垂直管流实验报告(借鉴材料)

垂直管流实验报告(借鉴材料)
垂直管流实验报告(借鉴材料)

中国石油大学(华东)现代远程教育采油工程实验报告

学生姓名:

学号:

年级专业层次:

学习中心:交通工程分院教学服务站

提交时间:2017年9月25日

实验名称垂直管流实验

实验形式在线模拟+现场实践

提交形式提交电子版实验报告

一、实验目的

(1)观察垂直井筒中出现的各种流型,掌握流型判别方法;

(2)验证垂直井筒多相管流压力分布计算模型;

(3)了解自喷及气举采油的举升原理。

二、实验原理

在许多情况下,当油井的井口压力高于原油饱和压力时,井筒内流动着的是单相液体。当自喷井的井底压力低于饱和压力时,则整个油管内部都是气-液两相流动。油井生产系统的总压降大部分是用来克服混合物在油管中流动时的重力和摩擦损失,只有当气液两相的流速很高时(如环雾流型),才考虑动能损失。在垂直井筒中,井底压力大部分消耗在克服液柱重力上。在水平井水平段,重力损失也可以忽略。所以,总压降的通式为:

式中:错误!未找到引用源。——重力压降;错误!未找到引用源。——摩擦压降;错误!未找到引用源。——加速压降。

在流动过程中,混合物密度和摩擦力随着气-液体积比、流速及混合物流型而变化。油井中可能出现的流型自下而上依次为:纯油流、泡流、段塞流、环流和雾流。除某些高产量凝析气井和含水气井外,一般油井都不会出现环流和雾流。本实验以空气和水作为实验介质,用阀门控制井筒中的气、水比例并通过仪表测取相应的流量和压力数据,同时可以从透明的有机玻璃管中观察相应的流型。

三、实验设备及材料

仪器与设备:自喷井模拟器,空气压缩机,离心泵,秒表等;

实验介质:空气,水。

设备的流程(如图1所示)

图 1 垂直管流实验设备流程图

四、实验步骤

1.检查自喷井模拟器的阀门开关状态,保证所有阀门都关闭,检查稳压罐的

液位(3/4液位);

2.打开空气压缩机及供气阀门;

3.打开离心泵向系统供液;

4.打开液路总阀,向稳压罐中供液,控制稳压罐减压阀,保证罐内压力不超

过0.12MPa ;

5.待液面达到罐体3/4高度,关闭液路总阀,轻轻打开气路总阀和气路旁通

阀,向实验管路供气,保证气路压力不大于0.5MPa ,稳压罐压力约为

0.8MPa;

6.轻轻打开液路旁通阀,向系统供液,待液面上升至井口时,可以改变气液

阀门的相对大小,观察井筒中出现的各种流型;

7.慢慢打开液路测试阀门和气路测试阀门,然后关闭气路旁通阀和液路旁通

阀,调节到所需流型,待流型稳定后开始测量;

8.按下流量积算仪清零按钮,同时启动秒表计时,观察井底流压和气体浮子

流量计的示数。当计时到10秒时,记录井底流压、气体流量、液体累计流量和所用时间;

9.改变不同的气液流量,重复步骤7到8记录数据,一般取5组段塞流和5

组泡流数据点。

10. 打开气、液旁通阀,再关闭测试阀,关闭离心泵和空压机,清理实验装

置,实验结束。

注意事项

1.不要踩踏地面的各种管道;

2.操作自喷井模拟器时要注意稳压罐中的液位,不要打空或溢出;

3.观察的浮子流量计和压力表示数应读取测量时间内的平均值;

4.浮子流量计的单位和流量积算仪的单位;

5.注意流量积算仪清零的操作方法。

五、实验报告处理过程和处理结果

1.简述垂直井筒中各种流型的特征;

答:油井中可能出现的流型自下而上依次为:纯油流、泡流、段塞流、环流和雾流。各种流型的特征如下:

(1)纯油流:当井筒中的压力高于饱和压力时,没有气体从油中分离出来,油呈单相流动。 (2)泡流:气体是分散相,液体是连续相;气体主要影响混合物的密度,对摩擦阻力的影响不大;滑脱效应比较严重。

(3)段塞流:气体呈分散相,液体呈连续相;一段气一段液交替出现;气体膨胀能得到较好的利用;滑脱损失变小,摩擦损失变大。

(4)环流:在环流结构中,气液两相都是连续的,气体的举油作用主要是靠摩擦携带,滑脱损失小,摩擦损失更大。

(5)雾流:气体是连续相,液体是分散相;气体以很高的速度携带液滴喷出井口;气、液之间的相对运动速度很小;气相是整个流动的控制因素。

2.用奥齐思泽斯基方法判断各实验数据点所属的流型并与实验观察到的现象相对比,至少列出一个实验点的判别过程。

表1 原始数据记录表 序号

/wf P MPa /t P MPa

/r P MPa ()

//g Q L h

/L

Q

L

流型 1 0.065 0.017 0.090 450 0.80 9.81 段塞流 2 0.064 0.024 0.090 700 0.78 10.31 段塞流 3 0.049 0.006 0.092 500 0.20 10.34 段塞流 4 0.058 0.017 0.092 650 0.16 10.28 段塞流 5 0.042 0.012 0.092 800 0.21 10.28 段塞流 6 0.039 0.006 0.092 750 0.24 10.19 段塞流 7 0.059 0.027 0.092 850 0.13 10.31 段塞流 8

0.034

0.008

0.092

950

0.24

10.34

段塞流

中国石油大学(华东)现代远程教育采油工程“垂直管流实验”实验报告

中国石油大学(华东)现代远程教育 采油工程实验报告 学生姓名: 学号: 年级专业层次:14春专升本(网络春)学习中心:大港油田学习中心 提交时间:2015年4月25日

实验名称垂直管流实验 实验形式在线模拟+现场实践 提交形式提交电子版实验报告 一、实验目的 (1)观察垂直井筒中出现的各种流型,掌握流型判别方法; (2)验证垂直井筒多相管流压力分布计算模型; (3)了解自喷及气举采油的举升原理。 二、实验原理 在许多情况下,当油井的井口压力高于原油饱和压力时,井筒内流动着的是单相液体。当自喷井的井底压力低于饱和压力时,则整个油管内部都是气-液两相流动。油井生产系统的总压降大部分是用来克服混合物在油管中流动时的重力和摩擦损失,只有当气液两相的流速很高时(如环雾流型),才考虑动能损失。在垂直井筒中,井底压力大部分消耗在克服液柱重力上。在水平井水平段,重力损失也可以忽略。所以,总压降的通式为: 式中:错误!未找到引用源。——重力压降;错误!未找到引用源。——摩擦压降;错误!未找到引用源。——加速压降。 在流动过程中,混合物密度和摩擦力随着气-液体积比、流速及混合物流型而变化。油井中可能出现的流型自下而上依次为:纯油流、泡流、段塞流、环流和雾流。除某些高产量凝析气井和含水气井外,一般油井都不会出现环流和雾流。本实验以空气和水作为实验介质,用阀门控制井筒中的气、水比例并通过仪表测取相应的流量和压力数据,同时可以从透明的有机玻璃管中观察相应的流型。

三、实验设备及材料 仪器与设备:自喷井模拟器,空气压缩机,离心泵,秒表等; 实验介质:空气,水。 设备的流程(如图1所示) 图 1 垂直管流实验设备流程图 四、实验步骤 1.检查自喷井模拟器的阀门开关状态,保证所有阀门都关闭,检查稳压罐的 液位(3/4液位); 2.打开空气压缩机及供气阀门; 3.打开离心泵向系统供液; 4.打开液路总阀,向稳压罐中供液,控制稳压罐减压阀,保证罐内压力不超 过0.12MPa ; 5.待液面达到罐体3/4高度,关闭液路总阀,轻轻打开气路总阀和气路旁通 阀,向实验管路供气,保证气路压力不大于0.5MPa ,稳压罐压力约为 0.8MPa; 6.轻轻打开液路旁通阀,向系统供液,待液面上升至井口时,可以改变气液 阀门的相对大小,观察井筒中出现的各种流型; 7.慢慢打开液路测试阀门和气路测试阀门,然后关闭气路旁通阀和液路旁通 阀,调节到所需流型,待流型稳定后开始测量; 8.按下流量积算仪清零按钮,同时启动秒表计时,观察井底流压和气体浮子 流量计的示数。当计时到10秒时,记录井底流压、气体流量、液体累计流量和所用时间; 9.改变不同的气液流量,重复步骤7到8记录数据,一般取5组段塞流和5 组泡流数据点。 10. 打开气、液旁通阀,再关闭测试阀,关闭离心泵和空压机,清理实验装 置,实验结束。 注意事项

材料力学实验报告标准规定答案解析

力学实验报告标准答案

长安大学力学实验教学中心 目录 、拉伸实验? 、压缩实验? 三、拉压弹性模量E测定实验? 四、低碳钢剪切弹性模量G测定实验? 五、扭转破坏实验-10

六、纯弯曲梁正应力实验? 12 七、弯扭组合变形时的主应力测定实验? 15 八、压杆稳定实验"8

、拉伸实验报告标准答案实验目的: 见教材 实验仪器 见教材实验结果及数据处理:例:(一)低碳钢试件

服应力 (T s = P s /A _273.8 _MP a 屈度极限 (T b = P b /A _411.3 MP a 强试验前 试验后 最小平均直径d= 10.16 mm 最小直径d= 10.15 mm 截面面积A= 81.03 mm 2 截面面积A1= 80.91 mm 2 计算长度L= 100 mm 计算长度L 忤 100 mm 试验前草图 试验后草图 1 ' 1 ''1 1 最大载荷P b =__14.4 KN P s =_22.1 KN P b =_33.2 ____ KN 塑性指标: 伸长率 厘100% L 68.40 % 33.24 % A A 1 面积收缩率 - 100% A 低碳钢拉伸图:

强度极限c b= P b / A = _ 177.7 — M P a 问题讨论: 1、为何在拉伸试验中必须采用标准试件或比例试件,材料相同而长短不同的试件 延伸率是否相同? 答:拉伸实验中延伸率的大小与材料有关,同时与试件的标距长度有关.试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同.因此拉伸试验中必须采用标准试件或比例试件,这样其有关性质才具可比性. 材料相同而长短不同的试件通常情况下延伸率是不同的(横截面面积与长度存在某种特殊比例关系除外). 2、分析比较两种材料在拉伸时的力学性能及断口特征. 答:试件在拉伸时铸铁延伸率小表现为脆性,低碳钢延伸率大表现为塑性;低碳钢具有屈服现象,铸铁无.低碳钢断口为直径缩小的杯锥状,且有45 0的剪切唇, 断口组织为暗灰色纤维状组织。铸铁断口为横断面,为闪光的结晶状组织

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

物理实验报告

物理实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

学与气体动理论有关原理求得V=V 01+t/T 0 (1) 式中V 0—被测空气处于零摄氏度的声速 T 0—开尔文T 0=273.15K t —空气的摄氏度 2、驻波法测声速(波腹示踪法) 根据波动理论声速可表示为V=f. λ (2) 在声波频率f 已知的前提下,只要精确到测定空气中声波波长就可以确定声速V 0 .实验室常用的驻波法,即波腹示踪法测定声波波长。 【实验步骤和内容】 1、 测出室温t 用温度比较法,利用式(1)求声速 2、 波腹失踪法测波长 (1) 连接电路 (2) 调整游标卡尺,先使发射器端面与接收器端面靠近,调整信号发生 器、示波器,使示波器上出现正弦信号。 (3) 求找共振频率、调节信号发生器输出频率,使示波器屏上观察到的信 号放大,此时的频率就是共振频率f. (4) 测波腹位置:在共振频率条件下,将接受器向远离发射器方向缓慢移 动,示波器上依次出现信号振幅最大时,分别记下游标卡尺上的读数X 1、X 2、X 3、X 4……共12点。 【实验仪器】

带有两个压电换能器的大型游标卡尺,信号发生器,数字频率计,温度计,示波器。 【数据记录】 i X I (cm ) I+6 X i +6(c m) λi=1/3|X I+6—X I |(cm) ΔλI =|λI —λ|(cm) 1 4.512 7 7.752 1.080 0.071 2 4.988 8 8.010 1.007 0.002 3 5.500 9 8.498 0.999 0.010 4 5.990 10 8.988 0.999 0.010 5 6.332 11 9.492 0.987 0.022 6 7.026 12 9.982 0.985 0.024 平均值 1.009 0.023 【数据处理】 1、 数据记录与计算 开始温度t=24.5。C 结束温度t ’=24.5。C 开始频率f 0=35.455KHZ 结束频率f 0‘=35.435KHZ 平均值f=(35.455+35.435)/2=35.445KHZ V=f*λ=357.64m/s 2、 温度比较法 V=V 01+t/T 0=331.451+(t+t ’)/2*273.15=345.99m/s 3、 计算声速相对不确定度

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

流体力学实验报告册_1

流体力学实验报告册 篇一:流体力学实验报告 流体力学实验组 班级化33姓名吴凡灿学号成绩 实验时间第6周周日同组成员芦琛琳、董晓锐 一、实验目的 1、观察塔板上气液两相流动状况,测量气体通过塔板的压力降与空塔气速的关系;测定雾沫夹带量、漏液量与气速的关系; 2、研究板式塔负荷性能图的影响因素,作出筛孔塔板或斜孔塔板的负荷性能图;比较筛孔塔板与斜孔塔板的性能; 3、观察填料塔内气液两相流动状况,测定干填料及不同液体喷淋密度下填料层的阻力降与空塔气速的关系; 4、测定填料的液泛气速,并与文献介绍的液泛关联式比较; 5、测定一定压力下恒压过滤参数K、qe和te; 6、测定压缩性指数S和物料特性常数K。 二、实验原理 1.板式塔流体力学特性测定塔靠自下而上的气体和自上而下的液体逆流流动时相互接触达到传质目的,因此,塔板传质性能的好坏很大程度上取决于塔板上的流体力学状态。当液体流量一定,气体空塔速度从小到大变动时,可

以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相负荷均过大时还会产生液泛等几种不正常的操作状态。塔板的气液正常操作区通常以塔板的负荷性能图表示。负荷性能图以气体体积流量(m3/s)为纵坐标,液体体积流量(m3/s)为横坐标标绘而成,它由漏液线、液沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成。当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。传质效率高、处理量大、压力降低、操作弹性大以及结构简单、加工维修方便是评价塔板性能的主要指标。为了适应不同的要求,开发了多种新型塔板。本实验装置安装的塔板可以更换,有筛板、浮阀、斜孔塔板可供实验时选用,也可将自行构思设计的塔板安装在塔上进行研究。 筛板的流(本文来自:小草范文网:流体力学实验报告册)体力学模型如下: 1) 压降 ?p??pc??pl 式中,Δp—塔板总压降,Δpc—干板压降,Δpl—板上液层高度压降,其中 ?pc?0.051?vg( u02

《材料力学》实验报告

材料力学 实验报告 对应课程 学号 学生 专业 班级 指导教师 成绩总评 学年第学期

目录 1.低碳钢及铸铁拉伸破坏实验???????????????(3 ) 2.低碳钢及铸铁压缩破坏实验???????????????(8 ) 3.引伸计法测定材料的弹性模量??????????????( 12 ) 4.低碳钢及铸铁扭转破坏实验???????????????(15) 5.载荷识别实验?????????????????????( 19) 成绩总评定 : 拉伸压缩测E扭转载荷识别

低碳钢及铸铁拉伸破坏实验 实验日期: 同组成员: 一、实验目的及原理 二、实验设备和仪器 1、试验机名称及型号: 吨位: 精度: 2、量具名称: 精度: 三、实验步骤 (一)、低碳钢、铸铁拉伸实验步骤:

四、试样简图 低碳钢试样 实验前实验后试 样 简 图 铸铁试样 实验前实验后试 样 简 图

五、实验数据及计算 低碳钢拉伸试验 (一)试件尺寸 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 断后标断口直径 d 1 ( mm )距 L1 12平均( mm )断口(颈缩处)最小横截面面 积 A1 ( mm2 ) 屈服极限:强度极限:断后延伸率: F s s (MPa) A0 F b b (MPa) A0 ( L 1 L O ) 100% L0

A0 A1100% 断面收缩率: A0 铸铁拉伸试验 (a)试验前 试件标直径d0( mm )最小横截距 横截面 1横截面 2横截面 3面面积L0平平平A (1)(2)(1)(2)(1) ( 2)02 ( mm )均均均( mm ) (b)试验后 F b 强度极限:b(MPa ) (二)绘出低碳钢的“力—位移、及铸铁的“ 力-位移”曲线低碳钢铸铁

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

采油工程实验报告

中国石油大学(华东)现代远程教育 实验报告 学生姓名:*** 学号:********** 年级专业层次:******** 学习中心:***** 提交时间:年月日

五、实验报告处理过程和处理结果 1.简述垂直井筒中各种流型的特征;答:油井中可能出现的流型自下而上依次为:纯油流、泡流、段塞流、环流和雾流。各种流型的特征如下: (1)纯油流:当井筒中的压力高于饱和压力时没有气体从油中分离出来油呈单相流动。 (2)泡流:井筒压力稍低于饱和压力时溶解气开始从油中分离出来气体都以小气泡分散在液相中。滑脱现象:混合流体流动过程中因流体间的密度差异而引起的小密度流体流速大于大密度流体流速的现象。泡流特点:气体是分散相液体是连续相;气体主要影响混合物密度对摩擦阻力影响不大;滑脱现象比较严重。 (3)段塞流:当混合物继续向上流动压力逐渐降低气体不断膨胀小气泡将合并成大气泡直到能够占据整个油管断面时井筒内将形成一段液一段气的结构。段塞流特点:气体呈分散相液体呈连续相;一段气一段液交替出气体膨胀能得到较好的利滑脱损失变小;摩擦损失变大。 (4)环流特点:在环流结构中气液两相都是连续的气体的举油作用主要是靠摩擦携带滑脱损失小摩擦损失更大。 (5)雾流特点:气体是连续相液体是分散相;气体以很高的速度携带液滴喷出井口;气、液之间的相对运动速度很小;气相是整个流动的控制因素。 (a)泡状流(b)段塞流(c)环状流(雾状流) 2.用奥齐思泽斯基方法判断各实验数据点所属的流型并与实验观察到的现象相对比,至少列出一个实验点的判别过程。 原始数据记录表 计算所需参数: 33,,1.29/kgmDmm,30hm,6.0 ,,1000/kgmvms,0.244/g Ls,,0.072/mNm 序号/ wf P MPa/ t P MPa/ r P MPa() // g Q L h/ L Q L ∑流型 1 0.065 0.017 0.090 450 0.80 9.81 段塞流 2 0.064 0.024 0.090 700 0.78 10.31 段塞流 3 0.049 0.006 0.092 500 0.20 10.3 4 段塞流 4 0.058 0.017 0.092 650 0.16 10.28 段塞流 5 0.042 0.012 0.092 800 0.21 10.28 段塞流 6 0.039 0.006 0.092 750 0.24 10.19 段塞流 7 0.059 0.027 0.092 850 0.13 10.31 段塞流 8 0.034 0.008 0.092 950 0.24 10.34 段塞流

材料力学实验报告答案

篇一:材料力学实验报告答案 材料力学实验报告 评分标准拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(p-δl曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度 0.02 mm 三、实验数据(2分) 四、实验结果处理(4分) ?s??b? psa0pba0 =300mpa 左右=420mpa 左右 =20~30%左右=60~75%左右 ?? l1?l0 ?100% l0a0?a1 ?100% a0 ?= 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么?相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备(1分) 机器型号名称电子万能试验机(0.5分) 测量尺寸的量具名称游标卡尺精度 0.02 mm (0.5分) 三、实验数据(1分)四、实验结果处理(2分) ?b? pb =740mpaa0 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。略 2. 绘出两种材料的压缩曲线。略 3. 为什么在压缩实验时要加球形承垫?

工程流体力学实验报告(3代学生样版)

工程流体力学实验指导书与报告 毛根海编著 杭州源流科技有限公司 毛根海教授团队 2013年3月

目录 2-1 流体静力学综合型实验 (1) 2-2 恒定总流伯努利方程综合性实验 (8) 2-3文丘里综合型实验 (17) 2-4 雷诺实验 (23) 2-5 动量定律综合型实验 (27) 2-6 孔口出流与管嘴出流实验 (33) 2-7 局部水头损失实验 (38) 2-8 沿程水头损失实验 (43) 2-9毕托管测速与修正因数标定实验 (49) 2-10 达西渗流实验 (54) 2-11 平面上的静水总压力测量实验 (59)

2-1 流体静力学综合型实验 一、实验目的和要求 1.掌握用测压管测量流体静压强的技能; 2.验证不可压缩流体静力学基本方程; 3.测定油的密度; 4.通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理 解,提高解决静力学实际问题的能力。 二、实验装置 1.实验装置简图 实验装置及各部分名称如图1所示。 图.1 流体静力学综合型实验装置图 1. 测压管 2. 带标尺测压管 3. 连通管 4. 通气阀 5. 加压打气球 6. 真空测压管 7. 截止阀 8. U型测压管 9. 油柱10. 水柱11. 减压放水阀 说明:下述中的仪器部件编号均指实验装置图中的编号,如测管2即为图1中“2. 带标尺测压管”。后述各实验中述及的仪器部件编号也均指相应实验装置图中的编号。 2. 装置说明

(1) 流体测点静压强的测量方法之一——测压管 流体的流动要素有压强、水位、流速、流量等。压强的测量方法有机械式测量方法与电测法,测量的仪器有静态与动态之分。测量流体点压强的测压管属机械式静态测量仪器。测压管是一端连通于流体被测点,另一端开口于大气的透明管,适用于测量流体测点的静态低压范围的相对压强,测量精度为1mm 。测压管分直管型和“U ”型。直管型如图1中管2所示,其测点压强p gh ρ=,h 为测压管液面至测点的竖直高度。“U ”型如图中管1与管8所示。直管型测压管要求液体测点的绝对压强大于当地大气压,否则因气体流入测点而无法测压;“U ”型测压管可测量液体测点的负压,例如管1中当测压管液面低于测点时的情况;“U ”型测压管还可测量气体的点压强,如管8所示,一般“U ”型管中为单一液体(本装置因其它实验需要在管8中装有油和水两种液体),测点气压为p g h ρ=?,?h 为“U ”型测压管两液面的高度差,当管中接触大气的自由液面高于另一液面时?h 为 “+”,反之?h 为“-”。由于受毛细管影响,测压管内径应大于8~10 mm 。本装置采用毛细现象弱于玻璃管的透明有机玻璃管作为测压管,内径为8mm ,毛细高度仅为1mm 左右。 (2)恒定液位测量方法之一——连通管 测量液体的恒定水位的连通管属机械式静态测量仪器。连通管是一端连接于被测液体,另一端开口于被测液体表面空腔的透明管,如管3所示。对于敞口容器中的测压管也是测量液位的连通管。连通管中的液体直接显示了容器中的液位,用mm 刻度标尺即可测读水位值。本装置中连通管与各测压管同为等径透明有机玻璃管。液位测量精度为1mm 。 (3)所有测管液面标高均以带标尺测压管2的零点高程为基准; (4) 测点B 、C 、D 位置高程的标尺读数值分别以?B 、?C 、?D 表示,若同时取标尺零点作为静力学基本方程的基准,则?B 、?C 、?D 亦为z B 、z C 、z D ; (5) 本仪器中所有阀门旋柄均以顺管轴线为开。 3. 基本操作方法: (1)设置p 0 = 0条件。打开通气阀4,此时实验装置内压强p 0 = 0。 (2)设置p 0 > 0条件。关闭通气阀4、放水阀11,通过加压打气球5对装置打气,可对装置内部加压,形成正压; (3)设置p 0 < 0条件。关闭通气阀4、加压打气球5底部阀门,开启放水阀11

材料力学扭转实验实验报告

扭 转 实 验 一.实验目的: 1.学习了解微机控制扭转试验机的构造原理,并进行操作练习。 2.确定低碳钢试样的剪切屈服极限、剪切强度极限。 3.确定铸铁试样的剪切强度极限。 4.观察不同材料的试样在扭转过程中的变形和破坏现象。 二.实验设备及工具 扭转试验机,游标卡尺、扳手。 三.试验原理: 塑性材料和脆性材料扭转时的力学性能。(在实验过程及数据处理时所支撑的理论依据。参考材料力学、工程力学课本的介绍,以及相关的书籍介绍,自己编写。) 四.实验步骤 1.a 低碳钢实验(华龙试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。。 (2)安装试样: 启动扭转试验机,手动控制器上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,沿箭头方向旋转手柄,夹紧试样。 (3)调整试验机并对试样施加载荷: 在电脑显示屏上调整扭矩、峰值、切应变1、切应变2、夹头间转角、时间的零点;根据你所安装试样的材料,在“实验方案读取”中选择“教学低碳钢试验”,并点击“加载”而确定;用键盘输入实验编号,回车确定(按Enter 键);鼠标点“开始测试”键,给试样施加扭矩;在加载过程中,注意观察屈服扭矩的变化,记录屈服扭矩的下限值,当扭矩达到最大值时,试样突然断裂,后按下“终止测试”键,使试验机停止转动。 (4)试样断裂后,从峰值中读取最大扭矩 。从夹头上取下试样。 (5)观察试样断裂后的形状。 1.b 低碳钢实验(青山试验机) (1)量直径: 用游标卡尺量取试样的直径。在试样上选取3各位置,每个位置互相垂直地测量2次直径,取其平均值;然后从3个位置的平均值中取最小值作为试样的直径。 (2)安装试样: 启动扭转试验机,手动“试验机测控仪”上的“左转”或“右转”键,调整活动夹头的位置,使前、后两夹头钳口的位置能满足试样平口的要求,把试样水平地放在两夹头之间,s τb τb τ 0d S M b M 0d

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

流体阻力实验报告(借鉴材料)

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1

流体传动与控制实验报告

桂林电子科技大学 流体传动与控制实验报告实验名称节流调速性能试验 机电工程学院机械电子工程专业10001602班第实验小组作者学号 同作者 实验时间年月日辅导员意见: 辅导员成绩签名 一、实验目的: 1、分析比较采用节流阀的进油节流调速回路中,节流阀具有不同流通面积时的 速度负载特性; 2、分析比较采用节流阀的进、回、旁三种调速回路的速度负载特性; 3、分析比较节流阀、调速阀的速度性能。 4、通过亲自装拆,了解节流调速回路的组成及性能,绘制速度—负载特性曲线 并进行比较 5、通过该回路实验,加深理解Q=C a △P m关系,式中△p、m分别由什决定,如何保证Q=const。 二、实验要求 实验前预习实验指导书和液压与气动技术课程教材的相关内容; 实验中仔细观察、全面了解实验系统; 实验中对液压泵的性能参数进行测试,记录测试数据; 深入理解液压泵性能参数的物理意义; 实验后写出实验报告,分析数据并绘制液压泵性能特性曲线图。 三、实验内容: 1、分别测试采用节流阀的进、回、旁油路节流调速回路的速度负载特性;

2、测试采用调速阀的进油路节流调速回路的速度负载特性。 四、实验步骤: 1、按照实验回路的要求,取出所要用的液压元件,检查型号是否正确; 2、检查完毕,性能完好的液压元件安装在实验台面板合理位置。通过快换接头 和液压软管按回路要求连接; 3、根据计算机显示器界面中的电磁铁动作表输入框选择要求用鼠标“点接”电 器控制的逻辑连接,通为“ON”,短为“OFF”。 4、安装完毕,定出两只行程开关之间距离,拧松溢流阀(Ⅰ)(Ⅱ),启动 YBX-B25N,YB-A25C泵,调节溢流阀(Ⅰ)压力为3Mpa,溢流阀(Ⅱ)压力为0。5Mpa,调节单向调速阀或单向节流阀开口。 5、按电磁铁动作表输入框的选定、按动“启动”按钮,即可实现动作。在运行 中读出显示器界面图表中的显示单向调速阀或单向节流阀进出口和负载缸进口压力,和油缸的运行显示时间。 6、根据回路记录表调节溢流阀压力(即调节负载压力),记录相应时间和压力, 填入表中,绘制V——F曲线。 五、实验原理图:

材料力学实验报告

青岛黄海学院实验指导书 课程名称:材料力学 课程编码: 04115003 主撰人:吕婧 青岛黄海学院

目录 实验一拉、压实验 (1) 实验二扭转实验 (6) 实验三材料弹性模量E和泊松比μ的测定 (8) 实验四纯弯曲梁的正应力实验 (12)

实验一低碳钢拉伸实验 一、实验目的要求: (一)目的 σ、延伸率δ,截面收缩率ψ。 1.测定低碳钢的屈服极限σS,强度极限 b σ,观察上述两种材料的拉伸和破坏现象,绘制拉伸时2.测定铸铁的强度极限 b 的P-l?曲线。 (二)要求 1.复习讲课中有关材料拉伸时力学性能的内容;阅读本次实验内容和实设备中介绍万能试验机的构造原理、操作方法、注意事项,以及有关千分表和卡尺的使用方法。 2.预习时思考下列问题:本次实验的内容和目的是什么?低碳钢在拉伸过程中可分哪几个阶段,各阶段有何特征?试验前、试验中、试验后需要测量和记录哪些数据?使用液压式万能试验机有哪些注意事项? 二、实验设备和工具 1.万能实验 2.千分尺和游标卡尺。 3.低碳钢和铸铁圆形截面试件。 三、实验性质: 验证性实验 四、实验步骤和内容: (一)步骤 1.取表距L =100mm.画线 2.取上,中,下三点,沿垂直方向测量直径.取平均值

3.实验机指针调零. 4.缓慢加载,读出 s P .b P .观察屈服及颈缩现象,观察是否出现滑移线. 5.测量低碳钢断裂后标距长度1l ,颈缩处最小直径1d (二)实验内容: 1.低碳钢试件 (1)试件 (2)计算结果 屈服荷载 s P =22.1KN 极限荷载 b P =33.2KN 屈服极限 s σ=s P /0A =273.8MPa 强度极限 b σ=b P /0A =411.3MPa 延伸率 δ=(1l -0l )/0l *100%=33.24% 截面收缩率ψ=(0A -1A )/0A *100%=68.40% (3)绘制低碳钢P~ l ? 曲线

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

材料力学实验报告答案

材料力学实验报告答案 Prepared on 22 November 2020

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

四、实验结果处理 (4分) 0A P s s = σ =300MPa 左右 0 A P b b = σ =420MPa 左右 %10000 1?-= L L L δ =20~30%左右 %= 1000 1 0?-A A A ψ =60~75%左右 五、回答下列问题(2分,每题分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同为什么 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。 压缩实验报告 一、实验目的(1分)

1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫

移液管的校正实验报告1

分析化学: 移液管的使用和校准练习-------- 实 验 报 告 专业: 成员: 指导老师:

移液管的使用和校准练习 摘要:移液管在使用过程中,容量器皿的实际容量与标称容量并不完全一致。因此,在准确度要求较高的分析工作中,必须对容量器皿进行校准。本次实验学习和掌握移液管的使用以及校准方法,并了解容量器皿校准的意义。实验中借助电子天平差量法辅助校准。得出结论并分析。 关键词:热胀冷缩;标准温度;差量法;电子天平;绝对较准 一、实验前言 1.1 实验目的 1、初步掌握移液管的使用方法。 2、学习移液管的校准方法,并了解容量器皿的校准的意义,并在实验中应用。 3、练习并掌握移液管的正确度数方法。 4、练习并掌握电子天平的使用和读数。 1.2实验原理 容量器皿的实际容量随着使用的次数和时间长短将发生一定的变化。因此,对容量器皿的校准是非常重要的。由于玻璃具有热胀冷缩的特性,在不同温度下容量器皿的容积也有所不同。因此校准玻璃容量器皿时,必须规定一个公用的温度计,这一规定温度值称标准温度,国际上规定玻璃容量器皿的标准温度为20℃,即在校准时都将玻璃器皿的容积校准到20℃时的实际容积。容量器皿常应用的两种校准:相对较准和绝对较准。本实验采用绝对较准。 二、实验内容 1.1 仪器与试剂 移液管(25ml)1支;锥形瓶(150ml,具有玻璃磨口塞或橡皮塞)1只;普通温度计(0~50℃,公用);分析天平,蒸馏水。 1.2 实验步骤 (1)清洗一只移液管及一个150ml锥形瓶。 (2)练习并掌握移液管的使用方法。

(3)练习并掌握移液管的正确读数方法。 (4)校准移液管1支(必须在基本掌握滴定操作和正确读数的基础上进行)。 (5)练习并掌握电子天平的正确使用及读数方法。 (6)借助电子天平并使用采用差量法校准移液管。 三、结果与讨论 3.1 不同温度下纯水的密度 水的密度随着温度的改变而改变,水最大相对密度时的温度:3.98℃。不同温度下纯水的密度值见表一。 表一不同温度下纯水的密度值 (空气密度为0.0012 g/ml,钠钙玻璃膨胀系数为2.6×10^(-6)/ ℃) 温度)/ ℃密度(g/ml) 温度/℃密度(g/ml) 10 11 12 13 14 15 16 0.9984 0.9983 0.9982 0.9981 0.9980 0.997 0.9978 17 18 19 20 21 22 23 0.9976 0.9975 0.9973 0.9972 0.9970 0.9968 0.9966 *摘录于:中华人民共和国计量器具检定规程《基本玻璃量器》,国家计量局,1980 。 3.2练习并掌握移液管的使用方法。 (1)使用前:使用移液管,首先要看一下移液管标记、准确度等级、刻度标线位置等。使用移液管前,应先用铬酸洗液润洗,以除去管内壁的油污。然后用自来水冲洗残留的洗液,再用蒸馏水洗净。洗净后的移液管内壁应不挂水珠。移取溶液前,应先用滤纸将移液管末端内外的水吸干,然后用欲移取的溶液涮洗管壁2至3次,以确保所移取溶液的浓度不变。

相关文档
最新文档