充电器 电路图 (最简单的)

充电器 电路图 (最简单的)

充电器电路图(最简单的)

2009-10-18 16:51

变压器输出12V/5W左右、二极管4只1N4004、或

1N4007也可以‘电解电容220u/16V、或470UF。LM317三端可调稳压器1只,2K可调电阻1只、200欧姆0.5W 电阻一只,按图连接好后调整2K可调电阻使充电电流达到100mA左右。

MP3 手机USB充电器电路与说明(多图)

MP3 手机USB充电器电路与说明(多图) 图中用1欧的电阻F1起到保险丝的作用,用一个二极管D1完成整流作用。接通电源后,C1会有300V左右的直流电压,通过R2给Q1的基极提供电流,Q1的发射极有R1电流检测电阻R1,Q1基极得电后,会经过T1的(3、4)产生集电极电流,并同时在T1的(5、6)(1、2)上产生感应电压,这两个次级绝缘的圈数相同的线圈,其中T1(1、2)输出由D7整流、C5滤波后通过USB座给负载供电;其中T1(5、6)经D6整流、C2滤波后通过IC1(实为4.3V稳压管)、Q2组成取样比较电路,检测输出电压高低;其中T1(5、6)、C3、R4还组成Q1三极管的正反馈电路,让Q1工作在高频振荡,不停的给T1(3、4)开关供电。当负载变轻或者电源电压变高等任何原因导致输出电压升高时,T1(5、6)、IC1取样比较导致Q2导通,Q1基极电流减小,集电极电流减小,负载能力变小,从而导致输出电压降低;当输出电压降低后,Q2取样后又会截止,Q1的负载能力变强,输出电压又会升高;这样起到自动稳压作用。 本电路虽然元件少,但是还设计有过流过载短路保护功能。当负载过载或者短路时,Q1的集电极电流大增,而Q1的发射极电阻R1会产生较高的压降,这个过载或者短路产生的高电压会经过R3让Q2饱和导通,从而让Q1截止停止输出防止过载损坏。因此,改变R1的大小,可以改变负载能力,如果要求输出电流小,例如只需要输出5V100MA,可以将R1阻值改大。当然,如果需要输出 5V500MA的话,就需要将R1适当改小。注意:R1改小会增加烧坏Q1的可能性,如果需要大电流输出,建议更换13003、13007中大功率管。

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

手机充电器原理与维修

手机通用充电器及诺基亚手机充电器原理与维修 图片: 这是一种脉宽调制型充电电路,220V交流电压经R1限流,D1~D4桥式整流,C1滤波得到300V 左右的直流电压,此电压经主绕组L1给开关管V1集电极供电,经R4给V1偏置。刚加电压时V1开始导通,L1产生感生电动势,反馈绕组L2的感生电动势经反馈回路C4、R6加到开关管V1的基极,构成正反馈,从而使V1迅速进入饱和导通状态。此时V1的发射极电流很大,电阻R2上压降很大,此电压经R3 加到控制管V2的基极,使其导通,V1基极电压降低,集电极电流减小,L2感生与前反向的负电压经C4、R6加到V1基极,使开关管V1迅速进入截止状态。就这样,开关管不断导通截止,变压器B次级绕组L3就可获得脉冲电压。改变R6、C4的值可改变脉冲宽度从而达到调节充电电流的目的。不充电时,无负载,没有电流经过R20,V6截止,变色发光二极管D8不亮。当接上负载时,绕组L3的电压经D13、D15整流,C7滤波给负载供电,R20产生左负右正的电压,使V6导通,发光管D8导通发红光,

指示开始充电,随着充电的进行,充电电流越来越小,当充满电时,流过R20的电流变小,其上压降变小,V6 导通程度降低,流过D8电流变小,发绿光,表示充满电。其常见故障为开关管因功率过载而损坏和限流电阻R1损坏。 图1为一款诺基亚手机通用充电器实绘电路。AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电,随着C2的充电,Q2 b极电压逐渐下降,当下降至某值时,Q2退出饱和状态,流过L1中的电流减小,L1、L2中感应电动势极性反转,在R8、C2的正反馈作用下,Q2迅速由饱和状态退至截止状态。这时,+300V 电压经R3、R8、L2、R16对C2反向充电,C2右端电位逐渐上升,当升

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

电动车 48V 充电器原理图与维修(高清版)

电动车48V 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的2 脚和 5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

Q2057W锂电池充电器原理(适用)

摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号 BQ2057 BQ2057C BQ2057T BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STAT(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。

通用电动自行车充电器电路分析及维修图文教程(3842芯片).

通用电动自行车充电器电路分析及其维修(3842芯片) 作者:MAX232 QQ:44473047 时间:2012年7月30日 一、电路分析 首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换的300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。 (1)3842稳定工作的条件: 1. 起始的工作电压,由启动电阻从300V降压得到; 2. 8脚有输出稳定的5v基准电压,内部振荡电路才会工作。 3. 6脚输出驱动MOS管打开后,3脚检测到的电流反馈电压 没有超过1V。 4. 原边供电是否在下一个周期工作开始前提供到3842的7 脚,否则由启动电阻提供过来的电能已经不能维持3842工 作了。 (2)输出电压保持稳定的条件: 1. 副边绕组是否感应到电能。 2. 副边整理和滤波器件是不是都完好。

3. 采样电阻以及431,是否完好。 4. 光耦是否完好工作。 5. 3842是否接收到光耦的信号,确定信号没有在进入3842芯片前被阻断或过滤了。 充电器高压部分故障的修理流程 1、元件检测: 高压直流二极管(4007,5399,5408)或者全桥。 高压大电容,简称“一大电容”,450v68uf。 3842的7脚供电电容,简称“高压小电容”。35v100uf

场效应管(mos管,比如6N60,7N80,10N90,K1358,,,,,,,,) 低压部分的主整流管1660,uf5408,FR307,,,,,,,,,,,,,,,,,,, 低压部分的主滤波电容,(63v470uf)简称“二大电容”。 低压部分的辅助电源滤波电容,(63v470uf) 输出电流取样电阻(3w0.1欧姆) 光耦(pc817,4n35,,)用ws-3可以快速准确检测。没有ws-3就 用二极管档测量光耦低压侧的参数,应该是一个发光二极管的参数。光耦高压侧的参数基本上查不到,但也不能短路 2、拆掉损坏的零件,(3842,7n80,以及3w0.5欧姆,10欧姆,1k,等等,具体位置请看原理图红色标注)焊上保险管。(或者串联 220v40w灯泡)。 3、安装“基础”零件 更换高压整流二极管,一律用5399代替。4只全部换新。高 压部分电流取样电阻R1(用3w1欧姆或者3w0.5欧姆),驱动电阻 R2 (1/4W,10欧姆),R3(1/4W 1k),下拉电阻R4(1/4W 10k),下偏电 阻R5(1/4W 1k)。若原装各电阻与本图有出入的,一律以本图为准(以不变应万变) 4、接通保护电,(串联灯泡,后文字相同处理)

手机常用的充电控制原理电路图

上图1是三星手机中比较常用的充电控制原理电路图: 根据电路原理分析,可能存在的故障现象有: 1、电池电量不显示或显示电量不准确:R510、R512阻值发生变化,C504轻微漏电; 2、自动充电或不会提示充电结束:END-OF-CHG控制信号异常,R511电阻异常,U502损坏; 3、不能充电:U502输入充电电压异常,TA502坏,U502损坏; 4、充不进电(有提示充电中,但充不进电量):U502损坏,R514或R515阻值异常, 5、USB不能充电:U502#2输入电压不正常(正常应为5V),主要是由U502损坏造成 6、电池电量正常也会提示低电报警:R510、R512阻值发生变化 7、加电池按开机键后提示充电中并不能开机:AUX-ON控制信号异常,U502或电源IC损坏; 8、电量充不满:R510、R512阻值发生变化,C504轻微漏电; 9、加电开机后显示“请充电”,几秒后手机便自动关机:R510到电池正极断线 具体实例分析: 1、C208手机进水充不进电 处理方法:插上充电器显示充电,但是充不进电,此故障应该是充电电路问题,清洗后发现充电电路R116(10K)腐蚀断裂,更换R116后测试故障排除。 图2

2、C218手机不充电(无充电电流) 处理方法:拆机后发现卡座下面一个黄电容(C324)有点变色,更换C324后无效。用万用表测ZD703开路,更换ZD703后故障有所改善(显示充电,但是充不进电)。分析原因应是CPU检测到充电信号,但是 充电IC没有完成充电电路中供电输出信号,更换充电IC(U301)后故障排除。 图3 3、D508手机装电池显示自动充电状态 处理方法:因为手机CPU检测到充电信号导致,先检查尾插正常,装电池测充电IC(U503)#7电压为低电平(正常2.6V左右)。查找电路图,发现U503#7与Q500相连,拆除Q500测量电压正 常,更换Q500故障排除。D508手机装电池显示自动充电的比较常见,有部份是充电IC或尾插 损坏导致,部分是由于Q500导致,但有部分Q500本身没有坏,但摘除Q500也可以解决。 图4 4、E738手机装电池按开机键即显示充电状态,不开机 处理方法:因为手机CPU检测到充电信号导致,先检查尾插正常,装电池测充电IC(U502)#3电压为低电平(正常2.6V左右)。查找电路图,发现U502#3与电源IC(U400)#1相连,更换电源IC后故障排除。(原理分析参照图1) 5、E368手机充电时会提示"USB不能充电" 处理方法:插入充电器,测量U502#2(USB充电输入)有2.2V(正常为0V,只有采用USB充电时才会有5.0V输入),测U502#1与#2阻值偏低,更换充电控制管U502后故障排除。(原理分析参照图1)

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

MP4MP3充电器电路图与电路分析

MP4/MP3充电器电路图与电路分析 原理分析 该款MP4/MP3充电器外观小巧,外壳上印有"AC100-250V. 100mA"与“DC5V+5%.200-300mA”等参数字样。其内电路实测 如附图所示,现简析其工作原理如下。 插上市电后,交流220V电压经电阻R1限流后,由D1-D4.C1进行整流滤波,并在C1上产生300V左右的直流电压,此电压经电阻R2加至振荡管Q1的基极,使Q1得到偏置而导通.由D6.C3.R6等元件构成的自激反馈网络将脉冲变压器L2反馈绕组上的感应脉冲馈至Q1基极, 使其维持于连续振荡的工作状态.同时,变压器次级L3上产生的感应电压经过D7,C5整流滤波,形成略高于5V的直流输出电压,经过R7加至输出端口上,再通过USB转换线供给MP4/MP3机工作或充电.R4,R5.Q2,IC1,DW1等元件构成反馈式电压自动调整电路.当市电波动电压升高时,Q1振荡管的e极所接反馈电阻R4压降增大,而此压降通过 R5加至Q2基极,Q2的c-e极导通程度亦会增大,从而削弱Q1的工作偏置,使其c极电流下降,达到自动调整并让输出电压保持稳定。反之,若市电电压降低,自动反馈调整电路会朝相反的方向调整,让输出电压保持稳定。如果另遇其他原因造成输出电压升高,此时输出电路端的DW1则会因电压过高而击穿,而使光电耦合器IC1输出一侧导通电阻相应降低,从而加强反馈元件C4 上电压对Q2的控制作用,自动的调整振荡电路的状态,以对输出电压的升高产生有效抑制。 附图中元件C2.R3,D5为干扰吸收电路,可吸收开关电源工作时产生的反峰脉冲,以可靠保护振荡管的安全。

二.维修实例 [实例一]不工作. 在检修时发现输出端口无5V电压输出,测C1上无300V直流电压.说明故障点在R1.D1~D4.C1元件范围.后经断电之后逐一检测,测出R1 电阻断路,但外观却完好.将其更换后再开机,充电器恢复正常. [实例二]充电器空载时"LED"红灯亮,但插接MP3负载后熄灭且MP3机不工作. 根据空载时"LED红"可发光的情况,初步分析振荡电路可起振工作.检查低压输出部分元件未见异常.检查振荡电路部分时,测到 Q1管e极所连反馈电阻R4 阻值偏大,判断为该电阻已变质,造成振荡偏弱,输出带负载能力减弱。在更换R4为新电阻后, 开机再试,充电器在插接MP3机后工作性能完全恢复。 MP4电路图

模电课程设计—手机充电器

郑州科技学院 《模拟电子技术》课程设计 题目手机充电器 学生姓名 x x x 专业班级电气工程及其自动化班 学号2012470xx 院(系)电气工程学院 指导教师 xx 完成时间 2014年月日

前言 随着科学技术的发展,手机逐渐成为人们交流的主要工具,在人类社会中扮演着重要的角色。但是也有不利的一方面,消费者每当更换一个手机就必须更换原配充电器,或者是原配充电器遗失或损坏后找不到与之相匹配的充电器,所以必须抛弃手机或者寻找原配充电器,但是花很多的钱。手机配件的不完善逐渐成为国产手机被消费者厌恶最多的问题之一,致使国内手机的销量下降。 在2003年,深圳市海陆通电子有限公司研发推出了历史上第一款通用型手机充电器——万能充,让海陆通公司始料不及的是,这个看似简单但外观独特的充电器却获得市场的热销。“第一次推出的几十万批量试单,三天内全部售完,完全出乎在我们的预料。”没有想不到只有做不到,至此万能充电器逐渐成为人们充手机的主要工具,方便快捷。 以前一个手机要对一个原装充电器,因为手机的更新换代速度很快,有的人半年就换一台手机,一个老百姓平均使用的充电器十个八个,对社会的有限资源是极大的浪费。但是万能充发明出来后,一个充电器基本可以满足全家人使用。所以说对节约社会资源,减少资源浪费做出了一定的贡献,在这个行业来说也是一个创新性的里程碑式的产品,有效地推动了充电器标准化的进程。一个小小充电器不仅改变了海陆通公司的命运,也改变了数以千万中国手机用户换手机一定要换充电器的束缚,给手机用户带来了极大的便利。

目录 1设计的目的 (1) 2设计的任务与要求 (1) 2.1设计的任务 (1) 2.2设计的要求 (1) 3设计方案与论证 (1) 3.1 设计的方案 (1) 3.2万能充的原理方框图 (2) 4设计原理及功能说明 (3) 4.1元器件的选用原理 (3) 4.2总体电路图 (5) 5单元电路 (7) 5.1变压器 (7) 5.2二极管 (8) 6硬件的安装与调试 (9) 6.1硬件的安装 (9) 6.2硬件的调试 (9) 7总结 (10) 参考文献 (10) 附录1:总体电路原理图 (11) 附录2:元器件清单 (11)

自制简单锂电池充电器电路

自制简单锂电池充电器电路 充电器电路图及原理 电路很简单,如附图所示,元件很容易廉价获得,适用范围很宽,可以适应1节-4节串连电压,充电电流可以通过元件参数选择,充电特性也比较理想,原理如下:由LM317和R1、R2、R3组成一个典型的恒流电路(431暂时认为断开R4比较大可以先不看)。当电压不太高时保持恒定的充电电流。以两节电池充电为例,理想状态下,充电电流应该是电压达到8.3V前一直保持恒定。当A点电压达到拐点值8.3V时,经过R4、R5分压,TL431开始导通,并把LM317的基准点电压从8.3V逐渐拉下。所谓拐点就是指电流开始下降的那点。直到电压达到8.4V的0电流点,A点仍然保持这个8.3V电压,LM317的输出V out下降到8.4V,其调整端下降到7.17V。 电池电压为8.3V时(拐点)各点的电压都标在图上,充电截止(8.4V)的各点电压以括号形式也标在后边。 元件选择 LM317,三端可调串连稳压块,选塑封的,LM317T,常用。根据电流不同,应选用相应的散热片。 TL431,三端可调并联稳压块,与一个小三极管外形一样,常用。 RL就是外接被充电池。 电流采样电阻R1,计算方法是R1 = 1.23 / 充电电流。例如,若充电电流为0.3A,则电阻应该选择4.1欧。这个电阻一般要选择功率大一些的,比如1A就应该是2W的。 可调电阻R4可以选择那种篮色的精密多圈,取比额定值大一些的,比如23.2k的就可以选择25K的多圈。若嫌多圈太贵或难找,也可以用一个固定电阻串连一个普通可调电阻。例如23.2k的就可以选择22k固定加一个2.2k-3.9k可调节的,以便进行精细调节。

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

锂电池充电电路及原理简介

锂离子电池的原理及充电器 锂离子电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,放电时,锂变成锂离子,脱离电池阳极,到达锂离子电池阴极。锂离子在阳极和阴极之间移动,电极本身不发生变化。这是锂离子电池与金属锂电池本质上的差别。锂离子电池的阳极为石墨晶体,阴极通常为二氧化锂。充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。所以,在该电池中锂永远以锂离子的形态出现,不会以金属锂的形态出现,所以这种电池叫做锂离子电池。 一、锂离子电池的充放电特性 500mAh的AA型锂离子电池的充放电特性曲线如图1。单只锂离子电池的充电电压最好保持在4.1V+50mV,充电电流通常限制在1C(500mA)以下,否则会造成锂离子电池永久性损坏。锂离子电池通常采用恒流/恒压充电模式,即先采用1C的恒定电流充电,电池电压不断上升,当上升到4.1V时充电器应立即转入恒压方式(4.1V+50mV),充电电流逐渐减小,当电池充足电时,电流降到涓流充电电流。用此方法,大约两个小时电池可以充足(500mAh)。锂离子电池放电电流不应超过3C(1.5A),单体电池电压不应低于2.2V,否则会造成损坏。采用0.2C的放电电流,电池电压下降到2.7V时,可以放出额定电池容量(500mAh),采用1C的放电电流时,电池能够放出90%的电池容量,另外环境的温度对电池的放电容量也会产生影响,所以规定了锂离子电池放电时的温度为-20℃~+60℃。锂离子电池的一个特点是比较容易显示剩余电量,因为锂离子电池的工作电压随时间徐徐下降,锂离子电池放电起始电压为4.1V(4.2V),放电终止电压为2.5V。 二、锂离子电池的优缺点 优点:1.工作电压高;2.体积小、重量轻、能量高;3.寿命长;4.安全快速充电;5.允许温度范围宽;6.放电电流小、无记忆效应、无环境污染。 缺点:1.与干电池无互换性;2.不能快速充电;3.内部阻抗高;4.工作电压变化大;5.放电速率大,容量下降快,无法大电流放电。 三、锂离子电池充电器 下面介绍一种新型的锂离子电池充电器模块PS1719,它采用恒流/恒压方式控制锂离子电池充电。恒流、恒压调整方便,以充电电流减小到最大电流(恒流)的15%作为充满判别基准,并终止充电。此外还有充电显示和充满显示功能。PS1719模块工作电压为9V,内部结构见图2。 图3给出了PS1719的典型电路图,按图可以组成简单且功能齐全的锂离子电池充电器。

BQ2057锂电池充电器原理

摘要:本文介绍美国TI 公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP 、TSSOP 和SOIC 的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP 、TSSOP 和SOIC 三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C 、BQ2057T 和BQ2057W 四种信号,分别适合4.1V 、4.2V 、8.2V 和8.4V 的充电需要。 BQ2057的引脚功能描述如下: VCC (引脚1):工作电源输入; TS (引脚2):温度感测输入,用于检测电池组的温度; STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; VSS (引脚4):工作电源地输入; CC (引脚5):充电控制输出; COMP(引脚6):充电速率补偿输入; SNS (引脚7):充电电流感测输入; BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。 元件型号 充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V

电动车经典_48V-3A_充电器原理图与讲解_高清版

电动车48V-3A 充电器原理图与维修 电动车充电器实际上就是一个开关电源加上一个检测电路,目前很多电动车的48V 充电器都是采用KA3842 和比较器LM358 来完成充电工作理图如图1 所示 工作原理 220V 交流电经LF1 双向滤波.VD1-VD4 整流为脉动直流电压,再经C3 滤波后形成约300V 的直流电压,300V 直流电压经过启动电阻R4 为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应管) VT1 工作在开关状态,流通过VT1 的S 极-D 极-R7-接地端.此时开关变压器T1 的8-9绕产生感应电压,经VD6,R2 为IC1 的7 脚提供稳定的工作电压,4 脚外接振荡阻R10 和振荡电容C7 决定IC1 的振荡频率, IC2(TL431)为精密基准压源,IC4(光耦合器4N35)配合用来稳定充电压,调整RP1(510 欧半可调电位器)可以细调充电器的电压,LED1 是电源指示灯.接通电源后该指示灯就会发出红色的光。VT1 开始工作后,变压器的次级6-5 绕组输出的电压经快速恢复二极管VD60 整流,C18 滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V 工作电源,VD12 为IC3 提供基准压,经R25,R26,R27 分压后送到IC3 的 2 脚和5 脚。 正常充电时,R33 上端有0.18-0.2V 的电压,此电压经R10 加到IC3 的 3 脚,从 1 脚输出高电平。1 脚输出的高电平信号分三路输出,第一路驱动VT2 导通,散热风扇得开始工作,第二路经过电阻R34 点亮双色二极管LED2 中的红色发光二极管,第三路输入到IC3 的 6 脚,此时7 脚输出低电平,双色发光二极管LED2 中的绿色发光二极管熄灭,充电器进入恒流充电阶段。当电池压升到44.2V 左右时,充电器进入恒压充电阶段,流逐渐减小。当充电流减小到200MA-300MA 时,R33 上端的电压下降,IC3 的 3 脚电压低于 2 脚,1 脚输出低电平,双色发光二极管LED2 中的红色发光二极管熄灭,三极管VT2 截止,风扇停止运转,同时IC3 的7 脚输出高电平,此高电平一路经过电阻R35 点亮双色发光二极管LED2 中的绿色发光二极管(指示电已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2 到达IC2 的 1 脚,使输出电压降低,充电器进入200MA-300MA 的涓流充电阶段(浮充),改变RP2 的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折流(200-300MA)。 常见故障

电池充电器原理图详解

电池充电器原理图详解(附图) 时间:2012-06-27 11:49:27 来源:中国装备制造网点击量:42 锂电池充电器原理图就是什么呢?在充电时,手机与电动车使用得充电器多为锂电池充电器,那么您知道锂电池充电器原理图就是什么呢?下面世界工厂网小编就与大家聊聊锂电池充电器原理图,也长长见识。 锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,就是因为它除监视电池得充电状态外,还能分阶段控制电池得最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA与70mA,最后以10mA左右得涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。 本装置电路如附图所示。IC1构成频率约1Hz1得多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1、25V,电路由+15V经R1给电池提供约10mA得充电电流。通电后IC1起振,其③脚输出得脉冲触发IC2工作,使输出端Q1~Q5依次出现高电平,经不同得分压电阻分压后,IC3得输出电压按6V、7V、8V、9V、10V依次递增,充电电流也因此在70mA至270mA之间依次递增。当Q6输出高电平时IC2被复位,此后电路在IC1输出脉冲得作用下重复上述过程。 锂电池得标称电压为3、6V,通常放电至3V即需充电,终止充电电压最高为4、2V。IC4构成电池端电压检测电路,其门限电压即电池充电终止电压可通过RP在4~4、2V范围

相关文档
最新文档