物性参数计算

物性参数计算
物性参数计算

气相参数求解

(一)潜热的计算: 按文献上的公式计算 (二)比热容的计算:

(1)由于考虑的是低压下的蒸发状态,以理想气体状态计算 '

2

3p c A B T C T D T =+++ (1)

式中,, , , A B C D 可以从有关资料附录查到。

(2)混合气体比热容 液滴蒸汽质量比:

,/vap

vap o air vap air

M m M Y M M =

+- (3)

,vap f m =0 (4)

液滴蒸汽摩尔比:

,0,00/vap vap y p p = (5)

,0,,0,0//(1)/vap vap

vap vap vap vap air

m M y m M m M ∞=

+- (6)

蒸汽摩尔比:

,0,()/2vap vap vap y y y ∞=+ (7)

介质气体摩尔比:

1air vap y y =- (8)

混合气体比热容:

''',,p p vap vap p air air c c y c y =+ /c a l m o l K ? (9) (三)混合气体粘度计算 (1)动力粘度

1/30.809c V σ= (10)

式中,σ为硬球直径,单位为0

A 。

//1.2593c k T ε= (11)

式中,κ为Boltzmann 常数,ε为特征能量。

*/T

T εκ=

(12) **

exp(*)exp()

V B A C E FT T DT Ω=++ (13) 式中, 1.16145, 0.14874, =0.52487, 0.77320, 2.16178, 2.43787A B C D E F =====

V

μ= (14) 式中,M 是蒸汽分子量,μ为粘度,单位P μ(微泊),7110a P P s μ-=?

估算

*T 为约化温度

(3)对于二元混合气体的粘度,C.R.Wilke 应用了Sutherland 的动力模型理论得到:

1122

12122121

m y y y y y y μμμφφ=

+++ (16)

式中,

1/21/42

1212121/2

12[1(/)(/)]|8[1(/)]|M M M M μμφ+=

+ 11

2112

22

M M μφφμ= 12,μμ分别是双元混合气体中两种气体的粘度 ,

12,y y 分别是双原混合气体中两种气体的摩尔比。12,M M 分别是双元混合气体中两种气体的分子量。 (四)混合气体导热系数 (1)修正的Euchen 公式

1.77

1.32/V V M C C R

λμ=+

(17) 式中,V c 为定容比热,且, (8.314)V P C C R R +==,p c 为前面所求的定压比热容 (2)根据Wassiljewa 方程求解而原混合气体的导热系数

1122

11222211

m y y y A y y A y λλλ=

+

++ (18) 式中,

[]2

1/21/41221121/2

121(/)(/)8(1/M M A M M μμ??

+??=+ []2

1/21/42112211/2

211(/)(/)8(1/M M A M M μμ??

+?

?=+ 12,μμ分别是双元混合气体中两种气体的粘度 ,12,M M 分别是双元混合气体

中两种气体的分子量。 (五)交换系数 (1)扩散率

根据Fjller ,Schettler 和Giddings 方程

1.75

1/21/31/32

0.00143[()()]

AB

AB A B T D pM v v =+∑∑ (19) 式中,p 为压力,bar;;T 为绝对温度,K ;v ∑为分子扩散体积,由原子扩散体积加和求得。原子的扩散体积数据列于文献《流体的热物理性质》中。AB M 为折合分子量,其值为1

112()AB A B

M M M -=+ (2)交换系数

vap vap D ρΓ= (20)

式中,vap D 是蒸汽在空气中的扩散系数,其中涉及到密度ρ的计算, 液滴表面处混合气体密度

,0,00

(1)vap vap vap air

P M P M RT ρ+-=

(21)

式中,,00

exp[(1)]C

vap C T p p h T =- 环境中混合气体密度

(1)vap air

p M p M RT ρ∞∞+-=

(22)

式中,p ∞为环境中燃料蒸汽的分压。 2气液相热力学平衡条件 分压力

54.02677

1258.34

1010

T sv p --=?

单位2

/N m

密度按照理想气体性质计算

金属热物性参数

金属热物性参数

表1 各种金属的热物性值 金属温度? C 比热 cal/(g·?C) 导热系数 cal/(cm·s·?C) 密度ρ(g/cm3)液相 线、固相线温度(?C) 纯铁 25 200 400 769 800 1000 1500 0.107 0.124 0.145 0.358 0.230 0.148 0.180 0.192 0.152 0.120 0.074 0.071 0.070 0.032 ρ=7.88(20?C) =7.3(1500?C) =7.0(1600?C) 镇静钢(C0.08%) 200 400 800 1200 0.112 0.124 0.142 0.230 0.158 0.142 0.128 0.107 0.068 0.071 ρ=7.86(15?C) 软钢(C0.23%) 200 400 800 1200 0.112 0.124 0.142 0.228 0.158 0.124 0.116 0.102 0.062 0.071 ρ=7.86(15?C) 碳素结构钢(S35C) 25 200 400 800 0.111 0.125 0.134 0.285 0.103 0.095 0.079 0.078 中碳钢(C0.4%) 200 400 800 1200 0.112 0.122 0.140 0.148 0.156 0.124 0.115 0.100 0.059 0.071 ρ=7.85(15?C) 共析钢(C0.8%) 200 400 800 1200 0.108 0.128 0.144 0.146 0.160 0.119 0.108 0.091 0.058 0.072 ρ=7.85(15?C) 工具钢(C1.2%) 200 400 800 0.108 0.130 0.142 0.156 0.103 0.102 0.089 0.057 ρ=7.83(15?C)

水的物性参数表

温度t °C 密度p比热容 cp 热导率入运动黏度V动力黏度n 普朗特数Pr kg/m3 kJ/(kg .K) W/(m ?K) m2/s Pa - s 0 999.9 4.212 0.551 1.789E-06 1.788E-03 13.67 1 999.9 4.210 0.553 1.741E-06 1.740E-03 13.26 2 999.9 4.208 0.556 1.692E-06 1.692E-0 3 12.84 3 999.9 4.206 0.558 1.644E-06 1.643E-03 12.43 4 999.8 4.204 0.560 1.596E-06 1.595E-03 12.01 5 999.8 4.202 0.563 1.548E-0 6 1.547E-03 11.60 6 999.8 4.199 0.565 1.499E-06 1.499E-03 11.18 7 999.8 4.197 0.567 1.451E-06 1.451E-03 10.77 8 999.7 4.195 0.569 1.403E-06 1.402E-03 10.35 9 999.7 4.193 0.572 1.354E-06 1.354E-03 9.94 10 999.7 4.191 0.574 1.306E-06 1.306E-03 9.52 11 999.6 4.190 0.577 1.276E-06 1.276E-03 9.27 12 999.4 4.189 0.579 1.246E-06 1.246E-03 9.02 13 999.3 4.189 0.582 1.216E-06 1.215E-03 8.77 14 999.1 4.188 0.584 1.186E-06 1.185E-03 8.52 15 999.0 4.187 0.587 1.156E-06 1.155E-03 8.27 16 998.8 4.186 0.589 1.126E-06 1.125E-03 8.02 17 998.7 4.185 0.592 1.096E-06 1.095E-03 7.77 18 998.5 4.185 0.594 1.066E-06 1.064E-03 7.52 19 998.4 4.184 0.597 1.036E-06 1.034E-03 7.27 20 998.2 4.183 0.599 1.006E-06 1.004E-03 7.02 21 998.0 4.182 0.601 9.859E-07 9.838E-04 6.86 22 997.7 4.181 0.603 9.658E-07 9.635E-04 6.70 23 997.5 4.180 0.605 9.457E-07 9.433E-04 6.54 24 997.2 4.179 0.607 9.256E-07 9.230E-04 6.38 25 997.0 4.179 0.609 9.055E-07 9.028E-04 6.22 26 996.7 4.178 0.610 8.854E-07 8.825E-04 6.06 27 996.5 4.177 0.612 8.653E-07 8.623E-04 5.90 28 996.2 4.176 0.614 8.452E-07 8.420E-04 5.74 29 996.0 4.175 0.616 8.251E-07 8.218E-04 5.58 30 995.7 4.174 0.618 8.050E-07 8.015E-04 5.42 31 995.4 4.174 0.620 7.904E-07 7.867E-04 5.31 32 995.0 4.174 0.621 7.758E-07 7.719E-04 5.20 33 994.7 4.174 0.623 7.612E-07 7.570E-04 5.09 34 994.3 4.174 0.625 7.466E-07 7.422E-04 4.98 35 994.0 4.174 0.627 7.320E-07 7.274E-04 4.87 36 993.6 4.174 0.628 7.174E-07 7.126E-04 4.75 37 993.3 4.174 0.630 7.028E-07 6.978E-04 4.64 38 992.9 4.174 0.632 6.882E-07 6.829E-04 4.53 39 992.6 4.174 0.633 6.736E-07 6.681E-04 4.42 40 992.2 4.174 0.635 6.590E-07 6.533E-04 4.31 41 991.8 4.174 0.636 6.487E-07 6.429E-04 4.23

多相流物性计算

原油密度计算公式分析与评价 摘要:随着油气田的勘探开发逐渐转移到海洋、沙摸、极地等自然环境恶劣的地区,多相流技术得到了越来越广泛的应用。而物性参数是多相流分析的基础。不论采用何种分析模型,都要用到诸多热物性参数。其中,原油密度是油气输送过程中最基础又是最重要的物性参数,对于分析和研究多相流具有重要意义。本文比较分析在不同状态条件下原油密度的计算公式,为研究多相流技术做好必要的准备。 关键词 原油密度 脱气原油 溶气原油 1 引言 进入21世纪以来,随着中国东部和西部地区油气田的进一步开发和国外油气资源的引入,我国油气管输技术有了很大的发展。其中,多相流技术在国民经济和人类生活中的地位日益重要。确实在实际的输送过程中,输送的流体多数情况下是多相流,为了建立较为合理的模型,在各种模型下计算流体的各物性参数,为工程设计提供数据。而原油密度是油气输送过程中最基础的物性参数。原油密度计算分为脱气原油密度计算和溶气原油密度计算。 2 原油密度计算 2.1 脱气原油密度计算 2.1.1 简单查表计算方法 如果已知20℃原油的密度,在20℃±5℃温度范围内可用下式计算: (2.1) 式中:ρt ——温度为t ℃时的原油密度,kg/m 3; ρ20——温度为20℃时的原油密度,kg/m 3; α——原油平均密度温度系数,kg/m 3.℃; t ——原油的实际温度,℃。 α的值从表1-1中查得。 表1-1 原油平均密度温度系数 )20(20t --=t αρρ

上式算出的值不精确而且适用温度窄,虽然可以满足一般的工程计算,但不适用 交接计量和销售计算。 【1】 2.1.2 精确计算方法 如果已知20℃原油的密度,则0~50℃内的密度可以按下面的公式计算: (2.2) 式中:ρt ——温度为t ℃时的原油密度,kg/m 3; ρ20——温度为20℃时的原油密度,kg/m 3; t ——原油的实际温度,℃。 ξ——温度系数,kg/m 3.℃。 (2.3) 在20~120℃范围内原油的密度为: 20 1(20) t t ρρα= +- (2.4) 当0.78≤20ρ≤0.86时 3320(3.083 2.63810)10αρ--=-? 当0.86≤20ρ≤0.96时 3320(2.513 1.97510)10αρ--=-? 精确计算方法给出了直接的表达式,只要给出一定的条件,就能精确的计算原油的密度,误差相对较小,两种计算方法大体相同,主要区别点在于温度系数的处理上。 2.2溶气原油密度计算 溶气原油密度按下式计算 (2.5) 式中: ρo ——脱气原油密度,kg/m 3; ρa ——工程标准状态下空气的密度,kg/m 3; Δgs ——溶入的天然气相对于工程标准状态下空气的相对密度; o ?—— 脱气原油对水的相对密度。 3 结论 )20(20t --=t ξρρ)(1a gs s o ' o ρρρ?+=R B 20 00132.0828.1ρξ-=43818 .408779.4)00393.000379.0(o o s gs +?--?=?R

Aspen_Plus推荐使用的物性计算方法

做模拟的时候物性方法的选择是十分关键的,选择的十分正确关系着运行后的结果。是一个难点,高难点,而此内容与化工热力学关系十分紧密。 首先要明白什么是物性方法?比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来? 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:1.pv=nRT,2.dH=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢?想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系

物性参数表

物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH , (4)外观与性状:无色液体,有酒香。(5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂

二、甲醇(methyl alcohol,Methanol)CAS No.:67-56-1 (1)分子式 CH4O (2)相对分子质量32.04 (3)结构式 CH3O, (4)外观与性状:无色澄清液体,有刺激性气味。 (5)熔点(℃):-97.8,凝固点 -97.49℃,沸点64.5℃.闪点(开口)16℃,燃点470℃,折射率1. 3285,表面张力22.55×10-3N/m (6)相对密度(20 ℃/4℃)0.7914 溶解度参数δ=14.8,能与水、乙醇、乙醚、丙酮、苯、氯仿等有机溶剂混溶,甲醇对金属特别是黄铜有轻微的腐蚀性。易燃,燃烧时有无光的谈蓝色火焰。蒸气能与空气形成爆炸混合物.爆炸极限6.0%-36.5%(vol)。纯品略带乙醇味,粗品刺鼻难闻。有毒可直接侵害人的肢体细胞组织.特别是侵害视觉神经网膜,致使失明。正常人一次饮用4一10g纯甲醉可产生严重中毒。饮用7-8g可导致失明,饮用

30-100g就会死亡。空气中甲酵蒸气最高容许浓度5mg/m3。

常见物性参数表word版本

常见物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH, (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记 7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂 不同压力下乙醇物性参数变化 表压液态密 度比热容气体密 度 蒸发 热 分子 量 粘度沸 点 MPa Kg/m3KJ/Kg*K Kg/m3KJ/Kg g/mol MPa*s ℃ 0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.6 5 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.3 5 -0.02 759.50 2.711 1.2984 865.7 6 46.0 7 0.66 72. 8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.6 9 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.8 2 -0.08 774.37 2.556 0.3559 916.51 46.07 0.83 42.4

纯物质(乙醇)物性参数查询输出结果

纯物质(乙醇)物性参数查询输出结果 (2013/11/17) (1) 常规性质 中文名: 乙醇 英文名: ETHANOL CAS号: 64-17-5 化学式: C2H6O 结构简式: 所属族: 醇 分子量: 46.069 g/mol 熔点: -114.1 C 沸点: 78.29 C 临界压力: 6147.9957 kPa 临界温度: 240.77 C 临界体积: 1.67E-04 m3/mol 偏心因子: 0.645245 临界压缩因子: 0.24 偶极距: 1.69083 debye 标准焓: -234.9500096 kJ/mol 标准自由焓: -167.8499464 kJ/mol 绝对熵: 2.806401E+05 J/kmol/K 熔化焓: 未知 kJ/mol 溶解参数: 10.853 (cal/cm3)1/2 折光率: 1.35941 等张比容: 128.324 (2) 饱和蒸气压 系数(Y单位:Pa) 使用温度范围:159.05 - 513.92K A= 74.475 B= -7164.3 C= -7.327

D= 3.134E-6 E= 2 (3) 液体比热容 系数(Y单位:J/kmol/K) 使用温度范围:159.05 - 390K A= 1.02640E+5 B= -139.63 C= -0.030341 D= 0.0020386 E= 0 (4) 理想气体比热容 系数(Y单位:J/mol/K) 使用温度范围:200 - 1500K A= 49200 B= 1.45770E+5 C= 1662.8 D= 93900 E= 744.7 (5) 液体粘度 系数(Y单位:Pa·s) 使用温度范围:200 - 440K

互联网上的物性参数查询

互联网上的物性参数查询 1 化学工程师资源主页 该站点由西弗吉尼亚大学校友Christopher M.A.Haslego维护。该主页有非常丰富的化学工程方面的内容,其中包括一些查找物性数据比较好的站点:(https://www.360docs.net/doc/e110646738.html,/physinternetzz.shtml) 1.1 物性数据((https://www.360docs.net/doc/e110646738.html,/data.xls) 该数据库是浏览型数据库,含有470多种纯组分的物性数据,如分子量、冰点、沸点、临界温度、临界压力、临界体积、临界压缩、无中心参数、液体密度、偶极矩、气相热容、液相热容、液体粘度、反应标准热、蒸气压、蒸发热等。 1.2 聚合物和大分子的物理性质数据库(https://www.360docs.net/doc/e110646738.html,/~athas/databank/intro.html) 该数据库是浏览型数据库。含有200多种线性大分子的物性数据,如熔融温度、玻璃转换温度、热容等。该站点不仅提供物理性质,还提供一些供估计物质物理性质的软件,如PhysProps from G&P Engineering、Prode's thermoPhysical Properties Generator(PPP)等。 1.3 https://www.360docs.net/doc/e110646738.html,/~jrm/thermot.html 该站点可查294种组分的热力学性质,还可以根据Peng Robinson状态方程计算纯组分或混合物的性质:包括气液相图、液体与气体密度、焓、热容、临界值、分子量等数据。 1.4 https://www.360docs.net/doc/e110646738.html,/ G&P Engineering是一个软件,提供物质的28种物理性质并估算其它18种物理性质。 2 由美国国家标准技术研究院开发的数据库 2.1 标准参考数据库化学网上工具书(https://www.360docs.net/doc/e110646738.html,/chemistry/) 该数据库是一种检索型数据库,检索方法非常简单,可通过化学物质名称、分子式、部分分子式、CAS登记号、结构或部分结构、离子能性质、振动与电子能、分子量和作用进行检索,可检索到的数据包括分子式、分子量、化学结构、别名、CAS登记号、气相热化学数据、凝聚相热化学数据、液态常压热容、固态常压热容、相变数据、汽化焓、升华焓、燃烧焓、燃烧熵、各种反应的热化学数据、溶解数据、气相离子能数据、气相红外光谱、质谱、紫外/可见光谱、振动/电子能及其参考文献。 2.2 美国标准技术研究所物理网上工具书(https://www.360docs.net/doc/e110646738.html,/) 该站点包括物性常数、原子光谱数据、分子光谱数据、离子化数据、χ-射线、γ-射线数据、放射性计量数据、核物理数据及其它数据库。 3 化学搜索器

纸箱纸板物性计算方法

紙箱抗壓強度 一. 紙箱的抗壓受以下因素的影響 1. 溫濕度,其影響關係圖如下: 抗 紙 壓 箱 強含 度 水 率 % 含水率% 溫度25℃下,相對濕度% 2. 印刷方式對抗壓的影響,主要有以下兩種: A. 在右圖左右或前後兩面印刷方式中,水性印刷 導致抗壓下降約10%,油性印刷導致抗壓下 降約25%左右。 B. 在右圖中四嘜都印刷,水性印刷導致 抗壓下降約15%,油性印刷導致抗壓 下降約38%。 3.手挽孔位置對抗壓的影響 A. 手挽孔面積越大,抗壓越小。 B. 手挽孔越接近上下搖蓋位置,抗壓越小。 C. 手挽孔越接近長寬壓線位置,抗壓力越小。 D. 手挽孔在紙箱中央位時,抗壓降低約2~4%,在紙箱壓線位置附近時,抗壓下降約10%。

二. 紙箱長寬高對耐壓率的影響 1. 紙箱周邊長愈大,耐壓強度愈高,見下圖: 抗壓計算公式① P=K*G(H-h)(kg*f)/h*s (cm 2) 式中:K 表示強度保險係數; G 表示紙箱內裝貨物的重量(kg); H 表示堆碼高度(cm) h 表示紙箱高度; S 表示紙箱底面積(cm 2)。 另:強度係數K 根據紙箱所裝貨物的貯存 日期或貯存條件所決定: 貯存期<30天, K=1.6 ; 貯存期30天~100天, K=1.65 ; 貯存期100天以上, K=2 。 2.紙箱高度一定,周邊長一定,寬度爲長度之0.6倍時, 即:H 一定,Z 一定,且W=0.6L 時, P 值最大。 說明:坐標中斜線實爲曲線 豎實線應爲虛線。 另:紙箱抗壓強度計算公式②: P=Rx*{(4Ax/Z) }2/3*J*Z 說明:P 表示箱之耐壓強度kg*f; Ax 表示楞別常數; Z 箱之周邊長cm; J 表示箱之常數。 Rx=(面、裏紙環壓強度+芯紙環壓強度*瓦楞率)/6 P=Rx*f(Z) 21/3

水的物性参数表

温度t °C 密度p比热容cp 热导率入运动黏度V动力黏度n 普朗特数P r kg/m3 kJ/(kg .K) W/(m ? K) m2/s Pa - s 0 999.9 4.212 0.551 1.789E-06 1.788E-03 13.67 1 999.9 4.210 0.553 1.741E-06 1.740E-03 13.26 2 999.9 4.208 0.556 1.692E-06 1.692E-0 3 12.84 3 999.9 4.206 0.558 1.644E-06 1.643E-03 12.43 4 999.8 4.204 0.560 1.596E-06 1.595E-03 12.01 5 999.8 4.202 0.563 1.548E-0 6 1.547E-03 11.60 6 999.8 4.199 0.565 1.499E-06 1.499E-03 11.18 7 999.8 4.197 0.567 1.451E-06 1.451E-03 10.77 8 999.7 4.195 0.569 1.403E-06 1.402E-03 10.35 9 999.7 4.193 0.572 1.354E-06 1.354E-03 9.94 10 999.7 4.191 0.574 1.306E-06 1.306E-03 9.52 11 999.6 4.190 0.577 1.276E-06 1.276E-03 9.27 12 999.4 4.189 0.579 1.246E-06 1.246E-03 9.02 13 999.3 4.189 0.582 1.216E-06 1.215E-03 8.77 14 999.1 4.188 0.584 1.186E-06 1.185E-03 8.52 15 999.0 4.187 0.587 1.156E-06 1.155E-03 8.27 16 998.8 4.186 0.589 1.126E-06 1.125E-03 8.02 17 998.7 4.185 0.592 1.096E-06 1.095E-03 7.77 18 998.5 4.185 0.594 1.066E-06 1.064E-03 7.52 19 998.4 4.184 0.597 1.036E-06 1.034E-03 7.27 20 998.2 4.183 0.599 1.006E-06 1.004E-03 7.02 21 998.0 4.182 0.601 9.859E-07 9.838E-04 6.86 22 997.7 4.181 0.603 9.658E-07 9.635E-04 6.70 23 997.5 4.180 0.605 9.457E-07 9.433E-04 6.54 24 997.2 4.179 0.607 9.256E-07 9.230E-04 6.38 25 997.0 4.179 0.609 9.055E-07 9.028E-04 6.22 26 996.7 4.178 0.610 8.854E-07 8.825E-04 6.06 27 996.5 4.177 0.612 8.653E-07 8.623E-04 5.90 28 996.2 4.176 0.614 8.452E-07 8.420E-04 5.74 29 996.0 4.175 0.616 8.251E-07 8.218E-04 5.58 30 995.7 4.174 0.618 8.050E-07 8.015E-04 5.42 31 995.4 4.174 0.620 7.904E-07 7.867E-04 5.31 32 995.0 4.174 0.621 7.758E-07 7.719E-04 5.20 33 994.7 4.174 0.623 7.612E-07 7.570E-04 5.09 34 994.3 4.174 0.625 7.466E-07 7.422E-04 4.98 35 994.0 4.174 0.627 7.320E-07 7.274E-04 4.87 36 993.6 4.174 0.628 7.174E-07 7.126E-04 4.75 37 993.3 4.174 0.630 7.028E-07 6.978E-04 4.64 38 992.9 4.174 0.632 6.882E-07 6.829E-04 4.53 39 992.6 4.174 0.633 6.736E-07 6.681E-04 4.42 40 992.2 4.174 0.635 6.590E-07 6.533E-04 4.31 41 991.8 4.174 0.636 6.487E-07 6.429E-04 4.23

氨气物性参数

1.别名·xx 液氨;Ammonia、Liquid amlllorlia. 2.用途 氮肥、铵盐、硝酸、尿素、丙烯腈、三聚氰酰胺、丙烯酰胺、氢氰酸、无机试剂、药品、染料、酸性中和剂、橡胶氧化剂、金属表面氮化、制冷剂、半导体用气体、氧化、氮化膜、化学气相淀积、标准气、校正气、在线仪表标准气。 3.制法 氢和氮在高温高压时在催化剂的作用下合成而得氨。 4.理化性质 分子量: 17.031熔点( 101.325kPa):-77.7℃沸点( 101.325kPa):-33.4℃液体密度(- 73.15℃, 8.666kPa):729kg/m3 气体密度(0℃, 101.325kPa): 0.7708kg/m3 相对密度(气体,空气= 1.25℃, 101.325kPa):

0.597比容( 21.1℃, 101.325kPa): 1.4109m3/kg 气液容积比: (15℃,100kPa):947L/L 临界温度: 132.4℃临界压力:11277kPa临界密度:235kg/m3 压缩系数: 压缩系数 压力kPa 300K380K420K580K 101.330. 99060.99660. 99780.9997 506.630. 94630.97850.985l 0.9954 1013.250. 88600.95730. 97030.9911熔化热(- 77.74℃,

6.677kPa): 331.59kJ/kg 气化热(- 33.41℃, 101.325kPa): 1371.18kJ/kg 比热容( 101.33kPa,300K): Cp= 2159.97J/(kg·K) 比热比(气体, 46.8℃, 101.325kPa): CP/Cv= 1.307 蒸气压(-20℃): 186.4kPa(0℃): 410.4kPa(20℃):829,9kPa粘度(气体,20℃,101.325kPa): 0.00982mPa·s(液体,- 33.5℃):

利用aspen-plus进行物性参数的估算

1 纯组分物性常数的估算 1.1、乙基2-乙氧基乙醇物性的输入 由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。 已知: 最简式:(C6H14O3) 分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH) 沸点:195℃ 1.2、具体模拟计算过程 乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。 为估计纯组分物性参数,则需 1. 在 Data (数据)菜单中选择Properties(性质) 2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入) 3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数) 4. 单击 Pure Component(纯组分)页 5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数 6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计

选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性 7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。 具体操作过程如下: 1、打开一个新的运行,点击Date/Setup 2、在Setup/Specifications-Global页上改变Run Type位property Estimation

材料热物性参数

Apache-Tables 5.9

Apache-Tables Table1Ground Reflectance (3) Table2Precipitable Water Vapour Depth(In Metres) (4) Table3Dry-Bulb Temperatures (5) Table4World Weather Data (6) Table5U-Values for Glazing (7) Table6Thermal Conductivity,Specific Heat Capacity and Density (9) Table8Shading Coefficient and Short-wave Radiant Fraction for Blinds and Curtains (19) Table9Transmission Factors for External Miniature Louvres (20) Table10Sensible and Latent Gains from People (21) Table11Radiant Fraction for Casual Gains (22) Table12Winter Design Temperatures and Air Changes (23) Table13Heat Emitter Radiant Fraction (26) Table14Solar Absorptivity (27) Table15Thermal Resistances of Air Gaps (28) Table16Diffusion Resistance Factors (30) Table17Permeances (31) Table18Vapour Resistivities (32) Table21Inside Surface Resistance(Table A3.5CIBSE Guide) (34) Table22Outside Surface Resistance(Table A3.6CIBSE Guide) (35) Table23Emissivities of Various Materials(Table C3.7CIBSE Guide) (36)

丙烯物性参数

丙稀丙稀物性参数物性参数物性参数 (1) (1) 常规性质常规性质常规性质 中文名: 丙稀 英文名: PROPYLENE CAS 号: 115071 化学式: C3H6 结构简式: 所属族: 1-炔烃 分子量: 42.0806 kg/kmol 熔点: 87.89 K 沸点: 225.46 K 临界压力: 4665.003 kPa 临界温度: 365.57 K 临界体积: 1.884E-04 m3/mol 偏心因子: 0.13982 临界压缩因子: 0.289 偶极距: 0.36575 debye 标准焓: 19.7099872 kJ/mol 标准自由焓: 62.14997 kJ/mol 绝对熵: .2666 kJ/mol/K 熔化焓: 未知 kJ/mol 溶解参数: 6.43 (cal/cm3)1/2 折光率: 1.3625 等张比容: 140.014 (2) (2) 饱和蒸气压饱和蒸气压饱和蒸气压 系数(Y 单位:Pa) 使用温度范围:87.89 - 365.57K A= 57.263 B=-3382.4 C=-5.7707 D= .000010431 E= 2 (3) (3) 液体热容液体热容液体热容

系数(Y 单位:J/kmol/K) 使用温度范围:87.89 - 298.15K A= 117200 B=-386.32 C= 1.2348 D= 0 E= 0 (4) (4) 理想气体比热容理想气体比热容理想气体比热容 系数(Y 单位:J/mol/K) 使用温度范围:130 - 1500K A= 43390 B= 152000 C= 1425 D= 78600 E= 623.9 (5) (5) 液体粘度液体粘度液体粘度 系数(Y 单位:Pa·s) 使用温度范围:87.89 - 320K A=-9.1477 B= 500.87 C=-.31745 D= 0 E= 0

物性参数表

常用溶剂 一、乙醇(ethyl alcohol,ethanol)CAS No.:64-17-5 (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH, (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂; 密度:相对密度(水=1)0.79;相对密度(空气=1)1.59; 稳定性:稳定;危险标记7(易燃液体); 主要用途:用于制酒工业、有机合成、消毒以用作溶剂 不同压力下乙醇物性参数变化 表压液态密 度比热容气体密 度 蒸发 热 分子 量 粘度沸 点 MPa Kg/m3KJ/Kg*K Kg/m3KJ/Kg g/mol MPa*s ℃0.06 750.49 2.811 2.4693 830.21 46.07 0.58 90.65 0.04 752.35 2.790 2.1825 837.84 46.07 0.59 87 0.02 754.38 2.767 1.8917 845.99 46.07 0.61 83 常压756.65 2.742 1.5966 854.89 46.07 0.63 78.35 -0.02 759.50 2.711 1.2984 865.76 46.07 0.66 72.8 -0.04 762.93 2.674 0.9936 878.32 46.07 0.69 65.9 -0.06 767.38 2.627 0.6806 893.85 46.07 0.74 56.82 -0.08 774.37 2.556 0.3559 916.51 46.07 0.83 42.4

物性方法选择概述

对于初学者而言,除非他十分熟悉热力学的内容,否则物性方法的选择确实是个难点,在你们还没有重新学习过热力学或者精度过Aspen Plus物性方法和模型手册之前,出于学习软件的目的,先讲一下物性方法。 首先要明白什么是物性方法? 比如我们做一个很简单的化工过程计算,一股100℃,1bar的水-乙醇(50:50摩尔比,100kmol/h)的物料经过一个换热器后冷却到了80℃,0.9bar,问如下值分别是多少? 1.入口物料的密度,汽相分率。 2.换热器的负荷。 3.出口物料的汽相分率,汽相密度,液相密度。复杂一点,我还可以问物料的粘度,逸度,活度,熵等等。 以上的值怎么计算出来? 好,我们来假设进出口物料全是理想气体,完全符合理想气体的行为,则其密度可以使用pv=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。 在此例当中,描述理想气体行为的若干方程,就是一种物性方法(Aspen Plus中称为Ideal Property Method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干物理化学计算公式。对于本例而言至少包含了如下两个方程: 1.pV=nRT 2.dH=C p dT 实际上,以上是一种最简单的计算方法,但结果是错误的。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。 那么应该如何计算呢?主要涉及以下过程: 1.对于汽相pvt计算,可以使用srk方程,从而可以得到密度。液相也可以使用状态方程计算密度,但此处不推荐使用,可以使用Rackett模型计算液相密度。 2.至于物流的相态,则首先需要做汽液平衡计算。 3.在进行汽液平衡计算时,液相应用活度系数方程计算组分的逸度系数,并且还需要使用拓展antoine方程计算蒸汽压力。 4.换热器负荷的计算比较复杂,可以使用进出口物流焓差来计算,那么需要计算出进出口物流的焓。 5.焓的计算有多种途径,对于液相比较常用的方法是计算理想液体混合物焓,然后再加上过剩焓计算出来。要计算非理想液体混合物过剩焓,则可通过混合物质汽相焓与蒸发焓差来计算,非理想性比较强是还要考虑混合焓差。 由此可见,实际过程至少包含如下公式方程: 1.状态方程srk, 2.液相密度方程rackett. 3.拓展antoine方程. 4.汽,液相逸度系数方程 5.液相活度系数方程 6.汽相焓方程,通过srk方程导出,需要设计纯气体Cp=f(p,t)方程。 7.液相焓方程,相当复杂,此处不再重复。 8.其他方程,包括数学方程,比如以上计算时涉及到了微积分运算,汽液平衡的回归运算等等。

常用材料的热物性参数

表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.88(20C) =7.3(1500C) =7.0(1600C) =7.86(15C) =7.86(15C) =7.85(15C) =7.85(15C)

=7.83(15C)续表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.73(15C) Ts=1488 T L=1497 =7.84(15C) T S=1420 T L=1520 =7.7(15C) 13.1Cr,0.5Ni T S=1399 T L=1454 =7.0(15C) 比热相对于 普通铸铁

=7.1(15C) 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) =7.5~7.8(15C) =8.92 T S=T L=1083

s=2.70(15C) T S=T M=660.2 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相 线、固相线温度(C) s=1.74 T L=T S=651

s=6.09 T S=1395 T L=1427表2 铸型的热物性计算公式

硅砂,干型,呋喃铸型600C以下 0.385<<0.494 0.0058

物性参数网站大全

1 化学工程师资源主页 该站点由西弗吉尼亚大学校友Christopher M.A.Haslego维护。该主页有非常丰富的 化学工程方面的内容,其中包括一些查找物性数据比较好的站点:(https://www.360docs.net/doc/e110646738.html,/physinternetzz.shtml) 1.1 物性数据((https://www.360docs.net/doc/e110646738.html,/data.xls) 该数据库是浏览型数据库,含有470多种纯组分的物性数据,如分子量、冰点、沸点 、临界温度、临界压力、临界体积、临界压缩、无中心参数、液体密度、偶极矩、气相 热容、液相热容、液体粘度、反应标准热、蒸气压、蒸发热等。 1.2 聚合物和大分子的物理性质数据库(https://www.360docs.net/doc/e110646738.html,/~athas/da tabank/intro.html) 该数据库是浏览型数据库。含有200多种线性大分子的物性数据,如熔融温度、玻璃 转换温度、热容等。该站点不仅提供物理性质,还提供一些供估计物质物理性质的软件 ,如PhysProps from G&P Engineering、Prode's thermoPhysical Properties Genera tor(PPP)等。 1.3 https://www.360docs.net/doc/e110646738.html,/~jrm/thermot.html 该站点可查294种组分的热力学性质,还可以根据Peng Robinson状态方程计算纯组 分或混合物的性质:包括气液相图、液体与气体密度、焓、热容、临界值、分子量等数

据。 1.4 https://www.360docs.net/doc/e110646738.html,/ G&P Engineering是一个软件,提供物质的28种物理性质并估算其它18种物理性质。 2 由美国国家标准技术研究院开发的数据库 2.1 标准参考数据库化学网上工具书(https://www.360docs.net/doc/e110646738.html,/chemistry/) 该数据库是一种检索型数据库,检索方法非常简单,可通过化学物质名称、分子式 、部分分子式、CAS登记号、结构或部分结构、离子能性质、振动与电子能、分子量和作 用进行检索,可检索到的数据包括分子式、分子量、化学结构、别名、CAS登记号、气相 热化学数据、凝聚相热化学数据、液态常压热容、固态常压热容、相变数据、汽化焓、 升华焓、燃烧焓、燃烧熵、各种反应的热化学数据、溶解数据、气相离子能数据、气相 红外光谱、质谱、紫外/可见光谱、振动/电子能及其参考文献。 2.2 美国标准技术研究所物理网上工具书(https://www.360docs.net/doc/e110646738.html,/) 该站点包括物性常数、原子光谱数据、分子光谱数据、离子化数据、χ-射线、γ- 射线数据、放射性计量数据、核物理数据及其它数据库。 3 化学搜索器(https://www.360docs.net/doc/e110646738.html,/' target=_blank>https://www.360docs.net/doc/e110646738.html,/) Chemfinder化学搜索器是免费注册使用的数据库,是目前网上化合物性质

相关文档
最新文档