二项式定理(习题含答案)讲课教案

二项式定理(习题含答案)讲课教案
二项式定理(习题含答案)讲课教案

二项式定理

一、 求展开式中特定项 1、在的展开式中,的幂指数是整数的共有( ) A .项 B .项 C .项 D .项 【答案】C 【解析】,,若要是幂指数是整数,所以0,6,12,18,24,30,所以共6项,故选C .

3、若展开式中的常数项为 .(用数字作答)

【答案】10

【解】由题意得,令,可得展示式中各项的系数的和为32,所以,解得,所以展开式的通项为,当时,常数项为, 4、二项式的展开式中的常数项为 . 【答案】112

【解析】由二项式通项可得,(r=0,1,,8),显然当时,,故二项式展开式中的常数项为112.

5、的展开式中常数项等于________.

【答案】.

【解析】因为中的展开式通项为,

当第一项取时,,此时的展开式中常数为;当第一项取时,,此时的展开式中常数为;所以原式的展开式中常数项等于,故应填. 6、设,则

的展开式中常数项

是 .

【答案】 332

,30

x 4567()

r r r

r

r r x C x x C T 6

5

153033030

11--+?=???

? ????

=30......2,1,0=r =r 2531

()x x

+1x =232n =5n =253

1()x x

+

10515r r

r T C x -+=2r =2510C

=82)x

3488838

122r

r

r r r

r r x C x

x C --+-=-=)()()

(T 2=r 1123=T 41(2)(13)x x

--1441

(2)(13)x x

--4

(13)x -4C (3)r r

x -204C 1=21

x

-

14C (3)12x -=-12141420

sin 12cos 2x a x dx π

??=

-+ ???

?

()6

2

2x ??+ ?

332=-()20

0sin 12cos sin cos (cos sin )202x a x dx x x dx x x π

ππ??=

-+=+=-+= ??

?

?

?

的展开式的通项为,所以所求常数项为.

二、 求特定项系数或系数和

7、的展开式中项的系数是( )

A .

B .

C .

D . 【答案】A

【解析】由通式,令,则展开式中项的系数是.

8、在x (1+x )6的展开式中,含x 3项的系数是 . 【答案】15

【解】的通项,令可得.则中的系数为

15.

9、在的展开式中含的项的系数是 . 【答案】-55

【解析】的展开式中项由和两部分组成,所以的项的系数为. 10、已知,那么

展开式中含项的系数为 . 【答案】135

【解析】根据题意,,则

中,由二项式定理的通项公式,可设含项的项是,可知,所以系数为

11、已知,则等于( )

A .-5

B .5

C .90

D .180

【答案】D 因为,所以等于选D.

12、在二项式 的展开式中,只有第5项的二项式系数最大,则________;展开式中的第4项=_______.

6(

=6

663166((1)2r r r r r r

r r T C C x ---+==-??36335655

66(1)22(1)2T C C --=-??+-?332=

-8()x 62x y 5656-2828-r r r y x C )2(88--2=r 62x y 56)2(22

8=-C ()61x +16r r r T C x +=2r =2

615C =()6

1x x +3x 6(1)(2)x x -?-3x 6(1)(2)x x -?-3x 33

6)(2x C -226)(x -x C -?)(3x 552-2

636

-=-C C dx x

n 16

e 1

?=n

x x )(3-2x 6

6

e

1

11ln |6e n dx x x

=?==n x x )(3-1r n r r r n T C a b -+=2x 616(3)r r

r r T C x -+=-2r =269135C ?=()()()()10210

012101111x a a x a x a x +=+-+-++-L 8a 1010(1)(21)x x +=-+-8a

82

10(2)454180.C -=?

=1)2

n

x =n

【答案】,.

【解析】由二项式定理展开通项公式,由题

意得,当且仅当时,取最大值,∴,第4项为. 13、如果,那么的值等于( ) (A )-1 (B )-2 (C )0 (D )2 【答案】A

【解析】令,代入二项式,得

,令

,代入二项式

,得,所以,即,故选A .

14、(﹣2)7

展开式中所有项的系数的和为

【答案】-1 解:把x=1代入二项式,可得(

﹣2)7 =﹣1, 15、(x ﹣2)(x ﹣1)5的展开式中所有项的系数和等于 【答案】0 解:在(x ﹣2)(x ﹣1)5的展开式中,令x=1,即(1﹣2)(1﹣1)5=0, 所以展开式中所有项的系数和等于0. 16、在的展开式中,所有项的系数和为,则的系数等

于 .

【答案】

【解析】当时,,解得,那么含

的项就是,所以系数是-270. 17、设,若,则

【答案】0. 【

8193

7x -21()(2)33

111()()22

n r n r r r r r r r n

n T C x x C x -++=-?=-4n =r n C 8n =1

19

(163)333

38

1()72

C x x +-=-7270127(12)x a a x a x a x -=++++L 017a a a +++L 1x =7270127(12)x a a x a x a x -=++++L 70127(12)1

a a a a -=++++=-L 0

x =7270127(12)x a a x a x a x -=++++L 70(10)1a -==12711a a a ++++=-L 1272a a a +++=-L *3)()n n N -∈32-1

x 270-1=x ()322--=n

5=n x

1

()x x C 1270313

2

25-=-????

? ???0

(sin cos )k x x dx π

=

-?

8822108)1(x a x a x a a kx ++++=-K 1238a a a a +++???+=0

(sin cos )(cos sin )

k x x dx x x π

π=-=--?

令得:,即 再令得:,即 所以

18、设(5x ﹣)n 的展开式的各项系数和为M ,二项式系数和为N ,若M ﹣N=240,则展开式中x 的系数为 . 【答案】150

解:由于(5x ﹣)n 的展开式的各项系数和M 与变量x 无关,故令x=1,即可得到展开式的各项系数和M=(5﹣1)n =4n .

再由二项式系数和为N=2n ,且M ﹣N=240,可得 4n ﹣2n =240,即 22n ﹣2n ﹣240=0. 解得 2n =16,或 2n =﹣15(舍去),∴n=4. (5x ﹣

)n 的展开式的通项公式为 T r+1=

?(5x )4﹣r ?(﹣1)r ?=(﹣1)r ?

?54﹣r ?.

令4﹣

=1,解得 r=2,∴展开式中x 的系数为 (﹣1)r

??5

4﹣r

=1×6×25=150,

19、设,则 . 【答案】

【解析】, 所以令,得到, 所以 三、 求参数问题

20、若的展开式中第四项为常数项,则( )

A .

B .

C .

D .

【答案】B

【解析】根据二项式展开公式有第四项为,第四项

为常数,则必有

,即,所以正确选项为

B. 21、二项式的展开式中的系数为15,则

( )

(cos sin )(cos0sin 0)2ππ=-----=1x =80128(121)a a a a -?=++++K 01281a a a a ++++=K 0x =80128(120)000a a a a -?=+?+?++?K 01a =12380a a a a +++???+=8877108)1(x a x a x a a x ++++=-Λ178a a a +++=L 255178a a a +++=L 87654321a a a a a a a a +-+-+-+-1-=x =82876543210a a a a a a a a a +-+-+-+-2551256-20887654321=-==+-+-+-+-a a a a a a a a a n

n =45672

53

33

3

3

342)21(

)(---==n n

n n

x

C x

x C T 02

5

=-n 5=n )()1(*

N n x n ∈+2x =n

A 、5

B 、 6

C 、8

D 、10 【答案】B

【解析】二项式的展开式中的通项为,令,

得,所以的系数为,解得;故选B . 22、(a +x)4的展开式中x 3的系数等于8,则实数a =________.【答案】2

【解析】∵,∴当,即时,. 23、若的展开式中的系数为10,则实数( ) A

1 B .或1 C .2或 D . 【答案】B

【解析】由题意得的一次性与二次项系数之和为14,其二项展开通项公式

∴或,故选B . 24、设,当

时,等于( )

A .5

B .6

C .7

D .8 【答案】C . 【解析】令,

则可得,故选C . 四、 其他相关问题

25、20152015除以8的余数为( ) 【答案】7

【解析】试题分析:先将幂利用二项式表示,使其底数用8的倍数表示,利用二项式定理展开得到余数. 试题解析:解:∵20152015=2015=?20162015﹣?20162014+

?20162013﹣

20162012+…+

?2016﹣

故20152015除以8的余数为﹣

=﹣1,即20152015除以8的余数为7,

)()1(*N n x n ∈+k n k

n k x C T -+?=12=-k n 2-=n k 2x 152

)

1(22=-=

=-n n C C n n n 6=n 4r+14T =C r r r a x

-43r -=1r =133324T =C 48,2ax ax x a ==∴=()()4

11x ax ++2x a =53-5

3

-4

(1)ax +14r r r

r T C a x +=22144101C a C a a +=?=53

-23(1)(1)(1)(1)

n x x x x ++++++???++2012n n a a x a x a x =+++???+012254n a a a a +++???+=n 1x =2

3

12(21)

22222225418721

n n

n n n +-+++???+=

=-=?+=?=-

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

完整版二项式定理测试题及答案

二项式定理测试题及答案 n 能使(n+i) 4 成为整数(B ) C.2 D.3 A A ; L L A ;J°,则S 的个位数字是(C ) -a ) 8展开式中常数项为1120,其 中实数a 是常数,则展开式中各项系数的和 x A. 15 个 B. 33 个 C. 17 个 D. 16 个 是(C ) A.28 B.38 C.1 或38 D.1 或 28 5.在(2 3 5)100的展开式中,有理项的个数是( 6.在、x 1 3x 24 的展开式中,x 的幕指数是整数的项共有(C B . 4项 -x)6的展开式中,含 、5 A. 3项 7?在(1 - x)5- (1 A 、一 5 B 、5 C & (1 x)5 (1 x)3的展开式中x 3的系数为(A A . 6 B. -6 C. 9 9.若x==,则(3+2x) 10的展开式中最大的项为(B 2 A.第一项 C . 5项 3 x 的项的系数是(C 、一10 B. 、10 ) D . -9 第三项 C. 第六项 D. 第八项 A. 7 B. 12 C. 14 D . 5 11.设函数 f(x) (1 2x)10 ,则导函数 2 f (x)的展开式x 项的系数为(C ) A. 1440 B .-1440 C .-2880 D .2880 12 .在(x 1 5 -I)5 x '的展开式中,常数项为( B ) (A ) 51 (B ) -51 (C )- ii (D ) ii 13 .若(x n n 1) x L 3.2. ax bx L 1(n N ),且 a:b 3:1,则n 的值为(C ) A. 9 B . 10 C . ii D. 12 14 .若多项式x 2 10 x =a 0 a i (x 1) a 9(x i)9 a i0(x i)i0, 则 a 9 ( ) (A ) 9 (B ) 10 (C ) 9 (D ) 10 10.二项式 n 的最小值为( ) A 解:根据左边 1,易知 a io 10 X 的系数为 1,左边x 9的系数为0,右边x 9的系数为 1 3 )n 的展开式中含有非零常数项,则正整数 3x 3 1.有多少个整数 A.0 B.1 2. 2 4 展开式中不含x 项的系数的和为(B ) A.-1 B.0 C.1 D.2 3?若 S =A 1 4.已知(x (2x 4

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理学案

1.3.1二项式定理(1) (一)教学目标 1、知识与技能: 掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。 2、过程与方法:通过学生熟悉的多项式的乘法引入,让学生归纳猜想出二项式定理,发挥例题的示范作用使学生能用它们解决与二项展开式有关的简单问题。 3、情态与价值:培养归纳猜想,抽象概括,演绎证明等理性思维能力 (二)教学重、难点 重点:二项式定理和二项展开式的通项公式。 难点:二项式定理和二项展开式的通项公式。 (三)教学设想 、问题情境 1. 在n=1,2,3,4时,研究(a+b)n 的展开式. (a+b)1= , (a+b)2= , (a+b)3= , (a+b)4= . 构建数学 (a+b) n = 这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)n的 ,其 中r n C (r=0,1,2,……,n )叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项. 数学应用 例1用二项式定理展开: (1)93)b a (+; (2)7)x 22x (- 例2求(1+2x )7的展开式中第4项的二项式系数和系数 例3求(x- 8)21x 的二项展开式中的常数项。 n n n r r n r n n n n n n n b C b a C b a C b a C a C ++++++---ΛΛ2221110

练习: 1. 求(2a+3b )6的展开式的第3项. 2. 求(3b+2a )6的展开式的第3项. 3.写出的 展开式的第r+1项. 4选择题 (1)62)x a a x (-的展开式中,第五项是………………………………………( ) A .x 15- B .32a x 6- C .x 20 D .x 15 (2)153)a 1 a (-的展开式中,不含a 的项是第……………………………( )项 A .7 B .8 C .9 D .6 (3)(x-2)9的展开式中,第6项的二项式系数是……………………………( ) A .4032 B .-4032 C .126 D .-126 (4)若n )111 x (-的展开式中的第三项系数等于6,则n 等于………………( ) A .4 B .4或-3 C .12 D .3 (5)多项式(1-2x)5(2+x)含x 3项的系数是………………………… ………( ) A .120 B .-120 C .100 D .-100 5.求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中x 2的系数. 6.求二项式73)213(+ 的展开式中的有理项. 7.二项式n 4 )x 1x x (+ 的展开式中第三项系数比第二项系数大44,求第4项的系数. n x x )21(33-

2018届浙江省基于高考试题的复习资料——二项式定理

(2)增减性与最大值:当r≤n+1 22 n 相等并同时取最大值。 九、计数原理与古典概率 (二)二项式定理 一、高考考什么? [考试说明] 3.了解二项式定理,二项式系数的性质。 [知识梳理] 1.二项式定理:(a+b)n=C0a n+C1a n-1b+ n n +C r a n-r b r+ n +C n b n,其中组合数C r叫 n n 做第r+1项的二项式系数;展开式共有n+1项,其中第r+l项T r+1=C r a n-r b r(r=0,1,2, n ???),会求常数项、某项的系数等 2.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m=C n-m; n n n+1 时,二项式系数C r的值逐渐增大,当r≥时, n C r的值逐渐减小,且在中间取得最大值。当n为偶数时,中间一项(第n n 2+1项) 的二项式系数C n 2 n 取得最大值。当n为奇数时,中间两项(第 n+1n+3 和项)的 22 二项式系数C n-12 n =C n+12(3)二项式系数的和: C0+C1+ n n +C r+ n +C n=2n; n C0+C2+???=C1+C3+???=2n-1。n n n n 3.展开式系数的性质:若 (a+bx)n=a+a x+ 01+a x n;令f(x)=(a+bx)n n 则:(1)展开式的各项系数和为f (1) (2)展开式的奇次项系数和为1 [f(1)-f(-1)] 2

(6) x - ? 展开式中的常数项是( ) 1 (3)展开式的偶次项系数和为 [ f (1)+ f (-1)] 2 二、高考怎么考? [全面解读] 从考试说明来看,二项式定理主要解决与二项展开有关的问题,从考题来看,每一年均 有一题,难度为中等,从未改变。命题主要集中在常数项,某项的系数,幂指数等知识点上。 掌握二项式定理主要以通项为抓手,由通项可解决常数项问题、某项的系数问题,系数要注 意二项式系数与展开式系数的区别。 [难度系数] ★★★☆☆ [原题解析] [2004 年] (7)若 ( x + 2 3 x )n 展开式中存在常数项,则 n 的值可以是( ) A .8 B .9 C .10 D .12 [2005 年] (5)在 (1- x)5 + (1- x) 6 + (1- x) 7 + (1- x) 8 的展开式中,含 x 3的项的系数是( ) A .74 B . 121 C .-74 D .-121 [2006 年] (8)若多项式 x 2 + x 10 = a + a ( x + 1) + 1 + a ( x + 1) 9 + a ( x + 1) 10 , 9 10 则 a = ( ) 9 A .9 B .10 C .-9 D .-10 [2007 年] ? 1 ?9 ? x ? A . -36 B . 36 C . -84 D . 84 [2008 年]

二项式定理经典习题及标准答案

二项式定理经典习题及答案

————————————————————————————————作者:————————————————————————————————日期:

二项式定理 1. 求()x x 2 9 12- 展开式的: (1)第6项的二项式系数; (2)第3项的系数; (3)x 9 的系数。 分析:(1)由二项式定理及展开式的通项公式易得:第6项的二项式系数为C 95 126=; (2)T C x x x 392 27 2 12129=??-=()(),故第3项的系数为9; (3)T C x x C x r r r r r r r +--=??- =-?192991831212 ()()(),令1839-=r ,故r =3,所求系数是()-=- 1 2 212 393 C 2. 求证:51151 -能被7整除。 分析:5114921494924922151 51 5105151150515150515151 -=+-=+?++?+-()C C C C Λ, 除C 5151 51 2 1-以外各项都能被7整除。 又C C C C C 5151 51 31717170171711617161717 2 1217117771?-=-=+-=++++-()()Λ 显然能被7整除,所以51151 -能被7整除。 3. 求9192 除以100的余数。 分析:91 90190909092 92920929219192919292=+=++++()C C C C Λ 由此可见,除后两项外均能被100整除,而C C 9291 9292 9082818210081+==?+ 故9192 除以100的余数为81。 4.(2009北京卷文)若4 (12)2(,a b a b +=+为有理数),则a b += A .33 B . 29 C .23 D .19 【答案】B .w 【解析】本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查. ∵() () ()() () ()4 1 2 3 4 012344 4 4 4 4 12 22222C C C C C +=++++ 1421282417122=++++=+, 由已知,得171222a b +=+,∴171229a b +=+=.故选B . 5.(2009北京卷理)若5 (12)2(,a b a b +=+为有理数),则a b += ( ) A .45 B .55 C .70 D .80 【答案】C 【解析】本题主要考查二项式定理及其展开式. 属于基础知识、基本运算的考查. ∵

二项式定理教学案设计

《二项式定理》教案设计 一、教学目标 1.知识与技能: (1)理解二项式定理是代数乘法公式的推广. (2)理解并掌握二项式定理,能利用计数原理证明二项式定理. 2.过程与方法: 通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式. 3. 情感、态度与价值观: 培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨. 二、教学重点、难点 重点:用计数原理分析3)(b a +的展开式,得到二项式定理. 难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律. 三、教学过程 (一)提出问题,引入课题 引入:二项式定理研究的是n b a )(+的展开式,如:2222)(b ab a b a ++=+, ?)(3=+b a ?)(4=+b a ?)(100=+b a 那么n b a )(+的展开式是什么? 【设计意图】把问题作为教学的出发点,直接引出课题.激发学生的求知欲,明确本课要解决的问题. (二)引导探究,发现规律 1、多项式乘法的再认识. 问题1. ))((2121b b a a ++的展开式是什么?展开式有几项?每一项是怎样构成的? 问题2. ))()((212121c c b b a a +++展开式中每一项是怎样构成的?展开式有几项? 【设计意图】引导学生运用计数原理来解决项数问题,明确每一项的特征,为后续学习作准备. 2、3)(b a +展开式的再认识 探究1:不运算3)(b a +,能否回答下列问题(请以两人为一小组进行讨论): (1) 合并同类项之前展开式有多少项? (2) 展开式中有哪些不同的项? (3) 各项的系数为多少? (4) 从上述三个问题,你能否得出3)(b a +的展开式? 探究2:仿照上述过程,请你推导4)(b a +的展开式. 【设计意图】通过几个问题的层层递进,引导学生用计数原理对3)(b a +的展开式进行再思考,分析 各项的形式、项的个数,这也为推导n b a )(+的展开式提供了一种方法,使学生在后续的学习过程中有 “法”可依. (三) 形成定理,说理证明 探究3:仿照上述过程,请你推导n b a )(+的展开式. )()(*110N n b C b a C b a C a C b a n n n k k n k n n n n n n ∈+++++=+-- ——— 二项式定理 证明:n b a )(+是n 个)(b a +相乘,每个)(b a +在相乘时,有两种选择,选a 或选b ,由分步计数原理 可知展开式共有n 2项(包括同类项),其中每一项都是k k n b a -),1,0(n k =的形式,对于每一项k k n b a -, 它是由k 个)(b a +选了b ,n -k 个)(b a +选了a 得到的,它出现的次数相当于从n 个)(b a +中取k 个 b 的组合数k n C ,将它们合并同类项,就得二项展开式,这就是二项式定理.

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

二项式定理(一)教案

二项式定理教案(一) 一、教学目标: 1.知识技能: (1)理解二项式定理是代数乘法公式的推广 (2)理解并掌握二项式定理,能利用计数原理证明二项式定理 2.过程与方法 通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式 3.情感、态度、价值观 培养学生自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简捷和严谨 二、教学重点、难点 重点:用计数原理分析3)(b a +的展开式得到二项式定理。 难点:用计数原理分析二项式的展开过程,发现二项式展开成单项式之和时各项系数的规律。 三、教学过程 (一)提出问题: 引入:二项式定理研究的是n b a )(+的展开式。如2222)(b ab a b a ++=+, 那么: 3 ) (b a +=? 4)(b a +=? 100)(b a +=? 更进一步:n b a )(+=? (二)对2)(b a +展开式的分析 ))(()(2 b a b a b a ++=+ 展开后其项的形式为:22,,b ab a 考虑b ,每个都不取b 的情况有1种,即02c ,则2a 前的系数为02c 恰有1个取b 的情况有12c 种,则ab 前的系数为12c 恰有2个取b 的情况有22c 种,则2b 前的系数为22c 所以 2 2212202 2222)(b c ab c a c b ab a b a ++=++=+ 类似地 3 33223213 3033223333)(b c ab c b a c a c b ab b a a b a +++=+++=+ 思考:))()()(()(4b a b a b a b a b a ++++=+=? 问题: 1).4)(b a +展开后各项形式分别是什么? 4 a b a 3 22b a 3ab 4b

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

二项式定理公开课教案

二项式定理公开课教案 1、重点:二项式定理的发现、理解和初步应用。 2、难点:二项式定理的发现。 三、教学过程 1、情景设置 问题1:若今天是星期一,再过30天后是星期几?怎么算? 预期回答:星期三,将问题转化为求“30被7除后算余数”是多少。 问题2:若今天是星期一,再过)(8* ∈N n n 天后是星期几?怎么算? 预期回答:将问题转化为求“n n )17(8+=被7除后算余数”是多少,也就是研究)()(*∈+N n b a n 的展开式是什么?这就是本节课要学的内容,学完本课后,此题就不难求解了。2、新授 第一步:让学生展开 b a b a +=+1)( 2222)(b ab a b a ++=+; 32232333)()()(b ab b a a b a b a b a +++=++=+; 43223434464)()()(b ab b a b a a b a b a b a ++++=++=+ 5432234555510105)()()(b ab b a b a b a a b a b a b a +++++=++=+ 教师将以上各展开式的系数整理成如下模型 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 问题1:请你找出以上数据上下行之间的规律。 预期回答:下一行中间的各个数分别等于上一行对应位置的相邻两数之和。 问题2:以5 )(b a +的展开式为例,说出各项字母排列的规律;项数与乘方指数的关系;展开式第二项的系数与乘方指数的关系。

预期回答:①展开式每一项的次数按某一字母降幂排列、另一字母升幂排列,且两个字母的和等于乘方指数;②展开式的项数比乘方指数多1项;③展开式中第二项的系数等于乘方指数。 初步归纳出下式: ()()()()()n n n n n n b b a b a b a a b a +++++=+--- 33221)( (※) (设计意图:以上呈现给学生的由系数排成的“三角形”,起到了“先行组织者”的作用,虽然,教师将此“三角形”模型以定论的形式呈现给学生,但是,它毕竟不是最后的结果,而是一种寻找系数规律的有效工具,便于学生将新的学习材料同自己原有的认知结构联系起来,并纳入到原有认知结构中而出现意义。这样的学习是有意义的而不是机械的,是主动建构的而不是被动死记的心理过程。)练习:展开7 )(b a + 教师作阶段性评价,告诉学生以上的系数表是我国宋代数学家杨辉的杰作,称为杨辉三角形,这项发明比欧洲人帕斯卡三角早400多年。你们今天做了与杨辉同样的探索,以鼓励学生探究的热情,并激发作为一名文明古国的后代的民族自豪感和爱国热情。第二步:继续设疑 如何展开100) (b a +以及)()(*∈+N n b a n 呢? (设计意图:让学生感到仅掌握杨辉三角形是不够的,激发学生继续学习新的更简捷 的方法的欲望。) 继续新授 师:为了寻找规律,我们将))()()(()(4b a b a b a b a b a ++++=+中第一个括号中的字母分别记成11,b a ;第二个括号中的字母分别记成22,b a ;依次类推。请再次用多项式乘法运算法则计算:))()()(()(443322114b a b a b a b a b a ++++=+

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理讲学案

讲学案 课题:二项式定理第一课时 设计教师:设计时间:2015.4.2 一、教学目标 1.知识与技能: (1)理解二项式定理是代数乘法公式的推广. (2)理解并掌握二项式定理,能利用计数原理证明二项式定理. 2.过程与方法: 通过学生参与和探究二项式定理的形成过程,培养学生观察、分析、概括的能力,以及化归的意识与方法迁移的能力,体会从特殊到一般的思维方式. 3.情感、态度与价值观:培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨. 二、教学重点、难点 1.教学重点:用计数原理分析3) a 的展开式,得到二项式定理. (b 2.教学难点:用计数原理分析二项式的展开过程,发现二项式展开成单项 式之和时各项系数的规律. 三、教学过程 (老师在多媒体上展示学案,同学们齐读)今天我们学习新课《二项式定理》,我们的学习目标是: 1、进一步熟悉二项式定理及二项展开式的通项公式,并能灵活的应用 2、运用二项式定理的过程中,领会化归意识与方法迁移的能力 (一)公式探究: 师:今天是星期四,再过8天是星期几?再过是星期几?再过天呢?如果是过天呢 生:再过8天是星期五;再过是星期五;再过天也是星期五,如果是过天,……应该也是星期五吧! 师:先给同学们吃颗定心丸,星期五是对的,可有谁知道这是为什么?

生:这…… 师:没事,学习完我们今天要学的知识,我想聪明的同学们能告诉你怎么一回事了.板书(二项式定理) 设计感悟:本来的设计是经过天,再过天,后来觉得那不是这道题的本质,用8反而更容易我后面找到周期7埋下伏笔,而且学生马上算了出来,更容易发现规律,事实证明能将学生的兴趣激发出来. 师:二项式定理其实就是研究形如如何展开表示.对这个问题我们如何来研究呢? 生:(感到茫然)…… 师:我们研究问题时经常使用什么方法?对了,就是特殊到一般,一般到特殊.现在这种情况是一般还是特殊的? 生:一般的. 师:恩,那如何特殊化呢? 生:是不是先令试试看…… 师:很棒哦.这就是先特殊,然后再一般的方法,下面说来说说如何展开表示? 生:(举手并回答). 师:很好哦.那谁来说说如何表示呢? 生:(举手并回答) 师:看来同学们回答都不错哦!接下来的一个问题是如何展开? 生:许多同学拿起笔算了起来,一些同学陷入思考中…… 师:让我们回顾刚刚的做法,为什么一些同学很快的写出的情形?

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

相关文档
最新文档