动机相连,轴和上面的齿轮是一个硬连接的部件。红色齿轮轴叫做中间轴。输入轴和中间轴的两个齿轮是处于常啮合状态的,因此当输入轴旋转时就会带动中间轴的旋转。黄色则是输出轴,它也叫第二轴直接和驱动轴相连(只针对后轮驱动,前驱一般为两轴),再通过差速器来驱动汽车。 当车轮转动时同样会带着花键轴一起转动,此时,轴上的蓝色齿轮可以在花键轴上发生相对自由转动。因此,在发动机停止,而车轮仍在转动时,蓝色齿轮和中间轴出在静止状态,而花键轴则随车轮转动。这个原理和自行车后轴的飞轮很相似。蓝色齿轮和花键轴是由套筒来连接的,套筒随着花键轴转动,但同时也可以在花键轴上左右自由滑动来啮合齿轮。

说完这些,换挡的过程就很好理解了,当套筒和蓝色齿轮相连时,发动机的动力就会通过中间轴传递到输出轴上,在这同时,左边的蓝色齿轮也在自由旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。而如果套筒在两个蓝色齿轮之间时,变速箱在空挡位置,此时两个蓝色齿轮都在花键轴上自由转动,互不干涉。 除了上述的传统三轴手动变速箱,目前轿车上广泛使用的是二轴手动变速箱,它的结构和三轴变速箱基本类似,只是其输入轴和中间轴整合为一根轴,因此具有结构简单,尺寸小的优势。

汽车手动变速器工作原理图解

汽车手动变速器工作原理图解 令狐采学 汽车需要变速器,这是由汽车发动机的物理特性决定的。首先,任何发动机都有速度极限,转速超过这个最大值,发动机就会爆炸。其次,如果读过马力及其应用,您就会知道,在马力和扭矩都达到最大值时,发动机的转速变化范围很小。例如,发动机可能在5,500转/分时产生最大马力。在汽车加速或者减速时,变速器的存在使发动机与驱动轮之间的齿比能够发生变化。通过改变齿比,就能使发动机转速保持在速度极限以下,并且使发动机接近最佳性能转速区。 奔驰Actros重型卡车的手动变速器 在理想情况下,变速器齿比变化范围非常大,因而发动机总是以单一的最佳性能转速运行。这就是无级变速器(CVT)的概念。CVT的齿比范围几乎没有任何限制。过去,CVT在成本、尺寸和可靠性方面都不能与四速和五速变速器抗衡,所以在量产汽车中看不到它们。目前,设计方面的改善使CVT得到了普及。丰田普锐斯就是使用CVT的混合动力汽车。 变速器通过离合器与发动机连接。因此,变速器输入轴的转速与发动机相同。 奔驰C级运动型跑车六速手动变速器 五速变速器为输入轴提供五种不同的齿比,以便在输出轴产生

不同的转速值。以下是一些典型的齿比: 接下来让我们看看简单的变速器。为了帮助了解标准变速器的基本原理,下图显示了处于空挡状态的简单两速变速器。Photo courtesy 绿色轴将发动机与离合器连接起来。绿色轴和绿色齿轮连在一起,形成一个整体。(离合器是用于连接发动机和变速器或断开其间连接的装置。踩下离合器踏板时,发动机与变速器断开,此时虽然汽车并不移动,但发动机仍在运转。而松开离合器踏板时,发动机和绿色轴就直接连在一起。绿色轴和齿轮的转速与发动机相同。) 红色轴及红色齿轮称为副轴。它们也连为一个整体,因此副轴上的所有齿轮和副轴本身作为整体旋转。绿色轴与红色轴直接通过各自的啮合齿轮连接起来,所以当绿色轴转动时,红色轴也会转动。因此,一旦离合器接合,副轴就直接从发动机获得动力。黄色轴是花键轴,通过连接到汽车驱动轮的差速器直接与驱动轴相连。如果车轮转动,黄色轴也将随之转动。蓝色齿轮连在轴承上,因此会随黄色轴转动。如果发动机已关闭,但汽车还在滑行,则在蓝色齿轮和副轴停止运动时,黄色轴仍可能在蓝色齿轮内部转动。 轴环将两个蓝色齿轮中的一个连接到黄色驱动轴上。它通过齿槽直接与黄色轴相连,并与黄色轴一起转动。但轴环也可以沿着黄色轴左右滑动,从而选择性地接合两个蓝色齿轮中的一个。轴环中的齿称为犬齿,可与蓝色齿轮侧面的孔相接

自动变速器工作原理

如果您驾驶过配备自动变速器的汽车,则应该知道自动变速器和手动变速器之间有两个主要区别: 自动变速器汽车上没有离合器踏板。 自动变速器汽车上没有换挡机构。只要将变速器挂在前进挡,其他所有操作都会自动进行。 自动变速器(与它的液力变矩器)和手动变速器(与它的离合器)完成一模一样的事情,但它们完成的方式完全不同。自动变速器的工作方式十分的神奇! 自动变速器位置 在本文中,我们将详细讲述自动变速器的原理。首先您将了解整套系统的关键部件:行星齿轮组。然后,我们将告诉您变速器的装配、控制装置的工作原理,并讨论在变速器的控制中涉及到的一些难点。 与手动变速器一样,自动变速器的主要工作是让发动机在较窄的转速围下运行,并且提供较宽的输出速度围。

梅赛德斯-奔驰CLK自动变速器 如果没有变速器,汽车将会只有一种传动比,而我们也只能选择让汽车以所需的最大速度行驶的那种传动比。如果您想要的最大速度是130公里/小时,那么传动比应类似于大多数手动变速器中的三挡。 您可能从来没尝试过仅用三挡来驾驶配备手动变速器的汽车。如果体验一下,您很快会发现在起动时几乎没有加速感。高速行驶时,发动机会发出尖叫,转速表会接近红线。这样的汽车很快就会磨损,以至于几乎无法驾驶。 因此,变速器使用齿轮,以便更有效地利用发动机的扭矩,从而保持发动机在合适的转速下运行。 手动变速器和自动变速器之间的关键不同在于:前者将不同组的齿轮分别锁定到输出轴,以得到各种传动比;而在自动变速器中,同一组齿轮就可得到所有不同的传动比,自动变速器则是通过行星齿轮组来实现这一功能的。 下面让我们来了解行星齿轮组的工作原理。 当我们分解自动变速器以了解其部结构时,会发现其在相当小的空间容纳了各种各样的部件。除了其他部件外,您还会看到: 一套精致的行星齿轮组

液力自动变速器结构和原理(完整资料).doc

【最新整理,下载后即可编辑】 液力自动变速器结构和原理 液力自动变速器由变矩器、机械式变速器(一般多采用行星齿轮)和电子-液压控制系统三部分组成 变矩器 泵轮——主动部分,将发动机动力变成油液动能。 涡轮——输出部分,将动力传至机械式变速器的输入轴。 导轮——反作用元件,它对油流起反作用,达到增扭作用。 导轮起增扭作用

导轮固定-液流改变方向 当汽车行驶阻力大时,涡轮转速低于泵轮转速,从涡轮流入导轮的油液方向与泵轮旋转方向相反,导轮对油流起反作用,达到增扭作用,克服增大的阻力。 导轮自由旋转 当汽车行驶阻力小时,涡轮转速提高与泵轮转速接近,此时从涡轮流入导轮的油液方向与泵轮旋转方向趋于一致,导轮开始自由旋转以减少阻力。 锁止离合器的作用 当汽车行驶阻力小时 发动机转速较高,此时不需要增扭,锁止离合器将变矩器的泵轮和涡轮锁住,可以提高传动效率,能节油5%左右。 在汽车行驶阻力大时 发动机转速降低,此时锁止离合器分离,实现增扭。

电子-液压控制系统 主要由传感器、电控单元、换档电磁阀、油压调节电磁阀等组成。 行星齿轮变速器 液力自动变速器多采用结构紧凑的行星齿轮变速器。它通常采用两排行星齿轮来实现各档变速比。行星齿轮组由齿圈、行星齿轮、太

阳轮3个元件组成。任一元件固定,其余两个作输入或输出用多片离合器和制动器分别对这些元件进行接合制动来实现换档装置。 行星齿轮变速器 液力自动变速器有两种 一种为前置后驱动液力自动变速器,另一种为前置前驱动液力自动变速器

液力自动变速器的电子控制 液力自动变速器电子控制通过动力传动控制模块(PCM)接收来自汽车上各种传感器的电子信号输入,根据汽车的使用工况对这些信息处理来决定液力自动变速器运行工况。按照这些工况,动力传动控制模块给执行机构发出指令控制下列功能: 变速器的升档和降档 一般通过操纵一对电子换档电磁阀在通/断两种状态中转换。 变速器换档感觉 通过电控压力控制电磁阀(pcs-Pressure Control solenoid)用以调整管路油压。 变矩器锁止离合器(TCC-Torque Converter Clutch) 结合和分离时间,以及某些应用场合变矩器锁止离合器接合感觉:通过变矩器离合器控制电磁阀(按应用场合可能不止一个电磁阀)。 变速器的这些工作特性的电子控制,能按照汽车的运行工况提供稳定和精确的换档点(时间)和换档品质。

大众01M型自动变速器的结构组成及工作原理-详细版--

大众01M型自动变速器的结构组成及工作原理 1 大众01M型自动变速器内部总体结构 大众01M自动变速器由三部分组成。(图1) (1)液力元件:包括液力变扭器及油泵等,用于动力传递及提供液压元件(如各离合器和制动器)的动力源。 (图1)01M自动变速器结构图 由(图1)可知变速器内部有两个分隔的箱体,上部是变速器,内装ATF油;下部是差速器,内装齿轮油。在小齿轮轴3上有一个油封,把两种油分离开。 a. 液力变扭器 液力变扭器由壳体、锁止离合器、涡轮、导轮和泵轮组成,分解图见(2)。泵轮与壳体焊接为一体,由发动机飞轮驱动,工作时其内充满自动变速器油(ATF 油),其动力传递路线是:发动机飞轮→变扭器壳体→泵轮→涡轮→变速器输入轴,导轮的作用是增大低转速时的输出扭矩。涡轮和泵轮之间是靠液压油传递动力的,两者之间有一定的转速差,不但使油温升高,还降低了传动效率,锁止离合器可以把涡轮和泵轮连接为一体,形成刚性连接。锁止离合器由电控单元控制,电控单元通过电磁阀控制A、B、C 3个油道的油压交替变化,按要求在锁止离合器的前、后面产生压力或卸压,控制锁止离合器接合或断开。锁止离合器接合时,因油压作用,其带有摩擦片的一面与变扭器壳体接合,另一面通过齿牙与涡轮连接为一体。

(图2) 液力变扭器结构图 b. 油泵 油泵位于变扭器和变速器之间,由变扭器壳体驱动,其作用是建立油压,并通过滑阀箱控制各离合器和制动器的动作。它采用转子齿轮泵,其结构见(图3)。 (2)控制机构:采用电子、液压混合控制,电控部分包括电子控制单元J217及其相应的传感器和执行元件;液压控制部分包括滑阀箱等。 (3)变速机构:采用拉维那式行星齿轮变速机构,2个太阳轮独立运动,齿圈输出动力,通过对大、小太阳轮及行星架的不同驱动、制动组合,实现4个前进档及一个倒档。 01M 型自动变速器采用拉维娜式行星轮式变速机构,基本的行星轮机构包括太阳轮、星轮、行星架和齿圈,其中星轮是惰轮,不能输入、输出动力。在太阳轮、行星架和齿圈三者中,驱动其中一个,制动另一个, 则第三个输出动力,

手动变速箱基本工作原理

手动变速箱的基本工作原理 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现.比如,发动机最大功率出现在5500转。变速箱可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能. 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得CVT的使用已比较普遍。 国产AUDI 2.8 CVT 变速箱通过离合器及发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。

奔驰C级(图库论坛)级Sport Coupe 6速手动变速箱 一个5档的变速箱提供5种不同的变速比,在输入轴和输出轴间产生转速差。 三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个2档变速箱的简单模型,看看各部分之间是如何配合的: 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。

轴和齿轮(红色)叫做中间轴.它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动. 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色). 1档 挂进1档时,套筒就和右边的齿轮(蓝色)啮合。见下图: 如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色),齿轮通过套筒和花键轴相连,传递能量至驱动轴上.在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。 当套筒在两个齿轮中间时(第一张图所示),变速箱在空挡位置。两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的. 四、真正的变速箱

自动变速箱工作原理

自动变速箱工作原理 虽然现在市场上车型繁多,配备的自动变速器种类也繁多,但其控制和使用方法都大同小异。早几年,在国产车中最常见的是4前速自动变速器,现在很多车型更新换代,配备了5前速自动变速,奥迪A4甚至还配备了6前速自动变速。 自动变速器看似复杂,事实上只要我们了解了其中一些简单参数的奥秘,那么在选购汽车时,自动变速器的好坏就可一目了然了。自动变速器最重要的参数就是挡位的个数。这一点凡是开过车的人都能理解,谁都愿意开挡位多的车。如果挡位越多,变速器与发动机动力的配合就会越紧密,能够把发动机的性能发挥得更好。但光看挡位的个数是不够的。事实上一台自动变速器的挡位多少并不是技术的核心,因为简单的增加行星齿轮组就能增加挡位。象奔驰,沃尔沃的商用货车,有的挡位甚至多达20多个。自动变速器的技术核心在它的控制机构。因为一台好的自动变速器,它的换挡品质必须做到响应速度快,换挡冲击小等特点。而这一切都需要靠设计和改进性能优良的控制机构得以实现。 自动变速器是通过各种液压多片离合器和制动闸限制或接通行星齿轮组中的某些齿轮得到不同的传动比的。所以换挡品质的好坏与这些离合器和制动器有直接关系。根据汽车挡次的不同,出于成本考虑,经济型车的自动变速器的控制机构通常被设计得很简单。如图:

上图为自动变速器中最常用的制动机构。它通过制动带来限制行星齿轮的运动。制动带在杠杆的推动下能迅速包紧被制动的齿轮或轴,从而产生强大的制动力达到限制行星齿轮运动的目的。杠杆是直接被顶杆推动的,顶杆的动力又来自液压。所以行星齿轮的制动完全由液压来决定。这种制动带式的设计,结构非常简单,成本也很低,常用于经济型车的自动变速器当中。但由于制动带制动非常唐突,制动力来得很猛,所以换挡震动相对较大。在高挡车中很少用这种设计。高挡车中用得较多的是多片离合器式制动设计。如下图:

汽车自动变速器的结构原理与故障诊断(论文)

技师专业论文 工种:汽车修理工 题目:汽车自动变速器的结构原理与故障诊断 姓名: 身份证号: 等级: 准考证号: 培训单位: 鉴定单位: 日期: ?摘要 液力变矩器是一种能随汽车行驶阻力的不同而自动改变输出扭矩的无级变速器;行星齿轮辅助变速器由超速档行星齿轮机构和辛普森复合行星齿轮两部分组成;液压控制

系统;电子控制系统;执行元件。 关键词:液力变矩器超速档行星齿轮机构辛普森复合行星齿轮执行元件?第一章汽车自动变速器工作原理的简要分析众所周知,由于车用发动机的扭矩和转速变化范围较小,而复杂的使用条件又要求汽车的车轮驱动力和车速能在相当大的范围内变化,所以,需在汽车的动力传动系统中设置变速器。 汽车变速器一般有两种形式,一种是普通的手动变速器,汽车驾驶员根据需要进行换挡操作,每次换挡操作都须操纵离合器。这对汽车驾驶员来说,无论在精神上,还是体力上,都是一个很大的负担;同时,对交通安全也是一个不利因素。另一种是自动变速器,它可根据车辆的行驶速度和驾驶员踩下加速踏板的程度,自动实现换挡而不需要离合器。 汽车自动变速器种类繁多,但是,其基本工作原理大致相同,基本结构差异也不大。现以我校汽车新技术车间的A340E型自动变速器为例来说明其结构原理:A340E型自动变速器,是一4挡电子控制自动变速器,主要由带锁止离合器的液力变矩器、超速挡行星齿轮机构、辛普森复合行星齿轮机构、液压控制系统和电子控制系统等组成。各部分的作用原理分述如下: 液力变矩器:它有一个工作腔,其中有三个叶片,即泵轮、涡轮和导轮。泵轮与发动机曲轴相联接,把输入的机械能转变为自动变速器油的能量,使油液的动量矩增加,其作用类似离心泵的叶轮,所以称其为泵轮。涡轮与自动变速器中的行星齿轮变速器输入轴相联接,将自动变速器油的能量转变为机械能输出,涡轮因其使油液的动量矩减小,作用类似于水涡轮,故被称为涡轮。导轮不转动时,变速器壳体的反作用扭矩通过它作用于自动变速器油,使油液的动量矩改变,换言之,导轮在液力变矩器中起导向作用,使自涡轮流出的油液改变方向后流向导轮,形成液体循环,所以称其为导轮。根据液力变矩器的工作特性可知,随着涡轮与泵轮之间的转速差增大或减小,液力变矩器所产生的增扭作用亦加强或削弱。例如,当汽车起步,上坡或遇到较大行驶阻力时,若发动机转速和负荷不变的话汽车行驶速度(也即液力变矩器的涡轮转速)将下降,造成泵轮与涡轮之间

手动变速器工作原理

变速箱的工作原理 汽车需要变速器,这是由汽车发动机的物理特性决定的。首先,任何发动机都有速度极限,转速超过这个最大值,发动机就会爆炸。其次,在马力和扭矩都达到最大值时,发动机的转速变化范围很小。例如,发动机可能在5,500转/分时产生最大马力。在汽车加速或者减速时,变速器的存在使发动机与驱动轮之间的齿比能够发生变化。通过改变齿比,就能使发动机转速保持在速度极限以下,并且使发动机接近最佳性能转速区。 ?

?变速器通过离合器与发动机连接。因此,变速器输入轴的转速与发动机相同。 五速变速器为输入轴提供五种不同的齿比,以便在输出轴产生不同的转速值。以下是一些典型的齿比: 挡 位速比 发动机转速为3000转 /分时?变速器输出轴的

转速 一 挡 2.315: 1 1,295 二 挡 1.568:1 1,913 三 挡 1.195: 1 2,510 四 挡 1.000:1 3,000 五 挡 0.915:1 3,278 为了帮助了解标准变速器的基本原理,下图显示了处于空挡状态的简单两速变速器。

让我们来看看图中的每一个部件,以及它们是如何装配的:绿色轴将发动机与离合器连接起来。绿色轴和绿色齿轮连在 一起,形成一个整体。(离合器是用于连接发动机和变速器或断开其间连接的装置。踩下离合器踏板时,发动机与变速器 断开,此时虽然汽车并不移动,但发动机仍在运转。而松开离 合器踏板时,发动机和绿色轴就直接连在一起。绿色轴和齿 轮的转速与发动机相同。) 红色轴及红色齿轮称为副轴。它们也连为一个整体,因此副轴上的所有齿轮和副轴本身作为整体旋转。绿色轴与红色轴直 接通过各自的啮合齿轮连接起来,所以当绿色轴转动时,红色轴 也会转动。因此,一旦离合器接合,副轴就直接从发动机获得动力。 黄色轴是花键轴,通过连接到汽车驱动轮的差速器直接与驱动 轴相连。如果车轮转动,黄色轴也将随之转动。 蓝色齿轮连在轴承上,因此会随黄色轴转动。如果发动机已关 闭,但汽车还在滑行,则在蓝色齿轮和副轴停止运动时,黄色轴 仍可能在蓝色齿轮内部转动。 轴环将两个蓝色齿轮中的一个连接到黄色驱动轴上。它通过齿槽直接与黄色轴相连,并与黄色轴一起转动。但轴环也可以沿着黄色轴左右滑动,从而选择性地接合两个蓝色齿轮中的一个。 轴环中的齿称为犬齿,可与蓝色齿轮侧面的孔相接合。

汽车发动机构造及原理

第1篇汽车发动机构造与原理 第1章发动机基本结构与工作原理 内容提要 1.四冲程汽油机基本结构与工作原理 2.四冲程柴油机基本结构与工作原理 3.二冲程汽油机基本结构与工作原理 4.发动机的分类 5.发动机的主要性能指标 发动机:将其它形式的能量转化为机械能的机器。 内燃机:将燃料在气缸内部燃烧产生的热能直接转化为机械能的动力机械。有活塞式和旋转式两大类。本书所提汽车发动机,如无特殊说明,都是指往复活塞式内燃机。 内燃机特点:单机功率范围大(0.6-16860kW)、热效率高(汽油机略高于0.3,柴油机达0.4左右)、体积小、质量轻、操作简单,便于移动和起动性能好等优点。被广泛应用于汽车、火车、工程机械、拖拉机、发电机、船舶、坦克、排灌机械和众多其它机械的动力。 1.1 四冲程发动机基 本结构及工作原理 1.1.1 四冲程汽油机基本结 构及工作原理 1.四冲程汽油机基本结构 (图1-2) 2.四冲程汽油机基本工 作原理(图1-2) 表1-1 四冲程汽油机工作过 程 图1-2 四冲程汽油机基本结构简图 1-气缸 2-活塞 3-连杆 4-曲轴 5-气缸盖 6-进气 门 7-进气道 8-电控喷油器 9-火花塞 10-排气门

3.工作过程分析 (1)四冲程发动机:活塞在上、下止点间往复移动四个行程(相当于曲轴旋转了两周),完成进气、压缩、作功、排气一个工作循环的发动机就称为四冲程发动机。 四个行程中,只有一个行程作功,造成曲轴转速不均匀,工作振动大。所以在曲轴后端安装了一个质量较大的飞轮,作功时飞轮吸收储存能量,其余三个行程则依靠飞轮惯性维持转动。 (2)冲程与活塞行程: 冲程:指发动机的类型; 行程S:指活塞在上、下两个止点之间距离; 气缸工作容积V s:一个活塞在一个行程中所扫过的容积。 式中V s——工作容积(m3); D——气缸直径(mm); S——活塞行程(mm)。 发动机的排量V st:一台发动机所有气缸工作容积之和。 式中V st——发动机的排量(L); i——气缸数。 (3)压缩行程的作用 一是提高进入气缸内混合气的压力和温度(压缩终了的气缸内气体压力可达0.6~1.2MPa,温度达600K~700K),为混合气迅速着火燃烧创造条件; 二是可以有效提高发动机的燃烧热效率η。由热力学第一定律 当混合气被压缩程度提高时,发动机混合气燃烧所达到的最高温度(T1)升高,而排气的温度(T2)降低,导致热效率提高。 1860年,法国人Lenoir(勒努瓦)研制成功的世界第一台内燃机,没有压缩行程,热效率仅4.5%;1876年,德国人奥托(Otto)制造出第一台四冲程内燃机,采用压缩行程,虽然压缩比只有2.5,但热效率却提高到12%,有力地证明了科学是第一生产力这个真理。 压缩比ε:气缸内气体被压缩的程度。 式中V a——气缸总容积(活塞处于下止点时,活塞顶部以上的气缸容积);

相关文档
最新文档