聚丙烯增韧改性技术综述

聚丙烯增韧改性技术综述
聚丙烯增韧改性技术综述

2002年第23卷第5期华 北 工 学 院 学 报V o l.23 N o.5 2002 (总第85期)JOURNAL OF NORTH CH INA INSTITUTE OF TECHNOLOG Y(Sum N o.85)

文章编号:100625431(2002)0520342204

聚丙烯增韧改性技术综述

Ξ

陈智刚1,杨慧群2,张 伟2

(1.华北工学院机械电子工程系;2.华北工学院化学工程系,山西太原030051)

摘 要: 目的 增加聚丙烯的韧性,扩大其应用.方法 探讨聚丙烯改性机理,分析讨论影响聚丙烯改性

的因素.结果 共混体系的结构形态、相容性、组成和共混工艺等影响聚丙烯的改性.结论 适宜的改性技

术是聚丙烯改性的关键.

关键词: 聚丙烯;共混改性;增韧剂

中图分类号: TQ325.1+4 文献标识码:A

0 引 言

聚丙烯是产量仅次于聚乙烯、聚氯乙烯的通用塑料.由于其原料丰富,与其它通用热塑性塑料相比,聚丙烯具有相对密度小、价格低、加工性好以及综合性能较好等特点,并有突出的耐应力开裂性和耐磨性.近年来发展迅速,成为塑料中产量增长最快的品种.但聚丙烯还存在低温脆性、韧性差等缺点,因此在作为结构材料和工程材料应用时受到了很大的限制.为了扩大聚丙烯的使用范围,国内外开始重视改性技术,使聚丙烯塑料向工程化方向发展.作者就聚丙烯提高韧性的机理与影响改性产物性能的因素进行了探讨.

1 技术途径

聚丙烯改性技术可分为化学改性和物理改性两种[1].化学改性是指通过接枝、嵌段共聚,在聚丙烯大分子链中引入其它组分,或是通过交联剂等进行交联,或是通过成核剂、发泡剂进行改性.物理改性是在聚丙烯基体中加入其它的材料或有特殊功能的添加剂,经过混合、混炼而制成具有优异性能的聚丙烯复合材料.物理改性大致可分为填充改性、共混改性、增强改性和功能性改性等.

填充改性是指在聚丙烯树脂中加入一定量的无机或有机填料来提高制品的性能[1,2],主要在模量方面有较大提高.填充改性能降低材料的成本,但有时它在提高一种性能的同时会降低其它的性能.增强改性通常选用玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等增强材料使聚丙烯强度提高.增强改性是复合材料发展的一个方向.共混改性是指用其它塑料、橡胶或热塑性弹性体与聚丙烯共混,填入聚丙烯中较大的球晶内,由此改善聚丙烯的韧性和低温脆性.常用的改性材料有聚乙烯、顺丁橡胶、乙丙橡胶、丁苯橡胶和乙烯2醋酸乙烯共聚物.功能性改性是根据使用的材料所要求具有的功能性如抗静电、阻燃、透明性等加入特定试剂使聚丙烯改性.

物理改性比化学改性容易进行,使聚丙烯性能改善也较显著,推广容易,经济效益明显;特别是共混改性技术开发周期短、耗费少、制品的物理性能同样能达到应用要求.因此,共混改性是利用现有高分子材料开发新型材料的简便而有效的方法.

Ξ收稿日期:2001212230

 基金项目:山西省青年基金和山西省回国留学生基金项目

 作者简介:陈智刚(1963-),男,副教授,博士1从事专业:弹药1

2 增韧机理

共混改性聚丙烯的主要目的是增加其韧性,弹性体在其中起非常重要的作用.有关机理的研究很多,大多研究者引用D r W u 的剪切带屈服理论[2].

在拉伸应力作用下,高聚物中某些薄弱部位[3,5]由于应力集中而产生空化条纹状形变区,即材料产生了银纹,它可以进一步发展成为裂纹,所以它常是聚合物破裂的开端.但是,形成银纹要消耗大量的热量,因此若银纹能被适当地终止而不致发展成裂纹,那么它反而可延迟聚合物的破裂,提高聚合物的韧性.

采用橡胶类聚合物与聚丙烯共混改性时,材料性能不仅与橡胶类聚合物分散相有关,而且也与聚丙烯树脂连续相的特性有关.如果橡胶相和聚丙烯相形成均相体系,就不能起到增韧效果.相反,如果橡胶类聚合物和聚丙烯完全不相容,胶粒尺寸必然很大,外形也不规则,局部应力将过于集中,直接导致裂纹和裂缝的生成;而且,不相容体系的两相界面处会发生分离,产生空隙,与橡胶类聚合物大小相当的空隙会使应力集中增加,使聚丙烯产生开裂而造成材料破坏.只有当橡胶类聚合物与聚丙烯具有好的相容性时,橡胶类聚合物以一定的粒径分布在聚丙烯连续相中,使橡胶类聚合物与聚丙烯组成一种良好界面相互作用的两相或多相形态结构体系.即在共混体系中,橡胶类聚合物呈细微化颗粒分散相(俗称

“岛”),随机分布在聚丙烯连续相(俗称“海”

)的聚丙烯球晶中或球晶之间,使聚丙烯大而脆的球晶成为细而密集的球晶,形成具有良好相界面作用的“海2岛”结构.当具有这种结构体系的增韧聚丙烯在受到外力作用时,银纹、裂纹和裂缝首先产生在聚丙烯连续相中,处于聚丙烯裂纹和裂缝上的橡胶类聚合物粒子首先是充当应力集中的中心,诱发大量银纹和剪切带的产生,大量银纹和剪切带的产生吸收大量的能量,从而阻止裂纹和裂缝的穿过.另外,橡胶颗粒还可以阻滞、转向并终止小裂纹的发展,使之不致发展成破坏性的裂纹,产生在聚丙烯相中的银纹可以穿过小于其宽度的橡胶类聚合物粒子而生长.在弹性体颗粒的影响下,当材料受到外力时,高聚物中生长的银纹遇到橡胶类聚合物大粒子时能分裂成许多方向各异的小银纹.即银纹可在橡胶类聚合物粒子表面支化,银纹的分裂和支化能控制银纹的发展,阻止大银纹变成有破坏性的大裂纹和大裂缝;同时,银纹的增长伴随着空化空间的发展,空化空间的发展阻止了基体内部裂纹的产生,延缓了材料的破坏,从而达到提高聚丙烯韧性的目的.

3 影响因素

通常将高分子的共混改性技术称为ABC 技术,即合金(A lloy )、共混(B lend )和复合化(Com po site )技术.高分子共混改性是利用溶度参数相近和反应共混的原理在反应器或螺杆挤出机中将两种或两种以上的聚合物材料及助剂在一定温度下进行机械掺混,最终形成一种宏观上均相,微观上分相的新材料的工艺方法.聚丙烯共混改性的方法有:相容体系的直接共混,添加相容剂共混以及反应性共混等.影响聚丙烯共混改性的因素有:共混体系的结构形态、相容性、组成和共混工艺等.

3.1 共混体系结构形态的影响

高分子材料的宏观性能与其微观结构紧密相关.高分子共混物是一种多相结构的材料,其力学性能取决于共混物界面组分之间相互作用的强弱,即两相之间结合力的大小以及分散相颗粒的大小和形状等.高分子共混物的结构形态是影响其性能的决定性因素之一.

作为结晶材料的聚丙烯与其它材料组成的共混体系主要有:结晶2非结晶和结晶2结晶体系两种.在前一种体系中,影响形态结构的主要因素是共混体系的相容性.有研究表明[3]:聚丙烯共混物的高冲击性与其结晶度无关,而聚丙烯球晶较大,球晶之间有较宽的缝隙是其产生裂纹发脆的原因[4].在聚丙烯中加入一些非晶组分如癸基橡胶(DR )树脂和酚醛树脂,则对聚丙烯结晶有某种弱的成核作用,导致聚

343(总第85期)聚丙烯增韧改性技术综述(陈智刚等)

443华 北 工 学 院 学 报2002年第5期

丙烯晶体一定程度的微细化.酚醛树脂使聚丙烯球晶变小,球晶间的间隙变窄,吸收冲击能,使聚丙烯的冲击强度提高.在酚醛树脂改性聚丙烯的基础上,加入DR树脂,可进一步改变材料的结晶形态,大球晶基本消失,球晶间的间隙几乎没有,两种树脂的界面变得较模糊,因此材料的冲击性能得到改善.

在结晶2结晶体系中,影响形态结构的主要因素是高熔点组分的结晶性和组成比[1].高熔点组分生成的结晶越大、越少时,对低熔点组分的影响越小.对于两组分晶态相容的共混体系,有可能生成共晶或同晶;对于晶态不相容但无定形态可相容的共混体系,其结晶行为应遵循前一种体系同样的规律[7];对于晶态和无定形态都不相容的共混体系,如聚丙烯(PP) 聚乙烯(PE),虽然两种高聚物分别结晶,但球晶尺寸、结晶度都发生了变化.如尼龙等极性结晶高聚物对聚丙烯结晶有成核作用,这些成核高聚物对改善聚丙烯的低温脆性、抗静电性等都有一定效果.

3.2 共混体系相容性的影响

共混聚丙烯物理机械性能的好坏主要取决于共混体系各组分之间的结合力[4],而结合力的大小又与共混组分之间的相容性有密切的关系.若组分间的相容性很差,则混合困难,分散不均,分子链段活动性小,分散相的尺寸大,相畴粗大,相界面的结合差,界面很明显,结合力小,无法得到具有良好综合性能的高分子材料;若共混体系半相容,则相畴适中,相界面模糊,结合力大,共混改性效果优良;但如果两相体系完全相容,共混物呈均相体系,相畴很小,共混改性效果反而不好.所以,对共混物来说,微观均相并不一定有最理想的力学结果,重要的是保证宏观相容.因此,在考虑分散相组分时,热力学相容不是唯一条件,只要有适当的混容性即可.

目前,提高共混物相容性的方法很多[6].通过填加增容剂改善相容性的方法已得到广泛的应用.选择增容剂最好使其中的两个链段与共混物的两个组分分别相同,接枝、嵌段共聚物就具有这种性质.相同的链段所形成的物理亲和力使接枝、嵌段共聚物分布在相的界面,其共价键将两相连接起来,降低了表面张力,增进了相间的粘接力,进而提高了力学性能.溶解度参数是判断两种高聚物混合效果的重要条件.

3.3 共混体系组成的影响

共混体系中,组分聚合物的种类、规格不同,所得到的共混物性能各异.不同的增韧剂在聚丙烯中的增韧效果不同[9],如表1所示.由表1可见,EPDM增韧效果较好.

有资料报道[7],与乙烯、Α2烯烃共聚的聚丙烯的冲击韧性明显高于均聚聚丙烯;在相同橡胶含量下,增韧共聚聚丙烯的效果远远好于增韧均聚聚丙烯的效果;而且,选用乙丙橡胶为增韧剂时,其结晶度越低,增韧效果越好.

共混体系组成中分散相的尺寸及其分布对材料的韧性都有影响,它还与共混工艺条件密切相关.

表1 各种增韧剂对聚丙烯的增韧作用

Tab.1 T he toughening modificati ons of vari ous tough ing agents to PP

性能纯PP SBS EPR EPDM

含量×10010012.512.57.2

屈服强度 M Pa32.829.928.729.2

断裂强度 M Pa11.334.729.334.7

断裂伸长率×100300684744768

冲击强度(落锤0℃) J<120.62530

PP是聚丙烯;SBS是丁苯橡胶;EPR是乙丙橡胶;EPDM是三元乙丙橡胶.后3列数据所用材料是

在聚丙烯中加入相应含量的该物质.

3.4 共混工艺条件的影响

共混工艺条件变化引起共混体系的形态变化,使得共混物的性能也发生相应的变化.共混工艺条件主要包括共混方法、共混温度及共混时间等.

共混方法不同[12,10],如用双辊炼塑机、密炼机、挤出机、熔液或乳液共混等,共混物的结构形态不同,其性能各异.此外,共混的加料方式对共混物的性能也有影响.一般采用二阶共混分散模式:母料配置和母料稀释.采用这种模式共混时,分散相粒径分布接近于对称分布,并可利用此模式来控制分散相粒径的大小及分布的宽窄[13].

共混温度是影响混合效果好坏的极为重要的因素,因为共混温度与共混物的形态结构有密切的关系[8].一般认为,共混温度以超过塑料的软化点100℃为宜.聚丙烯是一种结晶物,共混温度将会影响其结晶形态,从而影响共混物性能.聚丙烯在高温条件下结晶时会得到大球晶的形态[11],这是改性时不希望出现的.

此外,共混时间也是必须控制的因素.同一共混体系,在相同温度下,共混时间的长短对共混物的性能有很大影响.根据时温等效原理也可得出共混时间过长,等同于共混温度过高的效果.4 结 论

由以上可以看出,共混体系的结构形态、相容性、组成和共混工艺等对聚丙烯的韧性有很大的影响,适当选择与控制聚丙烯改性技术,能够有效地达到预定的目的.

参考文献:

[1] 段予忠.塑料改性[M ].北京:科学技术文献出版社,1988.51-131.

[2] 李玮.聚丙烯的改性[J ].高分子材料科学与工程,1997,13(6):9-14.

[3] 肖勤莎,罗毅.我国增韧聚丙烯的开发现状及应用[J ].现代塑料加工应用,1998,10(5):44-48.

[4] 徐光景.聚丙烯共混改性影响因素初探[J ].塑料,1998,27(6):27-32.

[5] 金日光,华幼卿.高分子物理[M ].北京:化学工业出版社,2000.194-199.

[6] 钟明强.聚丙烯共混改性研究进展[J ].中国塑料,1999,13(9):9-18.

[7] 李蕴能.聚丙烯共混改性研究新进展[J ].工程塑料应用,1996,24(3):51-54.

[8] 张增民.以聚丙烯为中心的改性技术[J ].塑料科技,1997,(6):18-23.

[9] 李馥梅.新型聚丙烯汽车保险杠专用料的研制[J ].中国塑料,1999,13(3):37-42.

[10] 王德禧.聚丙烯及其改性技术[J ].工程塑料应用,1998,26(40):26-30.

[11] 宣兆龙.聚丙烯的共混改性研究[J ].塑料科技,1999,(6):17-19.

[12] 葛建芳.聚丙烯增强增韧进展[J ].工程塑料应用,2000,28(2):37-39.

[13] 王桂梅.PV C ABS 共混改性的研究进展[J ].华北工学院学报,1998,19(4):333-336.

A Rev iew on Toughen i ng

M od if ication of Polypropylene

CH EN Zh i 2gang 1,YAN G H u i 2qun 2,ZHAN G W ei

2(1.D ep t .of M echatron ic Engineering ,N o rth Ch ina In stitu te of T echno logy ;2.D ep t .of Chem ical Engineering ,

N o rth Ch ina In stitu te of T echno logy ,T aiyuan 030051,Ch ina )

Abstract :A i m To raise the toughness of po lyp rop ylene (PP )and exp and its app licati on s

.M ethods T he m echan is m of m odificati on of PP and the influences of its b lending m odifica 2ti on are discu ssed and analysed .Results T he con structive fo rm ,com p atib ility and com po si 2ti on of the b lending system and b lending techno logy have an i m po rtan t effect on the m odifi 2cati on of PP .Conclusion T he p rop er techno logy of b lending m odificati on is the key to the m odificati on of PP .

:;;5

43(总第85期)聚丙烯增韧改性技术综述(陈智刚等)

聚丙烯PP改性料的收缩率综述

聚丙烯改性料的收缩率控制是聚丙烯改性的一个重要方面。收缩率控制的好对聚丙烯改性料的推广使用有重要意义,同时也是保证产品质量的一个重要方面。特别是利用改性聚丙烯取代传统的工程塑料,收缩率这一点显得十分重要。聚丙烯改性在国内已经有成熟的技术,对聚丙烯改性理化性能的研究报导也很多,但对收缩率问题则很少有专门的报导。本人集多年的实践经验就聚丙烯改性料的收缩率控制问题做了一些探讨。 1. 试验部分 1.1 试验原料聚丙烯(PP)辽阳石油化纤总公司;高密度聚乙烯(HDPE)辽阳石油化纤总公司 POE 美国杜邦公司; EPDM 荷兰DSM公司; SBS 岳阳石化总厂玻纤上海耀华;碳酸钙营口大石桥;滑石粉海城金新云母粉河北;助剂市售;低密度聚乙烯(LDPE)燕山石化 1.2 试验设备及仪器挤出机 TM40MVC/D-40 意大利MARIS; 注塑机 TP120T 北京信冠机械设备制造有限公司熔融指数仪μPXRZ-400C 吉林大学科教仪器厂; 卡尺; 检测方法: ASTM D955 1.3 试样制备和检测方法原料混合----挤出造粒----注塑打样(放置24h)----收缩率检测(环境温度为23℃)注塑条件:温度170℃---190℃压力80 2. 结果讨论聚丙烯的收缩成型大是聚丙烯本身的一大缺点,这主要是由于聚丙烯的高结晶度所致。结晶后的聚丙烯比重增大、体积缩小。结晶度为0%和100%时其比重分别为0.851和0.936。因此纯PP的成型收缩一般在1.7---2.2之间。控制聚丙烯的成型收缩率主要是控制其原料成型时的结晶度:结晶度越小其成型收缩率也越小;反之,结晶度越高则成型收缩率也越大。在聚丙烯改性塑料中,由于各种改性剂的加入都不同程度的破坏了聚丙烯原有的结晶度,从而改变了聚丙烯原有的成型收缩率。 2.1 橡胶对聚丙烯收缩率的影响图1所示橡胶对PP改性料成型收缩率的影响。从图中可以看出随橡胶含量的增大,成型收缩率呈下降趋势。这主要是由于橡胶的加入破坏了聚丙烯自身的结晶度,从而导致成型收缩率的下降,而且三种弹性体POE、EPDM、SBS对成型收缩率影响也有差异。 a: POE b:EPDM c:SBS a:滑石粉 b:CaCO3 c:云母粉 2.2 矿物填充对聚丙烯改性料成型收缩率的影响聚丙烯用的矿物填加剂主要有碳酸钙、滑石粉、云母粉等。各种矿物填加剂对聚丙烯成型收缩率的影响如图2所示,从图中可以看出矿物填加剂对PP改性料成型收缩率的影响比较明显。矿物填加剂对聚丙烯改性料成型收缩率的影响主要有三个方面:一是矿物填加剂本身不

2020年(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

(塑料橡胶材料)聚丙烯塑料的改性及应用(三)

热塑性低烟无卤阻燃电缆料性能

玻纤增强聚丙烯的抗蠕变性得到改善,能够比聚碳酸酯、耐热ABS、聚甲醛等塑料的性能更好。此外在150℃下保持1500小时,其拉伸强度和热变形温度都不会下降,在沸水和水蒸汽中可长期使用。 玻纤增强聚丙烯的加工流动性因玻纤的存在有所下降,但和其它塑料相比,仍然属良好的加工流动性。提高成型加工温度可使其流动性得到改善。

2改性聚丙烯发展动向

聚丙烯在生产数量迅速发展的同时,也在性能上不断出新,使其应用的广度和深度不断变化,近年来或者通过在聚合反应时加以改进,或者在聚合后造粒时采取措施,有壹些更具独特性能的聚丙烯新的品种问世,如透明聚丙烯、高熔体强度聚丙烯等。 2.1透明改性 PP的结晶是造成不透明的主要原因,利用急冷冻结PP的结晶趋向,能够得到透明的薄膜,但有壹定壁厚的制品,因热传导需要时间,芯层不可能迅速被冷却冻结,因此对于有壹定厚度的制品不能指望用急冷的办法提高透明度,必须从PP的结晶规律和影响因素入手。 经壹定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至能够和典型的透明塑料(如PET、PVC、PS等)相媲美。透明PP更为优越的是热变形温度高,壹般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。由于透明PP的性能优势明显,近年来在全球都得以迅速发展,应用领域从家庭日用品到医疗器械,从包装用品到耐热器皿(微波炉加热用),都在大量使用。 PP的透明性提高可通过以下三种途径: (1)采用茂金属催化剂聚合出具有透明性的PP; (2)通过无规共聚得到透明性PP; (3)在普通聚丙烯中加入透明改性剂(主要是成核剂)提高其透明性。 4.1.1国内外发展态势 据日本理化株式会社介绍,日本7%的PP为透明PP,透明PP的产量在400kt/a之上。日本透明PP市场以微波炉炊具及家具俩方面的消耗量最大。日本出光化学X公司制造出和PVC具有同样透明性和光泽性的透明PP,当下能够广泛替代普通透明PVC制作文具、笔记本壹类的包装物,价格只相当于PVC的20%-30%,1999年出售了1200t透明PP。

聚丙烯抗冲改性的研究进展

聚丙烯抗冲改性的研究进展 [摘要] 综述了近年来有关反应器内抗冲改性聚丙烯研究的最新进展, 介绍了反应器内抗冲改性聚丙烯的生产工艺及多区循环流反应器在丙烯多段聚合中的应用; 介绍了反应器内抗冲改性聚丙烯的形态、结构与性能的关系; 介绍了 反应器内抗冲改性聚丙烯的研究方法及增韧机理。 [关键词] 聚丙烯; 抗冲改性; 共聚物; 结构与性能. 聚丙烯( PP)质轻、价廉, 具有良好的加工性能,应用范围广。PP的很多应用领域要求它具有较好的韧性。均聚PP在低温时变脆, 抗冲改性PP是通过在均聚PP中加入橡胶相制备的。以提高PP抗冲强度为目的的改性大多采用物理共混方法, 将PP和两种或两种以上的其它聚合物以机械共混方法进行混合, 可以得到一种宏观上均匀的聚合物共混物,在一定程度上提高共混物的性能。一方面, 以这种混合方式得到的PP与改性成分达不到真正均匀分布的状态, 故不能显提高共混物的冲击强度; 另一方面, 由于增加了共混工艺, 提高了生产抗冲改性PP的成本。因此, 研究人员想在聚合过程中完成共混工艺, 在反应器内直接合成抗冲改性的PP, 这样不仅可以简化工艺、降低生产成本, 而且还可以使PP和改性成分的混合程度达到亚微观状态, 从而有效地改善PP的抗冲性能。 本文对反应器内抗冲改性PP的生产工艺、形态结构、研究方法、增韧机理等方面的最新进展进行了综述。 1 应器内抗冲改性PP的生产工艺 反应器内抗冲改性PP的生产建立在第四代球形M gC l2 负载Z ieg ler- N atta 催化剂的基础上[ 1 ] 。第四代球形M gC l2 负载Z ieg ler- N a tta 催化剂具有以下特点[ 2] : ( 1)比表面积大; ( 2)孔隙率高, 孔径分布均匀; ( 3)活性中心在催化剂上分布均匀; ( 4)催化剂既具有一定的强度, 又能被聚合物增长时产生 的压力将内部结构破碎成较小颗粒, 并均匀地分布在膨胀着的聚合物内部; ( 5)单体可以自由地扩散到催化剂内部而发生聚合。由于聚合过程中的复制效应, 均聚过程中生成的丙烯均聚物复制了催化剂的某些特点, 如呈规则的球形、具有较高的孔隙率、活性中心在聚合物粒子内部分布均匀等。 反应器内抗冲改性PP 的生产一般采用两步法: 第一步先合成丙烯均聚物, 形成高立构规整度的聚合物, 为最终产品提供足够强的刚性, 这一步一般采用液相本体聚合或气相聚合工艺; 第二步合成乙丙共聚物(橡胶相), 为最终产品提供韧性, 共聚阶段一般采用气相共聚工艺; 最终产品的机械性 能实际上是刚性和韧性的平衡。气相共聚是反应器内抗冲改性PP 合成的关键步骤, 特殊的催化剂结构形态使本体聚合阶段获得的PP粒子具有较高的流动性和多孔性, 完全可以满足气相共聚的要求。合适的气相共聚工艺可以自由地调控共聚物的含量、组成及分子结构。气相共聚也保证了共聚物能均匀地分散在已形成的PP均聚物基体中, 这样既可以得到较高的橡胶相含量, 又不致使橡胶相过

玻纤增强聚丙烯改性的意义和前景

玻纤增强聚丙烯的意义 关键词:玻纤增强PP,PP改性,PP加纤阻燃 对PP材料的改性一般有增强增韧、耐候改性、玻璃纤维增强改性、阻燃改性和超韧改性等途径。 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量

可以达到3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2.玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP发展趋势及展望 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展。玻纤增强PP在汽车用料中的应用也不断拓展,新产品的

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理 PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。 1 无规共聚改性 采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。共聚物中乙烯的质量分数一般为1%~7%。乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。 与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。 无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用 2 嵌段共聚改性 乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品 3 接枝共聚改性 PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。在PP分子链上接枝弹性链段有助于提高PP的冲击强度和低温性能。接枝共聚的方法有溶液接枝、悬浮接枝、熔融接枝和固相接枝。PP接枝共聚物经常用作PP与其它聚合物或无机填料之间的增容剂。单独用作PP增韧剂的例子也有报道,如Xu Gang等通过紫外线照射得到了高接枝率的PP一丙烯酰亚胺接枝共聚物,发现它对PP有很好的增韧效果。单独用做塑料的例子几乎没有 4 改变立体结构 工业上所用的PP通常都是等规立构PP。近年来采用间规选择性茂金属催化剂合成了间规立构PP。与等规立构PP相比,间规立构PP具有较低的结晶度和弯曲强度、较高的熔体粘度和弯曲弹性模量、良好的透明性和热密封性、优异的抗冲击性和压延性等。另外选用对称性好的单点茂金属催化剂可以合成具有良好弹性的高相对分子质量的无规立构PP和无规一等规立体嵌段的弹性PP。特别是后者,由于等规链段的物理交联作用,使之具有良好的弹性和力学性能,属于一种新型的热塑性弹性体。

聚丙烯的透明改性

聚丙烯的透明改性 魏苗苗 (湖南科技职业学院,湖南长沙 410118) 摘要:针对聚丙烯(PP)透明性差的缺点,分别用添加透明改性剂、共混透明改性、双向拉伸透明改性、控制加工工艺条件、直接合成透明PP等方法来提高PP的透明性,并分别对各种改性方法的优缺点进行总结,为进一步研究PP的透明改性提供依据。 关键词:聚丙烯;结晶度;透明改性; Modification of T ransparence of Polypropylene W eiMiaomiao (Hunan Vocational College of Science and Technology, Changsha 410118,China) Abstract:aiming at the polypropylene (PP) the poor quality of transparency, respectively for add transparent modifier blending modified two-way stretch transparent transparent modified control processing condition the direct synthesis of transparent PP etc a method to improve the transparency of the PP, and separately to all sorts of advantages and disadvantages of the modification methods to carry on the summary, for further research of the modification of PP transparent provides the basis. Key words :Polypropylene;;crystallinity;Transparent modification 0 引言 聚丙烯(PP)具有良好的机械性能、无毒、相对密度低、耐热、耐化学药品、容易加工成型等优良特性,且性能价格比高,已成为五大通用合成树脂中增长速度最快、新品开发最为活跃的品种。但PP的结晶性使其制品的光泽和透明性差,外观缺少美感,使其在透明包装、日用品等应用领域的发展受到制约。而PP经过

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

聚丙烯增韧改性

聚丙烯增韧 1.聚丙烯的发展历程 自1957年意大利蒙科卡迪公司首次实现工业化以来,聚丙烯(PP)树脂及其制品发展速度一直位于各种塑料之首。在1978年PP的世界产量超过了400万吨/年,仅次于聚乙烯、聚氯乙烯和聚苯乙烯,位居世界第四位;1995年PP的世界产量达1910万吨/年,超过聚苯乙烯位居第三;2000年PP的世界产量为2820万吨/年,超过聚氯乙烯的2600万吨/年上升为世界第二;目前聚丙烯的世界产量达到了3838万吨/年。在此同时,我国聚丙烯工业发展迅猛,1995年产量为万吨,2000年已经突破300万吨,2004年产量迅猛增至万吨。初步估计到2006年底,我国PP 的年总生产能力已经超过650万吨,在一定程度上缓解我国PP的供需紧张。 聚丙烯由于其优异的使用潜能,广泛应用于注塑成型、薄膜薄片、单丝、纤维、中空成型、挤出成型等制品,普及及工农业及生活日用品的各个方面。如此迅速的增长速度主要归因于其可以替代其它塑料树脂以及能够开发应用各种新型的塑料、橡胶和纤维的优异性能:原料来源丰富,价格低廉并且无毒无害;相对密度小,透光性好,有较好的耐热性等。 但是PP有个很明显的缺点就是韧性较差,对缺口十分敏感,这在很大程度上限制了其在工程领域的应用空间。因此近些年来,国内外众多学者专家在PP改性的理论基础和应用研究中展开了众多的研究取得一定成效的工作,通过共混、填充和增强等方法改性之后的聚丙烯复合材料也已经成功地运用到了实际生产中,扩大了材料的使用范围,在家电、汽车、仪表等工业各领域占据了重要地位。 近十多年来,在我国经济高速增长的带动下,聚丙烯的应用技术不断进步。但是我国的聚丙烯进展与国外相比,在聚合技术、工业化成本、产品数量、品种类别等方面都存在着很明显的差距。根据我国发展中国家的国情,大力开展聚丙烯多元复合材料改性研究是解决上述问题最有效的途径。采用塑料的高性能化合成本不断的降低来推动PP的发展,因此目前是聚丙烯快速发展的良好机会。通过各种手段改善PP性能,最终使得PP几乎可以与某些工程塑料相媲美,从而增加PP 和其它热塑性塑料树脂甚至是某些工程塑料的竞争能力。 2. 聚丙烯的性能及其改性

聚丙烯改性

聚丙烯改性 李健 (烟台大学化学生物理工学院化064-1 烟台264000) 摘要由于聚丙烯突出的物化性能,其树脂得到了越来越广泛的应用,但聚丙烯树脂仍有许多缺点,克服这些缺点的方法就是对其进行改性。本文主要通过POE对聚丙烯改性以提高其韧性和硬度,以及通过Mg(OH)2改性聚丙烯提高其阻燃性能。 关键词PP 共混改性韧性阻燃性 增韧剂POE是茂金属催化的乙烯-辛烯共聚物,其特点是相对分子质量分布窄,密度低,各项性能均衡,易加工,赋予制品高韧、高透明性和高流动性。特别是对PP的增韧改性效果更加明显,对传统增韧剂EPDM、EPR构成了有力竟争。因此POE增韧PP引起广泛关注,近几年国内李蕴能、张金柱等陆续发表了POE具有较高剪切敏感性,加工时与PP相容性好,其表观切变粘度对温度的依赖性更接近PP,与P共混时更容易得到较小的弱性体料径和较窄的粒径分布,因而增韧效果更好。无论是对普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM或EPR。由于POE不仅具有橡胶的弹性,同时又具有塑料的刚性,因此在增韧PP的同时还能保持较高的模量、拉伸强度及良好的加工流动性。另外,POE不含不饱和双键,耐候性也优于EPDM、EPR、SBS等。 与其他阻燃剂相比,在对聚丙烯的阻燃改性中,氢氧化镁等属于无机阻燃剂,阻燃机理是燃烧时释放出结合的水,同时高填充量也降低了有机材料的可燃性。用氢氧化镁等阻燃优点是环保性好,不释放烟雾,不产生有害和有争议的气体,成本低廉。近年来氢氧化镁类阻燃剂受到广泛关注,朱磊等研究了用不同表面活性剂改性氢氧化镁(Mg(OH)2)阻燃剂的用量对复合材料阻燃性能和力学性能的影响。结果明,硅烷偶联剂表面改性后Mg(OH)2能更好改善复合材料的力学性能,显著提高聚丙烯的阻燃性能,在用量为65%,氧指数达到32.4%,垂直燃烧特性可达UL-94V.0级。 1.实验部分 1.1实验原料及仪器 1.1.1实验原料:聚丙烯,LDPE,抗氧剂1010,POE,Mg(OH)2等 1.1.2 实验仪器:GRH-10D型系列高速加热混合机,SHJ-30同向双螺杆挤出机,JPH-80四缸全液压注射机,XHR-150型塑料硬度计,XJC-250D悬、简组合冲击试验机,XZT-100氧指数测定仪 1.2聚丙烯标准样条的制备 按照实验前确定的配方进行称量,总重量500g,具体配方见表一。按照实验设计的工艺条件升温高速混合机、双螺杆挤出机和注射机。利用高速混合机混合均匀,混好的物料加入双螺杆挤出机中挤出造粒,粒料干燥后采用注射机注射标准样条,待测。 1.3聚丙烯标准样条的性能测试 1.3.1硬度测试:采用厚度均匀、表面光滑、平整、无气泡、无机械损伤及杂质的样条,厚度不小于4mm,试样大小应保证每个测量点的中心与试样边缘距离不小于10mm,各测量点之间的距离不小于10mm。利用XHR-150型塑料硬度计测定其硬度值,具体数据见表二。

玻纤改性聚丙烯简述

玻纤增强聚丙烯 PP作为通用塑料材料之一,具有优良的综合性能、良好的化学稳定性、较好的成型加工性能和相对低廉的价格;但是PP存在着强度、模量、硬度低,耐低温冲击强度差,成型收缩大,易老化等缺点。因此,对其进行改性,以使其能够适应产品的需求。每一种改性PP 在家用电器领域和车用领域都有着大量应用。 ABS是最先用在家用电器上的塑料材料之一,由于ABS树脂价恪昂贵,逐步开发出的PP 改性材料,具有成本低、重量轻、性能好等优点;玻纤增强PP可以部分取代ABS、PBT树脂在家用电器产品和汽车领域上的应用。 玻纤增强改性PP 1.一般说来,PP材料的拉伸强度在20M~30MPa之间,弯曲强度在25M~50MPa之间,弯曲模量在800M~1500MPa之间。如果要想提高PP的强度性能,必须用玻璃纤维进行增强。通过玻璃纤维增强的PP产品的机械性能能够得到成倍甚至数倍的提高。拉伸强度可以达到65MPa~90MPa,弯曲强度可以达到70MPa~120MPa,弯曲模量可以达到 3000MPa~4500MPa,这样的机械强度完全可以与ABS及增强ABS产品相媲美。 2. 玻纤增强PP更耐热。一般ABS和增强ABS的耐热温度在80℃~98℃之间,而玻璃纤维增强的PP材料的耐热温度可以达到135℃~145℃。它可以被用来制作冰箱、空调等制冷机器中的轴流风扇和贯流风扇,其成本要比ABS增强产品低很多。也可以用于制造高转速洗衣机的内桶、波轮、皮带轮以适应其对机械性能的高要求,用于电饭煲底座和提手、电子微波烤炉等对耐温要求较高的场所。 3.玻纤增强改性的PP尺寸稳定性得到改善,受热变形减小,收缩率减小。 4.玻纤增强改性的PP一般硬度得到提高,吸水性能下降。 改性PP在家电行业中有非常好的应用前景。一方面,中国已经成为世界家用电器生产中心,而且拥有一批极有影响力的生产企业,这些企业能够主动选择材料;另一方面,行业竞争也促使企业应用性价比更合理的材料。从未来家电技术发展情况看,家用电器的人性化将更加突出,产品品种更加齐全,传统家电将向小型化、大型化两极方向发展 玻纤增强PP在汽车用料中的应用也不断拓展,新产品的不断涌现,对PP改性也提出了更高的要求,改性PP将有以下主要发展趋势:

聚丙烯改性 555

聚丙烯改性 【摘要】聚丙烯是一种综合性能良好的通用塑料,在日常用品,包装材料,家用电器,汽车工业,建筑施工等行业得到广泛应用,是目前增长速度最快的通用型热塑性塑料。但聚丙烯树脂仍存在许多缺点,克服这些缺点的方法就是对其进行改性。本文主要通过POE对聚丙烯改性以提高其韧性和硬度,以及通过氢氧化镁改性聚丙烯提高其阻燃性能。 【关键词】聚丙烯共混改性增韧阻燃 前言 聚丙烯(PP)是五大通用塑料之一,具有密度小、刚性好、强度高、耐挠曲、耐化学腐蚀、绝缘性好等优点,但聚丙烯熔点较低,热变形温度低,低温脆性,抗冲击强度较低等缺点,很大程度上限制了其在工程中的应用。 本实验是对聚丙烯进行改性,提高阻燃性和韧性。聚丙烯是一种性能优良的塑料,它的耐腐蚀性、耐折叠性和电绝缘性好,耐热性和机械强度优于聚乙烯,而且价格低廉,容易加工,故应用较广。但是聚丙烯的抗冲击强度不够高,低温下发脆。为了提高它的韧性,常常将聚丙烯和POE共混改善它的韧性。增韧剂POE是茂金属催化的乙烯-辛烯共聚物,其特点是相对分子质量分布窄,密度低,各项性能均衡,易加工,赋予制品高韧、高透明性和高流动性。特别是对聚丙烯的增韧改性效果更加明显,对传统增韧剂EPDM、EPR构成了有力竟争。近几年国内李蕴能、张金柱等陆续发表了POE具有较高剪切敏感性,加工时与PP相容性好,其表观切变粘度对温度的依赖性更接近PP,与P共混时更容易得到较小的弱性体料径和较窄的粒径分布,因而增韧效果更好。无论是对普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM或EPR。由于POE不仅具有橡胶的弹性,同时又具有塑料的刚性,因此在增韧PP的同时还能保持较高的模量、拉伸强度及良好的加工流动性。另外,POE不含不饱和双键,耐候性也优于EPDM、EPR、SBS等。 同其它塑料一样,聚丙烯容易燃烧,对其进行阻燃改性最常用的方法是把无机阻燃剂填充到聚合物基体中赋予聚合物以阻燃性。无机阻燃剂,氢氧化镁在高温下通过分解吸收大量热量,生成的水蒸气可以稀释空气中氧的浓度,从而延缓聚合物的热降解速度,减慢或抑制火对聚合物的燃烧,促进炭化、抑制烟雾的形

聚丙烯材料的透明改性

课程名称:高分子材料设计与实践指导老师:成绩:__________________ 实验名称:聚丙烯材料的透明改性实验类型: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、了解聚丙烯结晶的成核机理; 2、理解双螺杆挤出机和注塑机的基本工作原理,并掌握其操作方法。 3、了解高分子共混改性的制备过程。 4、了解加工工艺条件对聚合物材料结构性能的影响。 二、实验原理 聚丙烯作为一种结晶性高聚物,其晶核的生成既可以均相成核,也可以异相成核。均相成核是高分子链本身聚集体的取向,通过熔体的热涨落导致高分子链段的局部有序不断形成与消失,当有序区尺寸超过临界尺寸时才能形成晶核,而这类晶核在较高温度下易被分子链的热运动所破坏,故只有在较低温度下才能保持。异相成核是分子链依附于体系内的不纯物进行有序排列,可在较高的温度下成核结晶。无论是均相成核还是异相成核,在熔体状态时,聚丙烯的结晶速度较慢,易形成大球晶。这些球晶具备光散射的两个条件:尺寸大于光的波长,与非景区的折光指数差异较大。要提高聚丙烯的透明性需降低光散射,即提高聚丙烯晶型的均匀性并缩小球晶的尺寸。 根据聚丙烯结晶的成核机理,可以采用以下几类方法来控制聚丙烯的形态结构,达到降低结晶度、控制结晶质量、降低光散射作用等目的,以实现聚丙烯的透明改性。 1.加工工艺控制改性 2.直接聚合 3.共混透明改性 4.添加透明成核剂 三、仪器与试剂 仪器:双螺杆挤出机水槽吹风机切粒机电子天平压片机差示扫描量热仪(DSC)差热分析仪(DTA)热台显微镜拉伸试验机透光率雾度测试仪(WGT-S 申光) 试剂:聚丙烯(PP)聚乙烯(PE)乙烯丙烯共聚物(EPM)成核剂抗氧化剂 四、操作方法和实验步骤 操作方法:设计配方,选择合适的聚合物共混或添加合适的透明成核剂,采用双螺杆挤出机制备聚丙烯粒料,并通过模压成型,测试材料的透光性能和拉伸性能,以考察配方对聚丙烯材料透明性及力学性能的影 响。

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

长玻纤增强聚丙烯成型工艺

长玻纤增强聚丙烯成型工艺 发布时间:2011-01-13 ;浏览次数:127 返回列表 长玻纤增强热塑性复合材料作为当今玻璃纤维增强材料的一个发展趋势,受到了国内外各大塑料改性生产厂商的高度重视,特别是长玻纤增强pp材料,由于其很高的性价比优势,更被业界所广泛看好。目前这些厂商纷纷投入大量的人力、物力进行该类型材料的生产研发和市场开拓的工作。 长玻纤增强pp产品定义 长玻纤增强pp产品是一种长玻纤增强pp的改性塑料材料。该材料一般为长度12毫米或25毫米,直径3毫米左右的柱状粒子。在这种粒子中,玻璃纤维有着和粒子同样的长度,玻璃纤维的含量可以从20%到70%不等,粒子颜色可以根据客户要求进行配色。该粒子一般可以用于注射及模压工艺,可以生产结构件或半结构件,应用的领域包括汽车、建筑、家电、电动工具等等。 长玻纤增强pp性能优势 lft粒料在进入注射机料斗时,内部的纤维长度和粒子长度相等,为0.5-3公分左右。随着注射机螺杆的输送、注射口的流体冲击以及在材料模腔内的流动等工艺条件的介入,玻璃纤维最后在制品中的平均长度为4毫米左右。相对于传统的短玻纤增强热塑性塑料(这种粒子在制品中的纤维长度在200μ左右),lftp材料在制品中保留了极长的玻纤长度,因此赋予了材料更好的力学性能,使得增强后通用pp材料的性能能够达到或接近增强工程塑料如pa或ppo的性能。 长玻纤增强pp性价比优势 由于lft材料类似于增强工程塑料的卓越性能以及pp基材相对于工程塑料基材极其低廉的价格成本,因此赋予了该材料极佳的性价比:相对于短纤增强pa材料而言,使用lft材料可在材料成本上节约40~50%左右;相对于短纤增强ppo材料而言,使用lft材料可在材料成本上节约100%

PP增韧改性

塑料增韧配方设计 一、塑料的韧性 塑料的韧性是指抗御外来冲击力的能力,常用冲击强度之大小来表示。 冲击强度是指试样受到冲击破坏断裂时,单位面积上所消耗的功。它可用于评价材料的脆性或韧性强度,材料的冲击强度越高,说明其韧性越好;反之说明材料的脆性越大。 可用于测定材料冲击强度的方法很多,已见报道的不下十五种,但比较常用的有如下三种。 (1)悬臂梁冲击强度也称为Izod试验法,适用于韧性较好的材料。它将冲击样条的一端固定而另一段悬臂,用摆锤冲击式样的方法。其计算方法为冲击破坏过程中所吸收的能量与试样原始截面积之比,单位kj/m2。对于韧性好的材料,因难以冲断往往在试样上开一小口,所以悬臂梁冲击强度常常需要标注有缺口或无缺口。 (2)简支梁冲击强度也称为Charpy法,适用于脆性材料。它将试样条的两端放在两个支点上,用摆锤冲击式样的方法。其计算方法为冲击破坏过程中所吸收的能量与试样原始截面积之比,单位kj/m2。此法有时也在试样上开口。 (3)落球冲击强度在规定的条件下,用规定形状和质量的落球(锤),在某一高度上自由落下对制品进行冲击,通过改变球的高度和质量,直至塑料制品被破坏为止。测定此时落球的高度和质量,可计算出制品在此高度下被破坏时所需能量,单位J/m2。 由于塑料制品的冲击强度对温度依赖性很大,所以测试时必须规定温度值。一般设置两种温度,常温为23,低温为-30. 同一种塑料制品,用不同的方法测定其冲击强度,会得到不同的结果,并无可比性,甚至会出现相反的结果。因此,要对韧性大小进行比较,必须用同一种测试方法。

在我们接触的塑料中,其韧性相差很大,常用塑料的落球冲击强度值见表1-1所以。 在不同应用场合中,对塑料制品的冲击强度要求不同。如汽车保险杠要求落球冲击强度大于400J/m,如此高的冲击强度要求,对大部分塑料而言都需要增韧改性方可使用。传统的增韧方法为在树脂中共混弹性体材料,其增韧效果很好,但不足之处为刚性降低,近年来开发出了新的刚性增韧方法,增韧和增强同时进行。 二、塑料弹性体增韧配方设计 1、塑料弹性体增韧机理 弹性体增韧的机理很多,目前最成熟的为银纹-剪切带理论。该理论的核心思路为在基体树脂内加入弹性体后,在外来冲击力的作用下,弹性体可引发大量裂纹,树脂则产生剪切屈服,靠银纹-剪切带吸收冲击能量。对于不同类型的树脂,银纹和剪切屈服对抗冲击的贡献不一样, 以脆性树脂为基体的弹性体增韧体系,外来冲击能主要靠银纹来消耗;如PS属于脆性材料,银纹对增韧的贡献大。要求弹性体的尺寸要与银纹的尺寸一致才有效,加入的弹性体要高浓度、大颗粒。 以韧性树脂为基体的弹性体增韧体系,外来冲击能主要靠剪切屈服来消耗;

聚丙烯改性

专业:08高分子1班学号:08206020135 姓名:金从伟 聚丙烯改性 引言:聚丙烯因其具有良好的加工性能和物理、力学、化学性能而获得广泛应 用。是目前增长速度最快的通用型热塑性塑料。聚丙烯的主要应用领域为学向拉丝制品,膜片制品及包装容器制品。但近年来将普通聚丙烯经过填充、增强、共混改性再作为原料制作汽车,电器.仪表等工业配套零部件也已成为其主要的应用领域。 关键词:聚丙烯;改性 1.物理改性 物理改性由于工艺过程简单,生产周期短。所制得材料性能优良。近年来已成为高分子材料一个新的研究热点。常用的改性方法主要有共混改性、填充改性、增强改性等。 1.1 共混改性 共混改性是将聚丙烯与橡胶或其它热塑性树脂的弹性体共混制备共混物。最古老和最简单的方法是机械掺合法。共混改性可明显改进低温脆性、冲击强度和耐寒性等。如聚丙烯与乙丙橡胶顺丁橡胶、聚异丁烯等共混,可提高冲击强度3~7倍,提高耐寒性8~ l0倍。聚丙烯除了二元共混体外,还采用了三元共混体系。如玻璃纤维增强聚丙烯和橡胶共混,不但改善了冲击韧性和耐寒性,同时刚性和抗蟠变性能也得到保证,其制品的力学性能可与ABs相媲美。 1.2填充改性 为了开拓聚丙烯在工程塑料应用领域中的用途,需要提高聚丙烯的刚性和耐热性,可以添加填充材料,如滑石粉、碳酸钙硫酸钡、云母、石膏、石棉、术粉、炭黑、硅藻粉和高岭土等。填充性主要是提高聚丙烯的刚性、耐热性和尺寸稳定性,并可降低成本 1.3增强改性 用玻璃纤维和碳纤维作为增强材料,其最大特点是基体树脂聚丙烯的化学稳定性强,可提高抗张、抗弯曲和冲击强度,降低成型收缩率。经增强后的聚丙烯,其性能与尼龙、聚甲醛、聚碳酸脂等工程塑料相当。玻璃纤维增强聚丙烯既保持了聚丙烯成本低的特点,且在玻璃纤维增强热塑性塑料 中,其比重最小,困而在重量和秽_格上占有优势,且具有流动性大、成型条件幅脚宽、耐水性和耐化学侵蚀性好的特点。所以,聚丙烯中添加玻璃纤维后,其耐热刚性、尺寸稳定性、耐蠕变性和机械强度等都有很大的提高,可作为工程塑料而广泛应用。同时,其要食品卫生方面无害,尤其是电性质良好 1.4添加助剂改性 为使聚丙烯性能适合各方面的需要,添加抗氧剂和紫外线吸收剂可提高聚丙烯的耐气展性}添加阻燃剂可降低聚丙烯的易燃性;添加成核剂可增强聚丙烯的透明性和光泽性。并可缔短成型周期等}添加其它助剂如抗氧剂、润滑剂、热稳定剂、发泡剂、着色剂等,可以改善聚丙烯的耐老化性、加工稳定性,抗静电性能等。 2. 化学改性

相关文档
最新文档