复合精密塑性成形技术及工艺

复合精密塑性成形技术及工艺
复合精密塑性成形技术及工艺

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

复合成型

蜂窝v 过去复合材料曲面件一般都用手工铺层,但是手工铺层效率太低,压实不好,纤维有皱折,质量不易保证,而机械化铺层适用于平面或简单曲面件,对于类似钣金折弯件、引伸件和压延件则难度很大甚至无法实现。比较可行的办法是先将预浸料通过铺带机铺成层压件(一般平面就可以),再通过热隔膜成型,然后通过热压罐支持的方法制成产品。 对“热隔模成型”一词,国外资料中有“Hot Drape forming”和“Hot Diaphragm forming”两种解释,事实上它们是一回事,前者应翻译为热压垂帘成型或覆盖成型,后者即直译为热隔膜成型。因为“垂帘”的意思本身即指工作过程中隔膜像一个垂帘一样盖在产品和工装上,所以统一用热隔膜成型比较确切。 热隔膜成型概念 热隔膜成型是一种复合材料成型方法,即将预浸的复合材料层压后放置于模具上,通过一种特制隔膜的辅助作用经过抽真空和加热等方法,将层压件压向模具,形成所需形状。 复合材料隔膜成型类似于金属材料的引深/压延以及折弯成型。它不但可以成型一些形状复杂的产品,而且由于隔膜的作用,可以在成型过程中保证纤维不滑动、不起皱、无波浪,从而提高产品强度和表面质量,很适合于内设件、曲面复杂件和受力件(如一些梁和长桁等)的成型。热隔膜成型除用于复材件热成型外,还可用于各种蜂窝的胶接和压实,包括飞机内设件的蜂窝胶接、铝合金蜂窝胶接和真空压实等。 虽然RTM、RFI等技术也可以制造成多种此类产品,但它们是通过在纤维注入或真空吸入树酯解决的,树酯的含量、分布很难达到满意的程度。而隔膜成型用的是预浸料,其本身

树酯含量是有保证的,再通过隔膜的作用使之不起皱和有序滑移,同时保证强度不会降低或不会明显降低,并保证厚度。 热隔膜成型方法可用于热塑性及热固性树脂预浸的材料,通过热压罐或不需热压罐(如蜂窝夹芯胶接)固化。隔膜要求比较严格,可用硅橡胶代替特用的聚合隔膜以降低成本。产品拉深的深度与其直径之比最大可达到4∶1。用于蜂窝胶接时,一般只需在设备上抽真空压实(De-Bulking),无需进热压罐。 热隔膜成型分类 热隔膜成型从成型方法上看有“正向成型”和“反向成型”2种,前者即热隔膜从上面将材料往下压向模具,后者是热隔膜从下往上包住材料压向模具;从使用的预浸料所含树酯材料来说有“热固性成型”和“热塑性成型”之分;从使用隔膜的数量上来说有“单隔膜成型”和“双隔膜成型”之分。 对于拉深率大、曲度大的产品,热隔膜成型预浸件的基料最好采用热塑性材料,因为要保证其成型就必须加温,并使之在加到所需温度后能保证其成型有相当的塑性。其中聚醚醚酮(PEEK)和以PEEK为基体的碳纤维复合材料(APC-2)是比较常用的材料,它具有耐高温、耐蚀、阻燃等优点,但聚苯硫醚(Poly Phenylene Sulfide,PPS)被认为是更好的预浸基料。其熔点为280℃,热变形温度为260℃,特点是耐热,寿命长。与热固性树脂相比,热塑性树脂形成的预浸材料虽然具有除成型复杂件外的施工快、周期短、可重复使用、贮存期长、容易修理、机械性能优良、韧性好、抗冲击、耐湿耐热等优点,但是由于其原材料成本高、预浸料粘性与铺覆性差,最高成形温度达350~450℃,一般热压罐温度不能满足其要求,且热塑性树脂的生产经验不足,目前在飞行器结构中尚处于研究试用阶段,应用有限。

塑性成型工艺及设备

塑性成型工艺及设备实验指导书 班级: 姓名: 学号: 南京农业大学工学院机械工程系 机械制造工艺教研室 2006年10月

目录 实验一双动液压机装配精度检验 (2) 一、实验目的 (2) 二、实验用工具及设备 (2) 三、实验内容及方法 (4) 四、实验数据整理 (7) 五、实验报告要求 (7) 实验二冷冲压模具安装及工艺参数实验 (8) 一、实验目的 (8) 二、实验内容 (8) 三、实验用设备、工具和材料 (8) 四、实验步骤 (8) 五、实验报告要求 (9) 实验三曲柄压力机拆装实验 (10) 一、实验目的 (10) 二、实验用工具及设备 (10) 三、实验内容及方法 (10) 四、实验报告要求 (10) 实验四塑料注塑成型实验 (11) 一、实验目的 (11) 二、实验用工具及设备 (11) 三、实验内容及其步骤 (11) 四、实验报告要求 (11)

实验一双动液压机装配精度检验 一、实验目的 1、了解双动液压机的结构及动作原理; 2、掌握双动液压机制造及装配精度检测内容及检验方法。 二、实验用工具及设备 1、工具:百分表、百分表架、检验平尺、直角尺等。 2、设备:YX28-300/500A框架液压机。 YX28-300/500A框架式液压机主要用于薄板拉深、弯曲、成形等工艺,也可以用于整形、较平、压装、落料、挤压等。适用于航空、汽车、拖拉机、机床、仪表、家电等制造行业。 该液压机包括:机身、拉伸滑块、拉伸缸、压边滑块、压边缸、液压垫、液压垫缸、润滑装置、液压控制系统、电气控制系统等部分。 结构简图见图1 图1-1 框架式液压机结构简图 1.压边缸 2.拉伸滑块 3.拉伸缸 4.压边滑块 5.机身 6.液压垫及液压垫缸 (1)机身 机身为闭式组合框架结构,上横梁、底座分别由四根方立柱支撑,通过四根拉杆和八个锁紧螺母紧固。机身中间设有拉伸滑块和压边滑块,每根方立柱上布置两条可调导轨,八条导轨分别做拉伸滑块及压边滑块导向用,通过推拉螺钉来调节导轨间隙和滑块运动精度。立柱和上横梁、底座用方键定位、上横梁开有一个拉伸缸安装孔和四个压边缸安装孔。拉伸滑块和压边滑块的下平面设有T型槽以固定模具用,底座中间孔内设有液压垫,并有导向板导向。

金属塑性成形技术

文献综述 题目金属塑性成形 学院航空制造工程学院专业机械制造及其自动化姓名段盼光 学号140308020101 2015年6月10日

金属塑性成形 () 【摘要】金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一,包括锻、冲、挤、轧,拉、辊、旋、辗等工艺技术。结合近代科技,金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。文章主要对塑性成形的基本原理、方法以及应用做了综合介绍。文章还列举了塑性成形在工业生产中的具体应用实例,收集了国内外关于塑性成形的一些最新研究进展。最后针对塑性成形技术的发展提出了一些建议和对该技术在以后的生产中的展望。 【关键词】塑性成形原理应用展望 【abstract】Metal plastic forming technology is the most basic,oldest and important processing means in machinery, metallurgy, automobile tractor, electrician instruments, the space industry, including forging, blunt, extrusion, rolling, pull, roller, spin and rolling process technology. With modern technology, metal forming technology of positive precision, high efficiency, energy saving, section, the clean production direction development, is the national industrial development of one of the most basic technology. The thesis mainly introduced the principle、method and application of plastic forming.In addition,the thesis also listed some specific application examples about plastic forming in industrial production and collected some latest research progress about plastic forming. Finally, in allusion to the development of plastic forming ,I have given some personal opinions and made a good expectation for the technology . 【key words】plastic forming principle application expectation 引言 金属塑性成形就是利用金属的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。由于工艺本身的特点,它虽然有很长的发展历史却又在不断的研究和创新之中,新工艺、新方法层出不穷。这些研究和创新的基本目的不外乎增加材料塑性、提高成形零件的精度及性能、降低变形力、增加模具使用寿命和节约能源等。而“塑性成形原理”正是实现这些目的的基础理论知识。金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。除了这些传统的应用外金属成形技术正向精密、高效、节能、节材,清洁化生产方向发展,是国家工业发展的最基础工艺技术之一。 一、金属塑性成形机理 1、冷态下的塑性成形 塑性成形所用的金属材料绝大部分是多晶体,其变形过程较单晶体的复杂得多,这主要是与多晶体的结构特点有关。多晶体是由许多结晶方向不同的晶粒组成。每个晶粒可看成是一个单晶体。晶粒之间存在厚度相当小的晶界。

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

金属塑性成形综述

金属塑性成形 摘要:金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。文章主要对塑性成形的基本方法、主要研究内容,发展趋势做了综合介绍。 一、引言 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。【1】 在现代制造技术中,人们广泛的利用金属材料生产各种零件和产品。金属加工方法多种多样,包括成型、切削等。金属塑性成形是其中一种重要的加工方法,是利用金属在外力作用下产生的塑性变形来获得具有一定形状、尺寸和力学性能的原材料、毛坯或零件的生产方法,因此也称为金属塑性加工或金属压力加工。 图1 传统金属塑性成形工艺 二、金属塑性成形的主要形式 金属塑性成形工艺的种类有很多,包括轧制、挤压、拉拔、锻造和冲压等基本工艺类型。随着技术的发展,也有很多新的成型方式出现,它们具备精密、高效、节能、节材、清洁等优点,得到广泛关注。

2.1 体积成型 金属体积成型是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要分为热态金属体积成型和冷温态金属体积成型。热态金属变形过程可分为热锻、轧制、挤压、拉拔、辗压等工艺技术;冷温态变形过程可分为冷锻、冷精轧、冷挤压、冷拔、冷辗扩等工艺。 2.2 板材成型 所谓板材成型是指用板材、薄壁管、薄型材等作为原材料进行塑性加工的成形方法。在忽略板厚的变化时,可视为平面变形问题来处理,板材成型可分为:冲裁、弯曲、拉延、胀形、翻边、扩孔、辊压等工艺技术。 2.3 粉末态金属成形 随着制粉技术的发展,其应用领域不断扩展,对于复杂形状的机械零件来说,它具有高效、精密成形的特点,但成本较高,机械性能不如整体金属材料。粉末态金属成形的工艺过程为制粉、造型、压实、烧结、精锻。 2.4半固态金属材料成形 70年代开发研究的新技术,原金属材料作过特殊前处理,当材料加热到一定温度时可使30%的金属材料处于融溶状态,其余70%的金属材料呈均匀细颗粒组织的固态。在此状态加压变形,其流动性特好,可成形结构形状特别复杂的零件,而变形杭力很小。 2.5 复合成形技术 现代的科学越来越相互交叉、渗透,出现许多边缘学科、交叉学科一样,材料成形技术也逐渐突破原有铸、锻、焊、粉末冶金等技术相互独立的格局,相互融合、渗透,产生了种类繁多的“复合成形技术”。【2】金属塑性的复合成型技术主要有两个方面 (1)各种成形工艺的组合优化达到优化工艺和产品的目的。 (2)铸、锻、焊、热处理等不同加工方法的组合。 三、金属塑性成形技术主要研究内容 由于压力加工中,少、无切屑的特点和精密加工技术的发展,使金属塑性成型理论的研究受到日益广泛的重视而进入工程应用的前列.一般认为,研究金属塑性科学的历史开始于Tresa在1864年提出的屈服准则,至今不过100多年,而首

影响金属塑性成形的因素及条件

《材料成形技术基础》 —影响金属塑性成形的因素及条件 一、影响金属塑性变形的内在因素 (一)化学成分 纯金属的塑性成形性较合金的好。钢的含碳量对钢的塑性成形性影响很大,对于碳质量分数小于0.15%的低碳钢,主要以铁素体为主(含珠光体量很少),其塑性较好。随着碳质量分数的增加,钢中的珠光体量也逐渐增多,甚至出现硬而脆的网状渗碳体,使钢的塑性下降,塑性成形性也越来越差。 合金元素会形成合金碳化物,形成硬化相,使钢的塑性变形抗力增大,塑性下降,通常合金元素含量越高,钢的塑性成形性能也越差。 杂质元素磷会使钢出现冷脆性,硫使钢出现热脆性,降低钢的塑性成形性能。 (二)金属组织 纯金属及单相固溶体的合金塑性成形性能较好;钢中有碳化物和多相组织时,塑性成形性能变差;具有均匀细小等轴晶粒的金属,其塑性成形性能比晶粒粗大的柱状晶粒好;网状二次渗碳体,钢的塑性将大大下降。 二、影响金属塑性变形的加工条件 (一)变形温度 温度升高,塑性提高,塑性成形性能得到改善。变形温度升高到再结晶温度以上时,加工硬化不断被再结晶软化消除,金属的塑性成形性能进一步提高。

过热:加热温度过高,会使晶粒急剧长大,导致金属塑性减小,塑性成形性能下降,这种现象称为“过热”。 过烧:如果加热温度接近熔点,会使晶界氧化甚至熔化,导致金属的塑性变形能力完全消失,这种现象称为“过烧”,坯料如果过烧将报废。 (二)变形速度 变形速度:单位时间内变形程度的大小。变形速度的增大,金属在冷变形时的冷变形强化趋于严重;当变形速度很大时,热能来不及散发,会使变形金属的温度升高,这种现象称为“热效应”,它有利于金属的塑性提高,变形抗力下降,塑性变形能力变好。 图2-5所示是变形速度与塑性的关系。 问题:在锻压加工塑性较差的合金钢或大截面锻件时,都应采用较小的变形速度,若变形速度过快会出现变形不均匀,造成局部变形过大而产生裂纹。 图2-5 变形速度与塑性的关系 (三)应力状态 实践证明,在三向应力状态下,压应力的数目越多,则其塑性越好;拉应力的数目越多,则其塑性越差。 选择塑性成形加工方法时,应考虑应力状态对金属塑性变形的影响。

塑性成形工艺与模具设计(最简明)

第一章 塑性成形(塑性加工、压力加工):金属材料在一定的外力作用下,利用金属的塑性而使其成形为具有一定形状及一定力学性能的加工方法。 塑性成形工艺与其他加工工艺相比,特点: 1、材料利用率高 2、力学性能好 3、尺寸精度高 4、生产效率高 塑性成形工艺的分类 按加工对象的属性:一次塑性加工(轧制、挤压、拉拔等)、二次塑性加工 按塑性成形毛坯特点:体积成形(块形成形)、板料成形 轧制:纵轧、横轧、斜轧 挤压(坯料后端施加压力):正挤压、反挤压、复合挤压 拉拔(坯料前端施加压力) 板料成形(冲压、冷冲压、板料冲压),按性质分为:分离工序(落料、冲孔、切断、切边、剖切等)、成形工序(弯曲、拉深、翻边、胀形、扩口、缩口、旋压等) 体积成形,分为锻造(自由锻、模锻)、挤压(开式模锻、闭式模锻) 自由锻,主要用于单件、小批量生产、大锻件生产或冶金厂开坯。 冲压工艺分类 按变形性质分类: 1、分离工序 2、成形工序 *按基本变形方式分类: 1、冲裁 2、弯曲 3、拉深 4、成形 *按工序组合形式分类 1、简单工序 2、组合工序(1、复合冲压2、连续冲压 3、连续-复合冲压) 板料成形的失稳现象: 拉伸失稳(板料在拉应力作用下局部出现缩颈或断裂) 压缩失稳(板料在压应力作用下出现起皱) *板料冲压成形性能影响较大的力学性能指标: 1、屈服强度σs(小好)

2、屈强比σs/σb(小好) 3、伸长率 4、硬化指数n 硬化指数:单向拉伸硬化曲线可写成σ=cε^n,其中指数n即为硬化指数,表示在塑性变形中材料的硬化程度。 *Q:什么叫加工硬化和硬化指数?加工硬化对冲压成形有有利和不利的影响? A:加工硬化:指随着冷变形程度的增加,金属材料的强度和硬度指标都有所提高,但塑性、韧性有所下降的现象。 优:由于加工过硬化使变形抗力提高,又提高了材料承载能力。 缺:加工硬化变形越大,会使断面在局部地方易形成缩颈,容易被拉断不利于成形。 5、厚向异性系数γ(大好) 厚向异性系数越大,表示板料越不易在厚度方向上产生变形,不易出现变薄和增厚。 6、塑性成型基本规律: ①加工硬化规律;②卸载弹性恢复规律;③最小阻力定律;④塑性变形体积不变定律 第二章 *冲裁过程: 1、弹性变形阶段 2、塑性变形阶段 3、断裂分离阶段 *冲裁件质量指标 1、断面质量 2、尺寸精度(模具制造精度的影响、模具间隙的影响、材料性质厚度与轧制方向的影响、 零件形状尺寸的影响) 3、形状误差 *冲裁断面的组成 1、圆角带(小好) 2、光亮带(宽好)措施:减小间隙 3、断裂带(窄好) 4、毛刺(小好) *影响断面质量的因素: 1、材料性能的影响 2、模具间隙的影响 3、模具刃口钝利情况的影响 4、模具和设备的导向情况(影响最大) *间隙对模具寿命的影响(零件质量、冲裁力、模具寿命) 间隙小:引起冲裁力、侧压力、摩擦力、卸料力、推件力增大,甚至会使材料粘连刃口,这

塑性成型工艺

目录 第1章工艺分析.......................................................... - 1 - 1.1设计任务书 ........................................................ - 1 - 1.2结构形状 .......................................................... - 1 - 1.3尺寸精度与粗糙度 .................................................. - 1 - 1.4 10钢材料性能 ..................................................... - 2 - 1.5工序 .............................................................. - 2 - 第2章生产方案制定...................................................... - 3 - 第3章模具类型与结构形式................................................ - 4 - 3.1 送料方式:........................................................ - 4 - 3.2 定位方式.......................................................... - 4 - 3.2.1 横向定位方式.................................................. - 4 - 3.2.2 纵向定位装置.................................................. - 4 - 3.3 出料方式.......................................................... - 5 - 3.4卸料方式 .......................................................... - 5 - 3.5推件装置 .......................................................... - 5 - 3.6导向装置 .......................................................... - 5 - 第4章工艺计算.......................................................... - 6 - 4.1排样设计 .......................................................... - 6 - 4.1.1.方案一直排式.................................................. - 6 - 4.1.2 方案二多排.................................................... - 9 - 4.2压力中心的确定 ................................................... - 10 - 4.3冲压力与压力机的选择 ............................................. - 11 - 4.3.1冲裁力的计算.................................................. - 11 - 4.3.2压力机的选取.................................................. - 12 - 4.4刃口尺寸的计算 .................................................. - 12 -

复合材料的成型工艺

复合材料的成型工艺 图1:热固性复合材料最基本的制备方法是手糊,通常包括将干层或半固化片层用手铺设到 模具上, 形成一个积层。图中展示的是自由宇航公司的技术员(佛罗里达州墨尔本)正在通过手糊工 艺 加工一个碳/环氧预浸料,将用于制造通用航空飞机部件。资料来源:自由宇航公司 在复合材料的加工成型过程中会使用一系列模具,用来给未成形的树脂及其纤维增强材料提供一个成型的平台。手糊(hand layup)成型是热固性复合材料最基本的制备方法,即通过人工将干层或半固化片层铺设到模具上,形成一个积层。铺层方式分为两种:一种称为干法铺层,是先铺层后将树脂浸润(例如,通过树脂渗透方式)到干铺层上的方式,另一种方式是湿法铺层,即先浸润树脂后铺层的顺序。 现在普遍使用的固化方式可以分为以下几种:最基本的是室温固化。不过,如果提高固化温度的话,固化进程也会相应加快。比如通过烤箱固化,或使用真空袋(vacuum bag)通过高压釜固化。如果采用高压釜固化的话,真空袋内通常会包含透气膜,被放置在经手糊的半成型制品上,再连接到高压釜上,等最终固化完成后再将真空袋撤去。在固化过程中,真空袋的作用是将产品密封在模具和真空袋之间,通过抽真空对产品均匀加压,将产品中汇总的气体排出,从而使产品更加密实、力学性能更好。

图2:热压釜独有的高温和高压条件使其成为完成热固性树脂零部件的固化的重要工具。控制软件的改进则能够帮助经营者提高35-40%的生产量。同时,一些新的树脂配方正在开发当中,将通过低压固化处理。图中是Helicomb国际公司(俄克拉荷马州塔尔萨)的一名操作人员正在使用高压釜进行固化处理。来源:Helicomb国际公司 许多高性能热固性零件都需要在高热高压的条件下完成固化。但是高压釜(Autoclave s)的设备成本和操作成本都较昂贵。采购高压釜设备的制造商通常会一次性固化一定数量的部件。对于高压釜的温度,压力,真空和惰性气体(inert atmosphere)等一系列参数,计算机系统能帮助实现远程甚至无人监控和检测,并最大限度地提高该技术的利用效率。 在加温固化的时候,温度首先由局部升起,再逐渐达到整体均匀的效果,然后按照设定值保持一定的时间直至初步固化完成。但是,不能忽视的一步是冷却,温度必须缓缓下降至室温,这是为了避免由于不均匀的热胀冷缩而导致部件的失真或变形。当固化完成之后,部件要进行脱模处理,另外还有一些部件还要经过二级独立后固化(postcure)处理,在此期间的温度通常比初始固化的温度高,目的是为了提高树脂材料的交联密度(crosslink density),从而获得更好的材料性能。 电子束(Electron-beam)固化是一种适用于薄层板的有效的固化技术。电子束固化是通过电子流对手糊成型的复合材料产生电离辐射,在辐射敏感型树脂中产生聚合和交联反应(crosslinking reaction)。 X射线和微波固化技术的工作方式与此类似。此外,还有紫外线(UV)固化,该程序是利用紫外线辐射来激活热固性树脂中的光引发剂(photoinitia tor),从而引发交联反应。紫外线固化需要光渗透树脂和增强材料。紫外线(UV)或电子束(E-beam)是辐射固化的一种先进手段,能够引发具有化学活性的液体配方,在基体表面实现快速反应的固化过程,这正是区别于传统热固化技术的最大特点。紫外线与电子束虽然

3-塑性成形工艺及模具设计kydg2007

“塑性成形原理与锻造、冲压工艺” 硕士入学考试复习大纲 塑性成形工程系 2006.8.20

金属塑性成形原理部分(70%) 一、课程简介 “金属塑性成形原理”课程是研究金属塑性成形过程中各种物理现象和力学规律的一门专业基础课程,课程的主要任务是: 1.阐明连续介质力学中的应力、应变的概念,研究金属塑性变形的应力-应变关系和屈服准则等塑性理论基础知识,为分析研究塑性成形力学问题的各种解法奠定基础。 2.分析研究塑性成形力学的各种问题以及在具体工艺中的应用,从而科学地确定变形体中的应力、应变分布和所需要的变形力和功,为制定合理的成形工艺和模具设计提供依据。 二、内容和要求 1.应力分析 掌握点应力状态的概念、力学特征及其表示方法,掌握应力平衡方程的推导过程,平面问题、轴对称问题的特点和表达形式。 2.应变分析 掌握点应变状态的概念、特征及其表示方法,理解“小应变”、“无限小应变”和“大应变”等基本概念,掌握位移和小变形几何方程以及变形连续方程,理解全量应变、应变增量以及应变速率的概念。 3.屈服准则 理解塑性、屈服准则的概念,掌握屈雷斯加、密席斯屈服准则及其几何表达—屈服轨 迹和屈服表面,掌握两屈服准则的差异,了解屈服准则的验证方法及硬化材料屈服准则 的特点。 4.塑性应力应变关系 掌握塑性变形时应力—应变关系的特点,理解全量理论和增量理论的概念以及几种理论的表达方式和特点,理解最大散逸功原理。 金属塑性成形工艺学部分(30%) 一、课程简介 金属塑性成形工艺学由两部分组成,其一是金属体积成形,其二是金属板料成形。体 积成形内容包括热成形、温成形与冷成形。锻造工艺含镦粗、冲孔、拔长、弯曲、预锻与 终锻。板料成形内容包括冲裁、弯曲、拉深等工艺及其模具。 复习总体要求:工艺部分内容复杂且具有多样性,应结合塑性成形原理的内容,了解 并牢记各个工艺最基本的关键要点;正确区分与设计合理的工艺与模具;并能够对采用各 种不同的工艺时,产生的不同的金属变形现象进行理论上的解释,因此提出相应的工艺和

常用的塑性成形方法

3.2 常用的塑性成形方法 常用的塑性成形方法有:自由锻、模型锻造、板料冲压、轧制、挤压、拉拔等。 3.2.1 自由锻及锻造件的生产与检验 3.2.2 模锻 3.2.3 板料冲压

3.2.1 自由锻件的生产与检验 1.自由锻简介 自由锻造是利用冲击力或压力, 使金属在上、下砧铁之间产生塑性 变形,从而获得所需形状、尺寸以 及内部质量的锻件的一种加工方法。 自由锻造分为手工和机器锻造两种。 机器锻造是自由锻的主要方法。 自由锻的特点及应用:①工具简 单,成本低;②周期短,应用广泛; ③适应性强;④自由锻是大型锻件 的唯一加工方法;但其锻件的精度 较低,加工余量大,劳动强度大, 生产率低。 自由锻主要应用于单件、小批 图3.2. 1自由锻图量生产,大型锻件的生产,修配, 新产品的试制等。

2.自由锻件的生产与检验 右图为齿轮自 由锻零件图,材料 为45钢,生产数量 20件,由于生产批 量小,应采取自由 锻。齿轮自由锻造 整个过程包括确定 其结构工艺性、工 艺规程制订和自由 锻锻件的检验等。 图3.2.2 齿轮零件图(1)自由锻件的结构工艺性 自由锻零件的结构工艺性具体要求见表3.2.1。

表3.2.1 自由锻零件的结构工艺性 本齿 轮的结构 工艺性较 好,满足 自由锻件 的设计, 适合自由 锻成形。

(2)制订自由锻件的工艺规程 自由锻工艺规程的主要内容包括:根据零件图绘 制锻件图、计算坯料的质量和尺寸、确定锻造工序、选择锻造设备、确定坯料加热规范和填写工艺卡片等。 1)绘制锻件图 锻件图是制定锻造工艺和检验的依据,绘制时主要考虑工艺余块、余量及锻件公差。为了便于了解零件的尺寸和检查锻件的实际加工余量,在图上用双点划线(或细实线)画出零件的轮廓形状。用粗实线画出锻件的轮廓形状,在尺寸线上面标注锻件的尺寸和公差,下面标注零件的名义尺寸,并加括号。

各种复合注塑成型技术特点及优势

各种复合注塑成型技术特点及优势 多组份注塑成型:传统技术 多组份注塑生产为塑胶加工提供了新的可能,即在单次成型中组合不同材料或颜色。生产可以在一个工序中完成,而无需其他装配或机器外后处理加工步骤。多组份注塑成型是全自动过程,具有高度的灵活性,特别适用于大批量生产。早在1961年,ARBURG公司就成功运用了此项技术。 最终成型零件可具备多种功能和特性。使用这一过程,可以生产出具有高度耐压性、耐热性或耐化学性的着色零件。利用ARBURG ALLROUNDER可制造的零件从工艺上讲有软硬材料组合,三明治和复合式元件,利用交替注塑工艺还可以制造表面具有可重复性色彩的零件。 多组份注塑成型概念涵盖多个独立过程。这些过程的共同点是用两个或更多注塑装置将相应数目的不同材料同时注入模具,通过一系列步骤生产出最终产品。最终零件无需后续处理即可直接使用。 根据浇口数,可分为两组: - 运用单浇口的系统,包括三明治式和交替注塑工艺。 - 多浇口的系统,可根据抽芯和转送过程进行初步划分。转送过程包括由机械手系统在两台标准机器之间转移,在特定多组份机器中通过机械手系统和模具的旋转进行转移。模具旋转包括通过旋转装置对可移动半模的旋转,对模具内件的旋转及绕垂直轴的旋转(GRAMTM过程)。 应用优势 多组份注塑成型的优势 在多组份注塑成型中,成型零件的各组份之间是完全分离的。所有组份都是表面可见的,体现出零件的外观和功能。比如,键盘按钮、带标志的开关或具有柔软区域以增加舒适性的把手。除了可以在一个过程中生产多种颜色或材料的注塑成型零件,无需其他装配或后续处理这一优势之外,成型技术的不断改进还可以带来持续增长的效益。注塑零件对外部影响(如机械效应、热效应或化学效应)具有耐受力,它通过适当的材料组合和高粘合强度来实现。双组份结合表面的粘合度可通过化学粘合或机械链接来实现。如果使用化学相容材料,还能通过熔化或焊接过程实现永久分子结合。机械链接的类型从在表面上可被固定的玻璃纤维到零件上的实体连接元素(如孔和侧凹),不一而足。 在加工技术方面,ARBURG ALLROUNDER模组化设计可实现相对广泛的制造工艺。包括含TPE或LSR的软硬组合零件、三明治式或复合式零件、或者用交替注塑工艺制造的表面色彩可重复的零件。 双组份注塑成型 全自动双组份注塑成型的模具有两站式,成型零件预注后经过另一个注塑阶段完成零件的生产。预制

金属材料的塑性成形

第一章金属材料的塑性成形 1.1 概述 金属材料的塑性成形又称金属压力加工,它是指在外力作用下,使金属材料产生预期的塑性变形,以获得所需形状、尺寸和力学性能的毛坯或零件的加工方法。 金属材料固态成形的基本条件:一是成形的金属必须具备可塑性;二是外力的作用。 一、金属塑性成形的方法: (1)轧制将金属材料通过轧机上两上相对回转轧辊之间的空隙,进行压延变形成为型材的加工方法。如图所示:压机开坯、轧板、轧圆钢等。 图1.1 轧制 (2)挤压将金属置于一封闭的挤压模内,用强大的挤压力将金属从模孔中挤出成形的方法。 图1.2 挤压 (3)拉拔将金属坯料拉过拉拔模模孔,而使金属拔长、其断面与模孔相同的加工方法。 图1.3 拉拔 (4)自由锻造将加热后的金属坯料置于上下砧铁之间受冲击力或压力而变形的加工方法。 图1.4 自由锻造

(5)模型锻造(模锻)将加热后的金属坯料置于具有一定形状的锻造模具模膛内,金属毛坯受冲击力或压力的作用而变形的加工方法。 图1.5 模锻 (6)板料冲压金属板料在冲压模之间受压产生分离或变形而形成产品的加工方法。 图1.6 板料冲压 按金属固态成形时的温度,其成形过程分为两大类: (1)冷变形过程金属在塑性变形时的温度低于该金属的再结晶温度。 冷变形的特征——金属变形后产生加工硬化。 (2)热变形过程金属在塑性变形时的温度高于该金属的再结晶温度。 热变形的特征——金属变形后会再结晶,塑性好,消除内部缺陷,产生纤维组织。 金属塑性加工的特点: (1)材料利用率高 (2)生产效率高 (3)产品质量高,性能好,缺陷少。 (4)加工精度和成形极限有限。 (5)模具、设备费用高。 利用金属固态塑性成形过程可获得强度高、性能好的产品,生产率高、材料消耗少。但该方法投资大,能耗大,成形件的形状和大小受到一定限制。 二、金属塑性成形过程的理论基础 1、金属塑性变形的能力 金属塑性变形的实质——金属塑性变形是金属晶体每个晶粒内部的变形(晶内变形)和晶粒间的相对移动、晶粒的转动(晶界变形)的综合结果。 金属塑性变形的能力又称为金属的可锻性,它指金属材料在塑性成形加工时获得毛坯或零件的难易程度。 可锻性用金属的塑性指标(延伸系数δ和断面减缩率Ψ)和变形抗力来综合衡量。 影响金属塑性的因素: (1)金属本身的性质——纯金属塑性优于合金;铁、铝、铜、镍、金、银塑性好;金属内部为单相组织塑性好;晶粒均匀细小塑性好。 (2)变形的加工条件 1)变形温度↑,塑性↑; 2)变形速度的影响; 3)压状态为三向压应力时塑性最好。

相关文档
最新文档