等离子焊接与堆焊工艺

等离子焊接与堆焊工艺
等离子焊接与堆焊工艺

等离子焊接与堆焊工艺

关键词:等离子焊机、耐磨板堆焊机、堆焊机、多功能等离子焊接机、阀门堆焊设备、等离子焊机、磨具修复机、等离子粉末熔覆堆焊,等离子粉末堆焊机、等离子耐磨片

粉末等离子弧堆焊技术

1.原理与特点

1.1原理粉末等离子弧堆焊(亦称等离子喷焊,国外称为pta工艺),是采用氩

气等离子弧作高温热源,采用合金粉末作填充金属的一种表面熔敷(堆焊)合金的

工艺方法。粉末等离子弧堆焊的基本过程,利用等离子弧焊枪(或称喷枪,等离子

弧发生器),在阴极和水冷紫铜喷嘴之间,或阴极和工件之间,使气体电离形成电弧,此电弧通过孔径较小的喷嘴孔道,弧柱的直径受到限制,在压缩孔道冷气壁的作用下,产生热收缩效应、机械压缩效应、自磁压缩效应,使弧柱受到强行压缩,这种

电弧为“压缩电弧”,称为等离子弧。电弧被压缩后,和自由电弧相比会产生很大的变化,突出的是弧柱直径变细,促使弧柱电流密度显著提高,气体电离很充分,因

而电弧具有温度高、能量集中、电弧稳定、可控性好等特点。

等离子弧焊枪产生的等离子弧分非转移型弧(阴极与喷嘴间建立的电弧)和

转移型弧(阴极与工件间建立的电弧)。等离子弧堆焊的主要热源是转移型等离

子弧。

在采用联合弧堆焊时,一般采用两台独立的直流弧焊机作电源,分别供给非转移弧(简称“非弧”)和转移弧(简称“转弧”)。两个电源的负极并联在一起,通过水电缆接至焊枪的钨电级(阴极)。非弧电源的正极通过水电缆接至焊枪的喷嘴。转弧电源的正极接至工件。循环冷却水通过水电缆引至焊枪,冷却喷嘴和电极。氩气通过电磁气阀和流量调节器进入焊枪。非弧电源接通后,借助在电极和喷嘴之间产生的高频火花引燃非转移弧。转弧电源接通后,借助非弧在钨极和工件间造成的导电通道,引燃转弧。转弧引燃后,可保留或切断非弧,主要利用转弧的热

量在工件表面产生熔池和熔化合金粉末。合金粉末按需要量连续供给,借助送粉气流送入焊枪,并吹入电弧中。粉末在弧柱中被预先加热,呈熔化或半熔化状态落入熔池,在熔池里充分熔化,并排出气体和浮出熔渣。通过调节转移弧电流来控制

熔化合金粉末和传递给工件的热量,合金和工件表层熔合。随着焊枪和工件的相对移动,合金熔池逐渐凝固,便在工件上获得所需要的合金堆焊层。

1.2特点粉末等离子弧堆焊,由于采用了热量集中,可控性好的等离子弧作热源,采用了易于熔化,特别是自熔性好的合金粉末作填充金属,从而与其它表面堆

焊方法相比,具有以下特点:

(1)适于易于制成粉末而难于制成丝材的高合金或复合材料堆焊。(2)合金粉末及其熔池对电弧有缓冲作用,能有效控制熔深,母材冲淡率低。(3)堆焊层硬度

均匀,组织均一,易于避免质量缺陷。(4)焊道成形平整、美观,尺寸及熔敷率可调

范围宽,适应工件大小的范围宽。(5)采用细粉易于熔化的优点,可采用微束等离

子弧作热源,实现精细堆焊。(6)堆焊过程连续,易于实现全自动化堆焊。

其缺点是:(1)在堆焊过程中有少量粉末飘散造成浪费。(2)因粉末飞溅,长时

间施焊易产生粘嘴现象,影响工艺稳定。(3)堆焊质量对粉末质量的依赖性大,大

部分堆焊材料系自熔性合金。2.设备系统2.1组成等离子堆焊机(等离子弧堆焊

系统)主要由以下部分组成:(1)等离子弧电源;(2)电气控制系统(控制电路、操作

界面、程序软件);(3)工作气(氩气)供给系统;(4)焊枪三维空间定位或运行机械系统;(5)送粉器;(6)摆动机;(7)调高机/弧压自动控制器;(8)焊枪支架及三维微调机;(9)等离子焊枪;(10)工件移动机(或旋转台,或变位机);(11)冷却水换热及增压循环供

给机;(12)机架及防护装置。由送粉器、摆动机、调高机、焊枪支架及三维微调机、等离子焊枪等组成堆焊机机头。

上海多木实业有限公司是一家专业从事电源开发的高科技产业,其中焊接

电源是我的重点项目,开发的系列焊机已达到或超过国际先进水平,深受客户

的认可,拥有广泛的客户群和知名度。产品专业用于精密零件、薄板等的焊接,阀门、轧辊、截齿等的堆焊,模具、机械轴类的焊补等,已广泛应用于电子电器、煤炭矿山机械、航空航天等诸多领域。

文章来源:等离子焊接与堆焊工艺(多木原创,请勿转载)

激光焊接与等离子焊的区别

. 激光焊接在微型电机生产中的工艺特点。 激光用来封焊微型电机金属外壳、轴承和轴承套是目前一种最先进的加工工艺方法,主要基于激光焊接有以下特点: (1) 高的深宽比。焊缝深而窄,焊缝光亮美观。 (2) 最小热输入。由于功率密度高,熔化过程极快,输入工件热量很低,焊接速度快,热变形小,热影响区小。 (3) 高致密性。焊缝生成过程中,熔池不断搅拌,气体易出,导致生成无气孔熔透焊缝。焊后高的冷却速度又易使焊缝组织微细化,焊缝强度、韧性和综合性能高。 (4) 强固焊缝。高温热源和对非金属组份的充分吸收产生纯化作用,降低了杂质含量,改变夹杂尺寸和其在熔池中的分布,焊接过程中无需电极或填充焊丝,熔化区受污染小,使焊缝强度、韧性至少相当于甚至超过母体金属。 (5) 精确控制。因为聚焦光斑很小,焊缝可以高精度定位,光束容易传输与控制,不需要经常更换焊炬、喷咀,显著减少停机辅助时间,生产效率高,光无惯性,还可以在高速下急停和重新启始。用自控光束移动技术则可焊复杂构件。 (6) 非接触、大气环境焊接过程。因为能量来自激光,工件无物理接触,因此没有力施加于工件。另外,磁和空气对激光都无影响。 (7) 由于平均热输入低,加工精度高,可减少再加工费用,另外,激光焊接运转费用较低,从而可降低工件成本。 (8) 容易实现自动化,对光束强度与精细定位能进行有效控制。 三、激光焊接与现有焊接方法的比较 目前传感器、微型电机等密封焊接采用的方法有:电阻焊、氩弧焊、电了束焊、等离子焊等。 2. 氩弧焊:使用非消耗电极与保护气体,常用来焊接薄工件,但焊接速度较慢,且热输入比激光焊大很多,易产生变形。 3. 等离子弧焊:与氩弧类似,但其焊炬会产生压缩电弧,以提高弧温和能量密度,它比氩弧焊速度快、熔深大,但逊于激光焊。 4.电子束焊:它靠一束加速高能密度电子流撞击工件,在工件表面很小密积内产生巨大的热,形成"小孔"效应,从而实施深熔焊接。电子束焊的主要缺点是需要高真空环境以防止电子散射,设备复杂,焊件尺寸和形状受到真空室的限制,对韩件装配质量要求严格,非真空电子束焊也可实施,但由于电子散射而聚焦不好影响效果。电子束焊还有磁偏移和X射线问题,由于电子带电,会受磁场偏转影响,故要求电子束焊工件焊前去磁处理。X射线在高压下特别强,需对操作人员实施保护。激光焊则不需真空室和对工件焊前进行去磁处理,它可在大气中进行,也没有防X 射线问题,所以可在生产线内联机操作,也可焊接磁性材料。 五、北京华诺公司,提供激光焊接加工服务。 北京华诺激光有限公司是集激光焊接、激光刻字打标为一体的激光加工企业;拥有先进激光加工设备,和经验丰富的激光加工团队,专业承接激光加工服务。 一:激光焊接加工业务: 提供各类金属焊接,激光焊接、无缝焊接、密封焊接服务。包括: 电子元器件壳体焊接:传感器、滤波器、变压器、电源模块等; 五金厨具焊接:衣帽架、高档卫浴金属架; 汽车配件焊接:氧传感器、汽缸垫、液压顶杆等 医疗器械焊接:内窥镜护片、内窥镜连接件、一类二类医疗器械密封焊接等; 薄壁薄板金属焊接:薄壁传感器封装焊接,科研院所薄壁金属、毛细管焊接等; 电气材料:微型电机轴承和轴承套焊接、壳体焊接等。

穿孔等离子弧焊接技术

穿孔等离子弧焊接技术研究*    中航一集团625所 朱轶峰 张 慧 董春林 邵亦陈  文摘论述了等离子弧焊接的新进展,介绍一脉一孔的等离子弧焊接工艺、正面弧光传感器、焊接质量模糊控制系统以及采用该系统进行的焊接质量控制的初步试验结果。研究表明在不锈钢等离子弧焊接过程中,采用该系统可以提高等离子弧焊接焊缝的质量。 主题词等离子弧焊一脉一孔弧光传感模糊控制 1 引言 进入21世纪,航空航天制造业对焊接技术提出了更高要求,人们在追求低成本高强度的焊接结构时对穿孔等离子弧焊接产生了新的兴趣。 等离子弧能量密度高、射流速度大、等离子流力强 [1],穿孔等离子弧焊接(K-PAW)时等离子弧穿透工件形成小孔,随着小孔的弥合形成焊缝。对于国防工业中常用金属材料如高强钢、高温合金、钛合金、不锈钢等,在中厚度(3~10mm)范围与钨极氩弧焊相比,PAW具有更佳的工艺焊接性,接头内部缺陷率降低、焊件变形减小、焊接效率提高。“单面焊接双面成形”是K-PAW的典型特征,特别适合密闭容器、小直径管焊缝等背面难于施焊的结构件焊接。 但是穿孔等离子弧焊接过程的稳定性及焊接工艺参数的再现性始终是摆在焊接科研人员面前的难题,制约着等离子弧焊接技术的工程应用。本研究通过采用优化工艺参数、脉冲焊接工艺方式以及增加质量控制的手段提高等离子弧焊接的工艺裕度、提高离子弧焊接过程的稳定性。 2 试验系统 建立一个能够满足焊接试验、参数实时采集、实时控制的完整的试验系统,是本研究课题的基础。 2.1 焊接电源 目前国内使用的等离子弧焊接电源中,以晶体管、可控硅电源为主,新型的IGBT电源还处于研究阶段,电源输出的稳定性难以保证,成为影响焊接质量稳定性的因素之一。 同时考虑到逆变电源的控制响应时间较快等因素,选用进口的等离子焊接电源及焊枪,逆变频率可达 32kHz,能够提供较好的输出特性,便于实现自动焊。 2.2 焊接夹具 自动等离子弧焊接工艺对焊接夹具的压紧均匀性、焊缝对中有一定要求,为此我们自行设计研制了具有琴键式压紧纵缝、机械对中装置的LCAW-2型纵缝和环缝自动焊机。 2.3 焊接质量模糊控制单元 利用具有内置模糊控制模块的可编程控制器,开发了外围数字接口电路,结合奔腾133计算机,再加上我们开发的模糊控制规则表,形成了质量模糊控制单元。 模糊控制系统执行机构为焊接电流控制器与焊接速度控制器。尽管影响等离子焊接焊缝成型质量的参数有很多,考虑到焊接电流和焊接速度对等离子焊接熔池的体积、温度及弧柱压力均有 收稿日期:2001-12-04 *本课题被评为2000年度国防科技进步二等奖 22

等离子堆焊技术的原理与应用

等离子堆焊技术的原理与应用 ___宁波镭速激光科技有限公司 摘要:等离子弧堆焊是利用等离子弧作为热源将填加金属熔化,使之与基体金属作为实现冶金结合的一种堆焊方法。等离子堆焊技术具有节能、高效和质量稳定等特点,使其成为重要的绿色制造及再制造技术之一。随着国内制造业的迅速发展,焊接技术尤其是等离子堆焊技术也得到较快的发展。本文介绍了等离子堆焊技术的原理、应用以及发展前景。关键词:等离子堆焊技术原理设备与材料工艺及应用 引言:等离子堆焊于20世纪60年代开始投入工业应用。它是利用焊炬的钨极作为电流的负极和基体作为电流的正极之间产生的等离子体作为热量,并将热量转移至被焊接的工件表面,并向该热能区域送入焊接粉末,使其熔化后沉积在被焊接工件表面,从而实现零件表面的强化与硬化的堆焊工艺。该堆焊技术具有生产率高,成型美观以及堆焊过程易于实现机械化及自动化等优点。与钨极氩弧焊相比,等离子堆焊具有熔深可控性强、熔敷速度大、生产率较高,堆焊后基体材料与堆焊材料之间的界面呈冶金结合状态,其结合强度高,热输入量低,稀释率小。更为重要的是,由于钨极承载电流的能力较差,因此在氩弧焊中较大的电流会引起钨极熔化和蒸发,其微粒有可能进入熔池,造成污染,而等离子堆焊中钨极需要承受电流较小[2-3];与手工电弧焊相比,虽然在应用灵活性、方便性上稍逊一筹,但在生产效率上枪体现出明显的优势,且手工电弧焊劳动强度较大、影响焊工健康,产品质量受焊工水平和焊条质量影响较大;与埋弧焊相比,在焊接位置上的灵活性比较大。另外等离子弧本身具有弧心热量集中、电弧稳定、稀释率低等优点。随着自控技术的发展,越来越多的堆焊设备中引入了CNC控制,从而实现对弧压、电流、送粉量、摆动幅度他摆动频率等堆焊重要参数的精确控制,另外在堆焊系统中引入数控系统,可以控制焊枪行走速度和工件运动,通过调节相关的堆焊参数,可以对堆焊层的厚度、宽度、硬度在一定范围内自由调整[4];与其他堆焊技术相比,等离子堆焊过程中基体材料与堆焊材料的互熔较少,堆焊材料特性变化小;另外采用粉末作为堆焊材料可提高合金设计的自由度,使堆焊难熔材料成为可能,从而大幅度提高工件的耐磨、耐高温、耐腐蚀性。因此等离子堆焊可广泛地用于石油、化工、工程机械、矿山机械等行业的新品制造与装备再制造中。 1、等离子堆焊技术的原理 等离子粉末堆焊是以等离子弧作为热源,应用等离子弧产生的高温将合金粉末与基体表面迅速加热并一起熔化、混合、扩散、凝固,等离子束离开后自激冷却,形成一层高性能的合金层,从而实现零件表面的强化与硬化的堆焊工艺,由于等离子弧具有电弧温度高、传热率大、稳定性好,熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。等离子粉末堆焊后基体材料和堆焊材料之间形成融合界面,结合强度高;堆焊层组织致密,耐蚀及耐磨性好;基体材料与堆焊材料的稀释减少,材料特性变化小;利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性。等离子粉末堆焊具有较高的生产率,美观的成型以及堆焊过程易于实现机械化及自动化。 等离子弧是属于高温高能束流,电弧温度可达30000℃,功率密度在 1.5×102~1.6×104W/mm2。高压缩程度的等离子弧用于焊接、切割和喷涂时,其效果可与激光、电子束方法相比;而较低压缩程度的堆焊等离子弧,是一种压缩性可调的柔性等离子弧,它既可以实现堆焊对高速熔敷的需求,又可以满足低稀释率的条件,同时还不易产生双弧,成为理想的堆焊热源。

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采纳V形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,能够填充焊丝也能够不加焊丝,均能够获得良好质量的焊缝。一般厚板采纳小孔型等离子弧焊,薄板采纳熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采纳陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有专门高的同心度。等离子气流和焊接电流均要求能递增和衰减操纵。 焊接时,采纳氩和氩中加适量氢气作为爱护气体和等离子气体,加入氢气能够使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采纳填充焊丝依照需要确定。选用填充焊丝的牌号与钨极惰性气体爱护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的差不多相同,应注意操纵焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应操纵焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全 什么是等离子弧焊?试述等离子弧的产生方法。 借助水冷喷嘴对电弧的拘束作用,获得高能量浓度的等离子弧进行焊接的方法称为等离子弧焊。 等离子弧是自由电弧压缩而成,它是通过以下三种压缩作用获得的,机械压缩效应示意图见图22。 1.机械压缩将电弧强制通过具有小孔径喷嘴的孔道,使电弧受到压缩。 2.热压缩当等离子气体(Ar、N气)以一定的速度和流量经喷嘴时,靠近电弧一侧的气体通过弧柱,吸收大量热量而电离,成为等离子弧的一个组成部分。但是靠近喷嘴内壁的气体,由于受到喷嘴强烈的冷却作用,形成一个冷气套,迫使弧柱截面进一步缩小称为热压缩。 3.磁压缩弧柱电流是一束平行的同向电流线,必然产生往内的收缩力。当电弧受到机械压缩和热压缩之后,截面缩小,因而电流密度增大,由此产生的电磁收缩力必然增大,形成磁压缩。 试述等离子弧的类型。 按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。

⑴非转移型等离子弧钨极接电源负端,焊件接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。 ⑵转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。 ⑶联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。 56 试述转移型等离子弧的产生方法。 为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃 烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

等离子堆焊机介绍及应用

目录 公司发展历程 (2) 工艺及工作原理 (4) 应用领域 (5) 现场案例 (8) 常见问题解决方案 (9)

工艺及工作原理 PTA等离子转移弧堆(喷)焊工艺原理: 一般采用两台独立的直流弧焊机作电源,利用等离子弧堆(喷)焊专枪(或称等离子弧发生器),在阴极和水冷紫铜喷嘴之间,或阴极和工件之间,使气体电离形成电弧,此电弧通过孔径较小的喷嘴孔道,弧柱的直径受到限制,在压缩孔道冷气壁的作用下,产生热收缩效应、机械压缩效应、自磁压缩效应,使弧柱受到强行压缩,这种电弧为“压缩电弧”,称为等离子弧。电弧被压缩后,和自由电弧相比会产生很大的变化,突出的是弧柱直径变细,促使弧柱电流密度显著提高,气体电离很充分,因而电弧具有温度高、能量集中、电弧稳定、可控性好等特点。等离子弧堆焊(喷)专枪产生的等离子弧分非转移型弧(阴极与喷嘴间建立的电弧)和转移型弧(阴极与工件间建立的电弧),等离子弧堆焊的主要热源是转移型等离子弧。 PTA等离子转移弧堆(喷)焊工作原理: 是利用等离子弧作为热源,由送粉器向堆焊枪供粉,吹入电弧中,应用等离子弧产生的高温将合金粉末与基体表面迅速加热并一起熔化、混合、扩散、随堆焊枪和工件的相对移动,等离子弧离开后液态合金逐渐凝固,形成一层高性能的合金堆焊层,从而实现零件表面的强化与硬化的堆焊工艺,由于等离子弧具有电弧温度高、传热率大、稳定性好,

熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。等离子粉末熔覆后基体材料和堆焊材料之间形成融合接口,结合强度高;堆焊层组织致密,耐蚀及耐磨性好;基体材料与堆焊材料的稀释减少,材料特性变化小;焊道平滑整齐,不加工或稍加工即可使用。利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性或耐冲击性! 技术优势: 1、堆焊熔覆合金层与工件基体呈冶金结合,结合强度高; 2、堆焊熔覆速度快,低稀释率;粉末等离子弧堆焊的稀释率可控制在5%一15%或更低。 3、堆焊层组织致密,成型美观;堆焊过程易实现高效自动化生产,提高劳动生产率,减轻劳动强度。 4、可在锈蚀及油污的金属零件表面不经复杂的前处理工艺,直接进行粉末等离子弧堆焊; 5、与其他粉末等离子喷焊相比设备构造便利,低耗、高效、实用易操作,维修维护方便;

等离子焊机说明书

等离子焊机说明书 Prepared on 22 November 2020

目录 1.等离子焊接方法简介 (2) 简介 (2) 等离子电弧 (2) 等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) PHOENIX EWA 400DC-P等离子焊接电源 (3) HP400等离子焊枪 (5) 等离子焊接控制电源 (6) RC-3型冷却水箱 (6) 焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 焊接电流 (8) 等离子气流量 (8) 焊接速度 (8) 喷嘴距离 (9) 正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11) 1.等离子焊接方法简介 简介

等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达~500A,适合于厚度在~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。 自由电弧经过等离子焊枪中的三个压缩:机械压缩,热压缩和电磁压缩后形成等离子电弧,等离子电弧的功率及温度明显高于自由电弧,其功率基本上是自由电弧的两倍。 等离子电弧主要分为三种类型: 1.非转移型等离子电弧 主要用于非金属材料的焊接。 2.转移型等离子电弧 金属材料的焊接一般采用此电弧。

等离子粉末堆焊

等离子粉末堆焊 精密氩焊粉末堆焊1、数字型采用CPU处理器,输出准确精确控制。采用优质的元件制造,性能可靠。2、“单键飞梭“功能,一个数字按钮控制多个数字表,减少故障率,克服了电位器故障频繁的现象。3、能量密度大,电弧方向性强。融透性强。可以产生稳定的小孔效应,通过小孔的效应可以获得良好的单面焊双面成型。4、焊缝的质量对弧长的变化不敏感,这是由于等离子弧的形态接近圆柱形。发散角很小(约5度)且挺直性好,弧度变化时加热斑点的面积影响很小,因此容易获得均匀的焊缝状态。 5、钨极缩在水冷喷嘴内部,不与工件接触,因此可以有效的避免焊缝金属的夹钨现象。另外电弧的搅动性好,融池温度高,有利于融池内气体的释放。 6、等离子电弧由于压缩效应及热电离度较高,电流较小时仍很稳定,焊接电流可以小到0、1A稳定燃烧,特别适合焊接微型精密零件。通过电弧的压缩,导电弧柱集中为一条细线,电流小,电弧稳定,溶池小,热影响区很窄,电极和喷嘴的孔径细小,并使弧柱收缩的更细,同时也提高热效率。参数:型号DML-VO2B离子焊氩焊输入电源AC220V额定功率6KVA输出电流范围1-100A1-200A脉冲电流时间1-99ms1-999ms间隔时间0、1-2s0、1-2s重量100kg体积275x470x400mm基本原理: 等离子粉末堆焊是以等离子弧作为热源,应用等离子弧产生的高温将合金粉末与基体表面迅速加热并一起熔化、混合、扩

散、凝固,等离子束离开后自激冷却,形成一层高性能的合金层,从而实现零件表面的强化与硬化的堆焊工艺,由于等离子弧具有电弧温度高、传热率大、稳定性好,熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。等离子粉末堆焊后基体材料和堆焊材料之间形成融合界面,结合强度高;堆焊层组织致密,耐蚀及耐磨性好;基体材料与堆焊材料的稀释减少,材料特性变化小;利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性。 等离子粉末堆焊具有较高的生产率,美观的成型以及堆焊过程易于实现机械化及自动化。 技术特点: 1、堆焊熔覆合金层与工件基体呈冶金结合,结合强度高; 2、堆焊熔覆速度快,低稀释率; 3、堆焊层组织致密,成型美观; 4、可在锈蚀及油污的金属零件表面不经复杂的前处理工艺,直接进行等离子堆焊; 5、堆焊过程易实现机械化、自动化; 6、与其他等离子喷焊相比设备构造简单,节能易操作,维修维护容易、截齿等离子粉末熔覆堆焊系统优势: 1、成型美观,焊道成型控制精密,宽窄高低任意可控,焊后不用处理;

等离子焊(PAW)简介

等离子焊(PAW)简介 索引:等离子弧能量密度高,挺直度非常好。 关键词:等离子弧焊接 等离子是指在标准大气压下温度超过3000℃的气体,在温度谱上可以把其看作为继固态、液态、气态之后的第四种物质状态。等离子是由被激活的高子、电子、原子或分子组成。例如:它可通过自然界中的闪电产生。从1960年以后,等离子这个词获得了新的含义,那就是电弧通过涡流环或喷嘴压缩而形成的高能量状态,此原理现在被广泛用于钢铁、化工及机械工程工业。 等离子弧焊是在钨极氩弧焊的基础上发展起来的一种焊接方法·。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体,称等离子弧,又称压缩电弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。 等离子弧的最大电压降是在弧柱区里,这是由于弧柱被强烈压缩,使电场强度明显;增大的缘故。因此,等离子弧焊主要是利用弧柱等离子体热来加热金属,而自由钨弧是利用两电极区产生的热来加热母材和电极金属。 等离子弧的特性 等离子弧能量密度可达10000--100000W/cm2,比自由钨弧(约10000W/cm2以下)高,其温度可达18000~24000K,也高于自由钨弧(约5000~8000K)很多。图1-1为两种电弧的温度分布,左侧为自由钨弧,右侧为等离子弧。 图 1-1

等离子弧的静特性曲线接近U形(图1-2)。与自由钨弧比较最大区别是电弧电压比自由钨弧高。此外,在小电流时,自由钨弧静特性为陡降(负阻特性)的,易与电源外特性曲线相切,使电弧失稳。而等离子弧则为缓降或平的,易与电源外特性相交建立稳定工作。 图1-2 图1-3表示了等离子弧与自由钨弧的形态区别。等离子弧呈圆柱形,扩散角约5度左右,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化,而自由钨弧呈圆锥形,其扩散角约45度,对工作距离变化敏感性大。 图1-3 等离子弧的挺直度非常好。由于等离子弧是自由钨弧经压缩而成,故其挺度比自由钨弧好,焰流速度大,可达300m/s以上,因而指向性好,喷射有力,其熔透能力强。 等离子弧焊的特点 由于等离子弧弧柱温度高,能量密度大,因而对焊件加热集中,熔透能力强,一次可焊透的厚度如表1-4所示,在同样熔深下其焊接速度比TIG焊高,故可提高焊接生产率。 表1-4

等离子堆焊粉末参数要求

等离子堆焊粉末参数要求 一:Ni 60A是高硬度的镍铬硼硅合金粉末,自熔生、润湿性和喷焊性优良,而且熔点比较低,喷焊层具有硬度高、耐腐蚀、耐磨、耐热特点,难以切削,以湿式磨削为宜。适用于氧—乙炔火焰或等离子喷焊工艺,常用于耐蚀、耐磨、特别是耐滑动磨损零件的预防性保护和修复,如拉丝滚筒、凸轮、柱塞、轧钢机的输送辊、气门等。 粉末化学成份(W t℅) C Cr Si B Fe Ni 0.5-1 14-19 3.5-5.0 3.0-4.5 ﹤8.0 余量 粉末熔化温度:960-1040℃ 喷焊层硬度:HRC:58-62 注意事项:1.请严禁按氧-乙炔火焰或等离子喷焊工艺的要求施焊。 2.采用中小型喷枪时,宜选用-150目的粉末,采用大型喷焊枪时宜选用-150/+300目的粉粉末。 3.合金粉如有吸潮现象,使用前应进行干燥处理(120℃,保温1小时)。 二:Ni15是低硬度的镍硼硅自熔合金粉末。自熔性润湿性较好,喷涂层耐腐蚀,有较好的抗高温氧化性,机械加工性能很好,该产品是本公司专门为修复铸件而开发的,具有独特的喷焊特性和机械加工性能,熔合后铸件的热影响区很小。适用于氧-乙炔火焰焊工艺,主要用于铸造业,修补铸件缺陷,如发动机气缸、机床导轨等。 粉末化学成份(W t℅) C Li Si B Fe Cu Ni ﹤0.1 ﹤0.1 1.6-2.4 0.8-1.4 ﹤0.5 8.0-10 余量粉末熔化温度:1020-1150℃ 喷焊层硬度:HR:150-180 注意事项:1.请严禁按氧-乙炔火焰喷焊工艺的要求施焊。 2.在喷焊造型复杂的工件时,具体的操作工艺将影响成攻率,有问题请向本公司咨询 3.合金粉如有吸潮现象,使用前应进行干燥处理(120℃,保温1小时)。 三:Fe45是中等硬度的铁镍铬硅硼合金粉末。自熔性较好,具有较好的耐磨性,可以切削加工。适用于氧-乙炔火焰或等离子喷焊工艺,常用于阀门密封面以及农业、运输、建筑机械的易磨损部位的修复或预防性保护。如齿轮、刮板、车轴等。 粉末化学成份(W t℅) C Cr Si B Ni W Mo Fe 0.4-0.8 15-20 2.3-3.5 1.5-2.5 9.0-12 2.0-3.0 1.0-2.0 余量粉末熔化温度:1100-1200℃ 喷焊层硬度:HRC:40-45 注意事项:1.请严禁按氧-乙炔或等离子喷焊工艺的要求施焊。 2. 采用氧-乙喷焊枪时,宜选用-150目的粉末,采用等离子喷焊枪时宜选用-60/+150目的粉粉末。 3.合金粉如有吸潮现象,使用前应进行干燥处理(120℃,保温1小时)。

电子束焊及等离子弧焊特点

电子束焊 真空电子束焊接具有以下特点: ●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接 ●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。 ●最大的穿透深度,可达15MM ●最高的深宽比大于10:1。 ●焊接直径可达400MM ●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。 ●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。 ●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。 ●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态 ●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。 ●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。 ●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。 等离子弧焊 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。

等离子焊机说明书

目录 1.等离子焊接方法简介 (2) 1.1简介 (2) 1.2等离子电弧 (2) 1.3等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) 2.1 PHOENIX EWA 400DC-P等离子焊接电源 (3) 2.2 HP400等离子焊枪 (5) 2.3等离子焊接控制电源 (6) 2.4 RC-3型冷却水箱 (6) 2.5焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 3.1焊接电流 (8) 3.2等离子气流量 (8) 3.3焊接速度 (8) 3.4喷嘴距离 (9) 3.5正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11)

1.等离子焊接方法简介 1.1简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达0.1~500A,适合于厚度在0.1mm~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显著的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 1.2 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

传统喷焊与等离子堆焊的技术差异

传统喷焊与等离子堆焊的区别 宁波镭速激光科技有限公司氩弧焊技术是在普通电弧焊的原理的基础上,利用氩气对金属焊材的保护,通过高电流使焊材在被焊基材上融化成液态形成溶池,使被焊金属和焊材达到冶金结合的一种焊接技术,由于在高温熔融焊接中不断送上氩气,使焊材不能和空气中的氧气接触,从而防止了焊材的氧化,因此可以焊接铜、铝、合金钢等有色金属。 1.氩弧焊 氩弧焊因为热影响区域大工件在修补后常常会造成变形、硬度降低、砂眼、局部退火、开裂、针孔、磨损、划伤、咬边、或者是结合力不够及内应力损伤等缺点。尤其在精密铸造件细小缺陷的修补过程在表面突出。在精密铸件缺陷的修补领域可以使用冷焊机来替代氩弧焊由于冷焊机放热量小较好的克服了氩弧焊的缺点弥补了精密铸件的修复难题。 氩弧焊与焊条电弧焊相比对人身体的伤害程度要高一些氩弧焊的电流密度大发出的光比较强烈它的电弧产生的紫外线辐射约为普通焊条电弧焊的5-30倍红外线约为焊条电弧焊的1-1.5倍在焊接时产生的臭氧含量较高因此尽量选择空气流通较好的地方施工,不然对身体有很大的伤害。 2等离子焊 和其他焊机相比之下,等离子堆焊的优点体现在哪些方面呢? 1.钨极缩在水冷铜喷嘴内部,不可能与工件接触,因此可避免焊缝金属产生夹钨现象。电弧搅动性好,熔池温度高,有利于熔池内气体的释放。 2.等离子电弧由于压缩效应及热电离度较高,电流较小时仍很稳定。配用新型的电子电源,焊接电流可以小到0.1A,这样小的电流也能达到电弧稳定燃烧,特别适合于焊接微型精密零件。 3.可产生稳定的小孔效应,通过小孔效应,正面施焊时可获得良好的单面焊双面成形。 4.等离子堆焊的能量密度大、电弧方向性强、熔透能力强,在不开坡口、不加填充焊丝的情况下可一次焊透8~10mm厚的不锈钢板。与钨极氩弧焊相比,在相同的焊缝熔深情况下,等离子弧焊接速度要快得多。 5.焊缝质量对弧长的变化不敏感,这是由于等离子弧的形态接近圆柱形,发散角很小,约5°,且挺直度好,弧长变化时对加热斑点的面积影响很小,易获得均匀的焊缝形状。工件上受热区域小,热影响区窄,因而薄板焊接时变形小。 由于其焊接速度快,焊缝美观,焊缝质量好,成本低,等离子焊接已广泛运用于设备制造业中对各种型式的接头进行焊接、医疗设备、真空装置、薄板加工、波纹管、仪表、传感器、汽车部件、化工密封件等。 微束等离子焊更是在实际运用中显露出巨大的优势,其焊缝质量可与激光焊比肩。微束等离子技术已成功的应用于大多数金属的焊接,如钢、不锈钢、各种合金钢、铜、镍、钛、钼、钨、金、铂、铑、钯等各种金属及其合金材料。典型应用产品有传感器膜盒,焊接波纹管,微电机定子铁心,电子产品,不锈钢锅 喷涂工艺需要融化金属粒子,导致喷涂温度高,使机体内部产生热应力,机体表面产生热变形。其次,因为除火焰喷涂外都无法人工操作,操作危险。此外,传统热喷涂工艺很难控制喷涂面积与厚度,所以与喷涂效果差。并且设备不便携带。

等离子弧焊概要

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm2TIG自由电弧<10 4W/cm2)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

各种堆焊对比

1.等离子转移弧堆焊 等离子转移弧堆焊硬面装置是利用电弧电离气体在压缩电弧区形成物质第四态“等离子体”作为热源(负极),合金粉末(堆焊材料)通过等离子弧区输送到工件(正极)表面建立熔池,并快速冷却形成金相组织均一与工件呈冶金结合的合金焊层的先进设备。 等离子转移弧堆焊的优点 (1)弧柱区温度高,电流密度、堆焊线能量大;保证在高堆焊速度条件下,能形成与基体呈冶金结合,金相组织均一的焊层。 (2)热影响区小:基体材料机械强度损失少,对高合金基材,焊后残余应力和焊后开裂倾向小。 (3)焊层晶粒细化,呈树枝状:相同堆焊材料,PTA工艺焊层耐磨性高。 (4)焊层稀释率低:焊层稀释率与氧-乙炔工艺相当,比惰性气体钨极焊TIG(GTA)要低,稀释率的高低对常温硬度、高温硬度和耐磨性都有显著影响。 (5)焊层平整,加工量小(省料、省工) (6)便于自动控制,适于大批量、多品种流水作业。 粉末等离子弧堆焊主要工艺指标 (1)熔敷率:熔敷率是指单位试件内熔焊在工件上的合金粉末重量。计量单位是:kg/h 或g/min。熔敷率越高则生产效率越高。 (2)粉末利用率:粉末利用率是指单位时间内,从焊枪送出的合金粉末量和熔敷金属重量之比,用百分数表示。堆焊时,不可能使焊枪送出的合金粉末全部熔敷在工件上,部分粉末由于飞溅而未落入熔池,或以熔珠的形式而流失,并有少量粉末在堆焊过程中氧化,所以粉末利用率很难达到100%。 (3)冲淡率:冲淡率是指工件(基体金属)熔化后混入堆焊层,对堆焊合金的冲淡程度,即:冲淡率=焊层中基体金属总量/焊层合金总量,由于堆焊层成形较平整,熔深基本一致,因此,冲淡率还可以按下式表示:冲淡率≈工件熔深/堆焊层厚度。 (4)堆焊层质量:堆焊层质量包括外观质量和内部质量。外观质量指成形好坏,宏观上有无明显弧坑、缩孔、裂纹、缺肉等缺陷。内部质量是指堆焊层内部有无气孔、夹渣、裂纹、未焊透等缺陷,微观组织结构的均匀性。 在冲淡率和堆焊质量符合要求的情况下,堆焊层的物理化学性能,如:硬度、耐磨性、耐蚀性、金相组织等主要取决于粉末合金材料的性能,而工艺规范的控制也会对焊层性能产生一定的影响。 (5)堆焊层的利用率:阀面堆焊后,要经过机加工达到成品尺寸。成品尺寸中的堆焊

堆焊工艺方法二

堆焊工艺方法二 5)埋弧堆焊埋弧、无飞溅及电弧辐射,劳动条件好,外观成形光滑,易实现机械化、自动化。它又可分为单丝、多丝、单带极、多带极埋弧堆焊。单丝埋弧堆焊稀释率最高,熔敷速度最低,一般需堆焊2~3层才能满足要求。为了提高效率和降低稀释率,发展了添加冷丝,撒放合金剂和振动堆焊等方法。撒放合金剂可使稀释率降至10%以下,堆焊效率提高3倍以上。多丝埋弧堆焊比单丝效率高,稀释率低。如串列双丝双弧、并列多丝加摆动等。在大面积耐蚀堆焊中用得最多的是带极埋弧堆焊,它比丝极埋弧堆焊有低的稀释率和高的熔敷速率,带宽已从30mm的窄带发展到60mm、75mm、甚至120mm 的宽带极。随着带宽的增加,必须有磁控装置,以防止由于磁偏吹引起的咬肉等缺陷。带极材料可以是实心带极,也可以是药芯带极。6)电渣堆焊是利用导电熔渣的电阻热来熔化堆焊材料和母材的堆焊过程。目前用得较多的是带极电渣堆焊,它比带极埋弧堆焊有高约50%的生产效率和更低的稀释率(一般可控制在10%以下)及良好的焊缝成形,不易有夹渣等缺陷。表面不平度小于0.5mm,单层堆焊即可满足要求,且无需机械加工。适用于压力容器内表面大面积堆焊,堆焊层合金化除通过电极外,还可把合金粉末加入渣池或涂在电极表面。电渣堆焊用于堆焊在含氢介质中工作的工件时,由于焊接速度较低,热输入较大,造成母材和堆焊层之间的边界层晶粒粗大,使堆焊层抗氢致剥离性能下降,故用电渣、电弧联合过程的高速带极堆焊更为适宜。由于其热输入较大,一般只适用于堆焊大于50mm的后壁工

件。 7)高速带极堆焊由于焊接速度的提高(一般带为75mm时,焊接速度可达25~28cm\min)堆焊过程由电渣过程变成电渣、电弧的联合过程,但以电渣过程为主,因此基本保留了电渣堆焊高效、低稀释率的优点,且因焊速高,对母材热输入小,边界层晶粒细小,多呈马氏体和奥氏体双相组织,用于堆焊在氢介质中工作的工件时,大大提高了抗氢致剥离性能,而且工件变形小,可堆焊较薄的工件。由于焊速高,焊接电流大,磁收缩现象更严重,因此对磁控制装置的要求也更高。一般需堆焊两层才能满足要求。 8)等离子弧堆焊眀弧、堆焊层形状容易控制、成形平整,不加工或少许加工即可使用。等离子弧温度高,能量集中,热利用率高,热梯度较大,为防止开裂,大工件堆焊时需预热。 根据填充金属送给方式及堆焊材料种类的不同,大致可以分为冷丝(实心焊丝、药芯焊丝、铸棒、焊带)等离子弧堆焊、热丝(实心或药芯)等离子弧堆焊、预制型等离子弧堆焊、粉末等离子弧堆焊。等离子弧堆焊稀释率较低(堆焊一层即可满足要求),一般熔敷速率也较低,但热丝等离子弧堆焊用电阻热将焊丝加热至熔点,并连续熔敷于等离子弧前面,可大大提高熔敷速率。粉末等离子弧堆焊的最大优点是堆焊材料品种非常多,各种难轧拔的合金均能制成粉末,且能把WC颗粒加入粉末中进行堆焊。为了提高粉末等离子弧堆焊的熔敷速率,近年研制的大功率粉末等离子弧堆焊焊枪可使熔敷速率提高到15kg/h以上,而稀释率仍保持在5%以下。

学习任务八 等离子喷焊

学习任务八等离子喷焊 学习目标及技能要求 1.了解等离子喷焊的原理与设备。 2.掌握等离子喷焊的操作方法。 建议学时: 30学时 工作情景描述: 等离子喷焊可以根据零件、设备不同的使用要求采用相应的粉末,等离子喷焊常用粉末有铁基合金、镍基合金、铜基合金、钴基合金、金属陶瓷及其复合合金等。目前,等离子喷焊已广泛应用于矿山机械、阀门、碾压机、锻造模具、农业设备、核电站设备等机械设备的制造。 等离子弧喷焊技术也可用于制备性能优良的复合材料。通过改变金属粉末的不同配比,使复合材料层与层之间的成分达到连续变化,同时通过调节射流的速度和温度等工艺参数,使组织具有一定程度的变化,以制备性能优越的梯度功能复合材料,对生产和科研工作都具有积极意义。 工作流程: 本项目以φ50mm圆钢为例,用LS-PTA-DGN300等离子堆焊机进行铁基粉末的等离子喷焊。在工作过程中,严格按照“7S”的工作要求进行加工生产。 一、任务导入 轧辊在实际生产中容易出现硬度不高,易磨损等情况,针对此种情况,采用等离子喷焊技术可以降低生产成本。 二、任务分析 本项目以φ50mm圆钢为例,用LS-PTA-DGN300等离子堆焊机进行铁基粉末的等离子喷焊。在喷焊过程中,注意喷焊层之间的搭接量和喷焊的厚度。 三、任务准备

(一)知识准备 1.等离子喷焊原理与特点 等离子粉末堆焊是以等离子弧作为热源,应用等离子弧产生的高温将合金粉末与基体表面迅速加热并一起熔化、混合、扩散、凝固,等离子束离开后自激冷却,形成一层高性能的合金层,从而实现零件表面的强化与硬化的堆焊工艺,由于等离子弧具有电弧温度高、传热率大、稳定性好,熔深可控性强,通过调节相关的堆焊参数,可对堆焊层的厚度、宽度、硬度在一定范围内自由调整。等离子粉末堆焊后基体材料和堆焊材料之间形成融合界面,结合强度高;堆焊层组织致密,耐蚀及耐磨性好;基体材料与堆焊材料的稀释减少,材料特性变化小;利用粉末作为堆焊材料可提高合金设计的选择性,特别是能够顺利堆焊难熔材料,提高工件的耐磨、耐高温、耐腐蚀性。等离子粉末堆焊具有较高的生产率,美观的成型以及堆焊过程易于实现机械化及自动化。技术特点: (1)等离子堆焊合金层与工件基体呈冶金结合,结合强度高; (2)等离子堆焊速度快,低稀释率; (3)堆焊层组织致密,成型美观; (4)可在锈蚀及油污的金属零件表面不经复杂的前处理工艺,直接进行等离子堆焊;(5)堆焊过程易实现机械化、自动化; (6)与其他等离子喷焊相比设备构造简单,节能易操作,维修维护容易应用范围:等离子弧堆焊可广泛的用于石油、化工、工程机械、矿山机械等行业,如各类阀门密封面(常规的闸阀、截止阀、止回阀、安全阀等)的耐磨堆焊,以及石油钻杆、轴承、轴、乳辊、截齿的磨损后的修复等,其应用前景非常广阔材料主要有:镍基、钴基、铁基合金、碳化钨、高耐腐蚀合金材料等,硬度由HRC15-65度可随机调配。 2.操作原理 (1)等离子气与保护气 LS-PTA-DGN300的等离子气和保护气流的速率是通过控制面板上的流量计来控制的。每种气体的流量由前面板上的气体流量计指示,气体的电磁阀安装在主机的内部,用以开启与关闭气体。

相关文档
最新文档