初中数学29.3制作立体模型

初中数学29.3制作立体模型
初中数学29.3制作立体模型

29.3 制作立体模型(活动课)

一、学习目的

通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会用三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

二、工具准备

刻度尺、剪刀、小刀、胶水、硬纸板、马铃薯(或萝卜)等。

三、具体活动

1、以硬纸板为主要材料,分别做出下面的两组视图所表示的立体模型。

2、按照下面给出的两组视图,用马铃薯(或萝卜)做出相应的实物模型

3、下面的每一组平面图形都是由四个等边三角形组成的。

(1) (2) (3)

(1)指出其中哪些可以折叠成多面体。把上面的图形描在纸上,剪下来,叠一叠,验证你的答案;

(2)画出由上面图形能折叠成的多面体的三视图,并指出三视图中是怎样体现“长对正,高平齐,宽相等”的;

(3)如果上图中小三角形的边长为1,那么对应的多面体的体积和表面积各是多少?

四、课题拓广

三视图和展开图都是与立体图形有关的平面图形,了解有关生产实际,结合具体例子,写一篇短文介绍三视图、展开图的应用。

制作立体模型

课标要求:通过动手操作体会三视图与几何体及由几何体的展开图制作几何体,体会三视图的重要性、应用性。

实践教学课的目的:通过根据三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

教学的重点:能根据简单物体的三视图制作原实物图形,能根据平面展开图制作原实物图。

教学难点:根据三视图制作立体图。

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

2018数学中考专题--5-角平分线问题专题

2018年数学中考 角平分线专题 下面就以五种情况进行专题研究 1. 如图1,角平分线遇平行必有等腰三角形; 2. 如图2,垂直角平分线的直线与该角两边交成等腰三角形,并且垂足F 是GH 的中点(三线合一) ; 3. 如图3,角平分线定理; 4. 补半角成倍角,或分倍角为半角; 5. 角平分线与圆. D C E B A O H F G O C B A K N M Q P O A C B 图1 图2 图3 一、 角平分线遇平行找等腰三角形 1 . 探究1 如图①,AD 为等边△ABC 的内角平分线,显然有 AC CD AB DB = . 探究2 如图 ②,若△ABC 为任意三角形,线段AD 为其内角平分线, AC CD AB DB = 一定成立吗?证明你的判断. 应用:如图③,在Rt △ABC 中,∠ACB=90°,AC=24,AB=40,E 为AB 上一点且AE=15,CE 交其内角平分线 AD 于F. 试求DF FA 的值. C A B D A B D C A E B C D F ① ② ③ 2. 如图 1 ,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交于点E 、F ,则( ) A. EF AE BF >+ B. EF AE BF <+ C. EF AE BF =+ D. EF AE BF ≤+ F E O A B C E D A B C 图1 图2 3. 如图2,梯形ABCD 中,AD ∥BC ,AB=3,BC=5,连接BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为 .

4. 如图3,在△ABC中,BC=6,E、F分别是AB、AC的中点,P在射线EF上,BP交CE于D,Q在CE上且BQ平分∠CBP. 设BP=y,PE=x. (1)当 1 3 CQ CE =时,求y与x之间的函数关系式; (2)当 1 CQ CE n =(n为不小于2的常数)时,直接写出y与x之间的函数关系式. Q P F E A B C D 图3 5.(1)如图①,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与CD相交于F点. 试探究线段AB与AF、CF之间的等量关系,并证明你的结论; A B E F C D D C F E B A 图①图② (2)如图②,当F在DC的延长线上时(其他条件不变),请你直接写出线段AB与AF、CF之间的数量关系.

初中常用数学模型

【1】中点+平行模型如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2;2.D 【2】一线三等角模型如图,若∠B=∠C=∠DEF=α(0<α≤90)则一定有△BDE 与△CEF 相似。十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。

【例题1】(2009 ) 【例题 2】(2006 ) 【例题3】(原创) 答案:1. 2或3-24或25 2.(5 453-,) 【3】巧造旋转模型在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。巧造旋转往往要有一定的等量关系和特殊角度,如下题:

通过观察可得∠ ABC=∠C=45°,AB=AC。我们可以将△ACD绕A顺时针旋转90°得到△ABE,使得AC与AB 重合。那么就有EB⊥BC,而在RT△AED中,DE2=2AD2(等腰直角三角形)所以BE2+BD2=DE2,即BD2+CD2=2AD2是不是赶脚很难想到?要学会判断,这种感觉是要练出来的!【例题1】(2014 ) 【例题2】【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略 【4】等腰模型这是一个很基础的模型——什么样的结构会生成等腰三角形首先:平行+角平 分线,如图,若AD‖BE,BC 平分∠ABE,则AB=AC,很好证的,导角即可。其次:垂直+角平分这个不难理解,因为等 腰三角形三线合一。这种模型很常用,常常需要做辅助线(延长之类)【例题1】(原创)

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中常用数学模型

如图,如果AB ‖DE ,且C 为AE 中点,则有△ABC ≌△EDC 很好证的,当然十分实用,经常需要添加辅助线(例如延长) 【例题1】(2014 深圳某模拟) 【例题2】(2014 ) 答案:1.3 2 ;2.D

如图,若∠B=∠C=∠DEF=α(0<α≤90) 则一定有△BDE与△CEF相似。 十分好证(外角和什么一大堆),并且也很实用。经常在矩形里出题。 【例题1】(2009 ) 【例题2】(2006 ) 【例题3】(原创)

答案:1. 2或3-24或 25 2.(5 453-,) 【3】巧造旋转模型 在某些几何题中,往往有一些奇怪的结论,此时可以通过几何三大变换之一【旋转】求解。 巧造旋转往往要有一定的等量关系和特殊角度,如下题: 通过观察可得∠ABC=∠C=45°,AB=AC 。 我们可以将△ACD 绕A 顺时针旋转90°得到△ABE ,使得AC 与AB 重合。 那么就有EB ⊥BC ,而在RT △AED 中,DE2=2AD2(等腰直角三角形) 所以BE2+BD2=DE2,即BD2+CD2=2AD2 是不是赶脚很难想到?要学会判断,这种感觉是要练出来的! 【例题1】(2014 ) 【例题2】 【例题3】(2014 菏泽改编)

答案:1.41 2.9 3.(1.)2,(2.)直角三角形,旋转后证全等,证明略【4】等腰模型 这是一个很基础的模型——什么样的结构会生成等腰三角形 首先:平行+角平分线, 如图,若AD‖BE,BC平分∠ABE,则AB=AC,很好证的,导角即可。 其次:垂直+角平分 这个不难理解,因为等腰三角形三线合一。 这种模型很常用,常常需要做辅助线(延长之类)

第十三课我的小天地——立体纸模型

《我的小天地一立体纸模型》教案、教材分析: 本节课在教材中所处的地位和作用:《我的小天地立体纸模型》是人民美术出版社八年级上册理想的家居”单元中的一课, 本单元前面几课就纸板的联想、纸的立体组合、装饰布的设计 与应用、柜架陈设的艺术等内容进行了学习与实践,为本节课 作了铺垫。在此基础上,本课结合学生的生活实际,以学生居 室为题材进行研讨,应突出学生的特点,居室的功能兼顾学习 与休息,局势的情调要体现活泼与温馨,还要体现小主人的性 格与爱好。 学情分析: 通过本单元前面几课学习与实践,学生对家居设计有了一定 的了解。但是这一课是对前几课的综合运用和升华,主题是“我的小天地”,桌椅、床等家具的设计,床单、家具等色彩的选择, 台灯、乐器等小摆件的布置都要突出学生的特点。而且制作的时间比较紧,要考虑家居与房间的比例等,学生要在课堂上顺利地完成作品,有一定的难度。 教学目标1、简单了解有关居室的功能和特点,了解自己的小天地不仅有一般居室的特点,还要表现个人的兴趣和爱好。 2、使学生能按照自己的心愿去表现和设计自己理想中的小天地。 3、培养学生[此文转于斐斐课件园https://www.360docs.net/doc/e114593909.html,]善于观察自己身边的事物,引导学生做生活中的人,体验生活的乐趣。 重点学生居室的审美情趣,包括家具造型布局的合理性与美感性, 色彩搭配的协调性,房间装饰的生活性与趣味性以及个性氛围的营造。

难点制作时家具与家具,家具与周围环境之间的前后大小比例关系, 家具的造型教学准备有关居室环境设计的图片刻刀,尺子,胶水。材料:废鞋盒, 各色硬纸。 教学方法探究表现等。 板书设计1、居室的设计与布置要体现实用美观; 2、家具的设计与摆放; 3、整体色调与装饰; 4、主人的性别爱好。 教学过程(本文来自优秀教育资源网斐.斐?课?件?园)一、情景导入在每个人家里都有一块属于自己的小天地,你能画出自己小天地布置的平面图吗? 学生根据平面图谈自己房间设计的特色二、师生探究表现1、提出问题: ⑴你对自己的房间满意吗?你认为自己的房间布置应当具有什么功能和特点? ⑵你准备怎样去改进后设计布置自己的房间? 2、引导学生看书: 学生欣赏图片 3、师生互动在欣赏完这些精美的居室图片后,能谈谈你的感受吗?t这些居室是如何来布置的,有什么讲究吗? 学生探讨分析总结居室设计应注意的几个方面: 1、居室的设计与布置要体现实用美观; 2、家具的设计与摆放; 3、整体色调与装饰; 4、主人的性别爱好。 简单分析课本两组图中整体色调,家具造型和主人的性别及爱好。 在详细了解了居室设计该注意的各个方面后,我们该如何立体的向别人展现自己的小天地呢? 分组研究讨论用什么方案材料制作家具模型师生共同讨论居室模型的制作及步骤: 1、画出居室平面图2、用旧鞋盒制作出居室地面和两面墙组成的居室外形。

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学三角形内外角平分线有关命题的证明及应用

三角形内外角平分线 一.命题的证明及应用 在中考常有及三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下. 命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90° +∠A. 证明:如图1: ∵∠1=∠,∠2=∠, ∴2∠1+2∠2+∠A=180°① ∠1+∠2+∠D=180°② ①-②得: ∠1+∠2+∠A=∠D③ 由②得: ∠1+∠2=180°-∠D④ 把③代入④得: ∴180°-∠D+∠A=∠D

∠D=90°+∠A. 点评利用角平分线的定义和三角形的内角和等于180°,不难证明. 命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A. 证明:如图2: ∵DB和DC是△ABC的两条外角平分线, ∴∠D=180°-∠1-∠2 =180°-(∠DBE+∠DCF) =180°-(∠A+∠4+∠A+∠3) =180°-(∠A+180°) =180°-∠A-90°

=90°-∠A; 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和以及三角形的内角和等于180°,可以证明. 命题3 如图3,点E是△ABC一个内角平分线及一个外角平分线的交点,则∠E=∠A. 证明:如图3: ∵∠1=∠2,∠3=∠4, ∠A+2∠1=2∠4① ∠1+∠E=∠4② ①×代入②得: ∠E=∠A. 点评利用角平分线的定义和三角形的一个外角等于及它不相邻两外角的和,很容易证明.

命题4 如图4,点E是△ABC一个内角平分线BE及一个外角平分线CE的交点,证明:AE是△ABC的外角平分线. 证明:如图3: ∵BE是∠ABC的平分线,可得:EH=EF CE是∠ACD的平分线, 可得:EG=EF ∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等. 即EF=EG=EH ∵EG=EH ∴AE是△ABC的外角平分线. 点评利用角平分线的性质和判定能够证明. 应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看. 例1如图5,PB和PC是△ABC的两条外角平分线. ①已知∠A=60°,请直接写出∠P的度数. ②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形? 解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°

2013中考总结复习冲刺练:初中数学“最值问题” 集锦

2013中考总结复习冲刺练:“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P 点时A’P’+B’P’=A’B,所以这时PA+P B最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有

(完整)初中数学几个常用模型资料

初 中 数 学 几 个 数 学 模 型 模型1、l:r=3600 :n 0 ①圆锥母线长5cm ,底面半径长3cm ,那么它的侧面展开图的圆心角是 216 。 ②劳技课上,王芳制作了一个圆锥形纸帽,其尺寸如图.则将这个纸帽展开成扇形时的圆心角等于( C ) A .45° B.60° C .90° D.120° ③要制作一个圆锥形的模型,要求底面半径为2cm ,母线长为4cm ,在一个边长为8cm 的正方形纸板上,能否裁剪制作一个这种模型(侧面和底面要完整,不能拼凑)( C ) (A)一个也不能做 (B)能做一个 (C)可做二个 (D)可做二个以上 4、(2004河北T7)在正方形铁皮上剪下个圆形和扇形,使之恰好围成如图所示的圆锥模型.设圆的半径为r,扇形的半径为R,则圆半径与扇形半径之间的关系是 (D )A 、2r=R B 、R r =4 9 C 、R r =3 D 、r 4模型2、角平分线+平行=等腰三角形 如图,?ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ). (A )EF>BE+CF (B )EF=BE+CF (C )EF

我的小天地——立体纸模型

课题:我的小天地——立体纸模型 课时:1课时 教学目标: 1、简单了解有关居室的功能和特点,了解自己的小天地不仅有一般居室的特点,还要表现个人的兴趣和爱好。 2 、使学生能按照自己的心愿去表现和设计自己理想中的小天地。 3、培养学生善于观察自己身边的事物,引导学生做生活中的人,体验生活的乐趣。 教学重点:学生居室的审美情趣,包括家具造型布局的合理性与美感性,色彩搭配的协调性,房间装饰的生活性与趣味性以及个性氛围的营造。 教学难点:制作时家具与家具,家具与周围环境之间的前后大小比例关系,家具的造型。 教学方法:讲解、示范 教具准备: PPT课件、教案 教学过程: 一、情景导入 在每个人家里都有一块属于自己的小天地,你能画出自己小天地布置的平面图吗?学生根据平面图谈自己房间设计的特色 二、师生探究表现 1、提出问题: ⑴你对自己的房间满意吗?你认为自己的房间布置应当具有什么功能和特点? ⑵你准备怎样去改进后设计布置自己的房间? 2、引导学生看书:学生欣赏图片 3、师生互动在欣赏完这些精美的居室图片后,能谈谈你的感受吗?t这些居室是如何来布置的,有什么讲究吗?学生探讨分析 总结居室设计应注意的几个方面: 1、居室的设计与布置要体现实用美观; 2、家具的设计与摆放; 3、整体色调与装饰;

4、主人的性别爱好。 简单分析课本两组图中整体色调,家具造型和主人的性别及爱好。 在详细了解了居室设计该注意的各个方面后,我们该如何立体的向别人展现自己的小天地呢? 分组研究讨论用什么方案材料制作家具模型师生共同讨论居室模型的制作及步骤: 1、画出居室平面图 2、用旧鞋盒制作出居室地面和两面墙组成的居室外形。(居室平台用旧鞋盒代替省时省力) 3、具体家具陈设及家具的制作(如:床单可用软纸布等) 4、添加台灯以及符合主人性格爱好的小装饰品。 5、最后对居室模型各部分进行调整(整个制作过程中,师可简单示范几个关键步骤,边讲边示范。具体细节学生要自主发挥。) 三、巩固练习 我是设计师 1、命题创作(一个组合作完成) 业主身份:男 16岁性格活泼,爱好运动,特爱踢足球 设计要求:现代、简洁、时尚。 2、布置自己理想中的小天地(可独立也可合作完成) 3、运用今天所学到的知识,试着设计布置自己家其他的房间 四、展示评价拓展延伸 1、组内选评: 各组选出本组内较优秀的作品(造型布局是否合理,色彩搭配是否协调,房间装饰的生活性与趣味性,个性氛围的营造) 2、班内展示:展示作品,并请作者谈自己的想法 3、互评:其他学生的美术作品有哪些值得你学习和借鉴的。 4、通过讨论进一步完善自己的作业。 五、小结 每个人都渴望有一个温馨又舒适的小天地,通过本课的学习希望同学们都能切切实实的学以致用,把自己的小窝布置的漂亮又舒心。

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

初中数学常见模型之角平分线四大模型

角平分线四大模型 模型1 角平分线上的点向两边作垂线 如图,P 是∠MON 的平分线上一点,过点P 作PA ⊥OM 于点A ,PB ⊥ON 于点B 。 结论:PB=PA 。 模型分析 利用角平分线的性质:角平分线上的点到角两边的距离相等,构造模型,为边相等、角相等、三角形全等创造更多的条件,进而可以快速找到解题的突破口。 模型实例 (1)如图①,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=6,BD=4,那么点D 到直线AB 的距离是 ; (2)如图②,∠1=∠2,+∠3=∠4。 求证:AP 平分∠BAC 。 热搜精练 1.如图,在四边形ABCD 中,BC>AB ,AD=DC ,BD 平分∠ABC 。 求证:∠BAD+∠BCD=180°。 2.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点 P ,若∠BPC=40°,则∠CAP= 。 N M O A B P 2图4321A C P B D A B C 图1A B D C

模型2 截取构造对称全等 如图,P 是∠MON 的平分线上一点,点A 是射线OM 上任意一点,在ON 上截取OB=OA ,连接PB 。 结论:△OPB ≌△OPA 。 模型分析 利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。 模型实例 (1)如图①所示,在△ABC 中,AD 是△ABC 的外角平分线,P 是AD 上异于点 A 的任意一点,试比较PB+PC 与AB+AC 的大小,并说明理由; (2)如图②所示, AD 是△ABC 的内角平分线,其他条件不变,试比较 PC-PB 与AC-AB 的大小,并说明理由。 热搜精练 1.已知,在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,AC=16,AD=8。 求线段BC 的长。 A B D C P P O N M B A 图2D P A B C D C 1图P B A A B C D

初中数学九大几何模型

初中数学九大几何模型 一、手拉手模型----旋转型全等 D (1)等边三角形 O O C E C A 图 1B A 图 2 【条件】:△ OAB和△ OCD均为等边三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=60°;③ OE平分∠ AED D (2)等腰直角三角形 O C E A B A 图 1 D E B D O E C B 图2 【条件】:△ OAB和△ OCD均为等腰直角三角形; 【结论】:①△ OAC≌△ OBD;②∠ AEB=90°;③ OE平分∠ AED (3)顶角相等的两任意等腰三角形 D O O C 【条件】:△ OAB和△ OCD均为等腰三角形; D E 且∠ COD=∠AOB E 【结论】:①△ OAC≌△ OBD;C ②∠ AEB=∠AOB; ③OE平分∠ AED A图 1B A图 2B

O O 二、模型二:手拉手模型----旋转型相似 (1)一般情况 D 【条件】: CD∥ AB,C D 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA O (2)特殊情况 C D 【条件】:CD∥ AB,∠ AOB=90° 将△ OCD旋转至右图的位置 A B 【结论】:①右图中△ OCD∽△ OAB→→→△ OAC∽△ OBD; ②延长 AC交 BD于点 E,必有∠ BEC=∠ BOA; ③ BD OD OB tan ∠ OCD;④ BD⊥AC; AC OC OA ⑤连接 AD、 BC,必有AD2BC 22 2 ;⑥ S△BCD ABCD 三、模型三、对角互补模型 (1)全等型 -90 ° 【条件】:①∠ AOB=∠ DCE=90°;② OC平分∠ AOB E C A B D O C E A B 1 A C BD 2A C D O E B 图 1 【结论】:①;② OD+OE=2;③S △DCE S △OCD S △OCE 1 OC2 CD=CE OC2 证明提示:A C M ①作垂直,如图 2,证明△ CDM≌△ CEN D ②过点 C 作 CF⊥ OC,如图 3,证明△ ODC≌△ FEC ※当∠ DCE的一边交 AO的延长线于 D 时(如图4):O N EB 图 2 以上三个结论:① CD=CE;② OE-OD= 2 OC;A 1 OC 2M C ③ S S △OCE△OCD2A C D O N B E O图 3E F B D 图 4

《我的小天地——立体纸模型》教学设计与反思

《我的小天地—立体纸模型》教案 教学目标: 1、简单了解有关居室的功能和特点,了解自己的小天地不仅有一般居室的特点,还要表现个人的兴趣和爱好。 2 、使学生能按照自己的心愿去表现和设计自己理想中的小天地。 3、培养学生善于观察自己身边的事物,引导学生做生活中的人,体验生活的乐趣。 重点:学生居室的审美情趣,包括家具造型布局的合理性与美感性,色彩搭配的协调性,房间装饰的生活性与趣味性以及个性氛围的营造。 难点:制作时家具与家具,家具与周围环境之间的前后大小比例关系,家具的造型 学情分析: 通过本单元前面几课学习与实践,学生对家居设计有了一定的了解 。但是这一课是对前几课的综合运用和升华,主题是“我的小天地”,桌椅、床等家具的设计,床单、家具等色彩的选择,台灯、乐器等小摆件的布置都要突出学生的特点。而且制作的时间比较紧,要考虑家居与房间的比例等,学生要在课堂上顺利地完成作品,有一定的难度。 课前准备: 工具:剪刀、刻刀、尺子、胶水。 材料:废鞋盒、各色硬纸、彩色软纸。 教学过程: 一、情景导入 你是怎样布置自己的小天地的?你心目中理想的居室是什么样子的?今天以“闯关游戏”来完成立体纸模型的制作。你想成为最后的赢家吗?亮出口号:我最棒,看我的! 二、设置闯关游戏 游戏说明: 六个学生为一个小组,组员之间分工、协作,一起完成立体纸模型的制作【锻炼学生动手能力,培养学生团结、协作的精神】。 三、第一关:居室布置欣赏 引导学生欣赏图片并分组讨论。在欣赏完这些精美的居室图片后,能谈谈你的感受吗?这些居室是如何来布置的,有什么讲究吗? 四、第二关:议一议、齐分析 1、设计的要素 家具设计:床、书桌、书架、椅子等等。 居室的色彩:家具:床单、地板、墙面等等。 来欣赏》 我最酷》 齐分析》 我行的》展示交流动手制作 触发灵感方案设计

初中数学《最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

中考数学专题复习——三角形和角平分线(详细答案)

中考数学专题复习——三角形和角平分线 一.选择题(共16小题) 1.(2018?柳州)如图,图中直角三角形共有() A.1个 B.2个 C.3个 D.4个 2.(2018?贵阳)如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是() A.线段DE B.线段BE C.线段EF D.线段FG 3.(2018?河北)下列图形具有稳定性的是() A.B.C.D. 4.(2018?长沙)下列长度的三条线段,能组成三角形的是() A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 5.(2018?福建)下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 6.(2018?常德)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是() A.1 B.2 C.8 D.11

7.(2018?昆明)在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为() A.90°B.95°C.100° D.120° 8.(2018?长春)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为() A.44°B.40°C.39°D.38° 9.(2018?黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=() A.75°B.80°C.85°D.90° 10.(2018?聊城)如图,将一张三角形纸片ABC的一角折叠, 使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β, ∠BDA'=γ,那么下列式子中正确的是() A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β 11.(2018?广西)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

【5A版】初中数学角平分线说课稿

§1.4.1角平分线 尊敬的各位领导、各位老师: 大家好! 我今天说课的课题是角平分线,它是北师大版八年级下册第一章第四节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 一、教材分析:角平分线的概念在之前已经介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,为证明过程开辟了新的途径。而前几节对用直角三角形全等的判定方法的学习,为证明角平分线的性质定理和逆定理创造了条件。 二、教学目标分析:我把教学目标设定为以下三个方面: 知识目标:能够掌握并证明角平分线的性质定理、判定定理;并能能够运用角平分线的性质定理、判定定理解决几何问题 技能目标:通过定理的初步应用,培养学生的逻辑推理能力及创新的能力. 情感目标:通过自主学习和发展体验获取数学知识的成就感; 三、教学重点和难点分析: 本节内容的重点是角平分线的性质定理、判定定理及它们的应用。 难点是如何直接利用角平分线的性质定理、判定定理解决几何问题。 四、教法学法分析:本节课我将以学生为主体,结合多媒体教学,引导学生自主学习、合作学习和探究学习,鼓励学生多思、多说、多练,让学生在观察中发现,在发现中探索,在探索中创新。 五、教学过程分析:本节课分成七个环节: 第一环节是复习引入,温故而知新: 在这一部分,我主要通过提问的形式来复习两个相关的知识内容:点到直线的距离和角平分线的定义;为学生探索学习角平分线打下基础。 第二个环节创设情境,引入课题。 我先提出一个问题:同学们知道角平分线上的点有什么性质吗?可以怎样得到它们呢? 在这里,我设计折纸和量一量的活动,通过让学生动手操作、体验,从而更直观地了解角平分线及其性质,并且能更准确地用文字语言把角平分线的性质定理表示出来:即角平分线上的点到角两边的距离相等。 第三个环节探究证明,这一环节我将分为两个部分来完成: 第一部分,先提出思考,除了用动手操作的方法证明这个定理之外,能否用几何语言把它的证明表达出来? 然后引导并要求学生把定理写成“如果……那么……”形式,再根据其条件和结论,写出已知、求证和证明过程。 这一部分我将由学生独自完成,对有困难的学生加以指导,这样即可以检查学生对利用三角形全

初中数学常见模型之蚂蚁行程

蚂蚁行程 模型1 立体图形展开的最短路径 模型分析 上图为无底的圆柱体侧面展开图,如图蚂蚁从点A 沿圆柱表面爬行一周。到点B 的最短路径就是展开图中AB ′的长,22''''AB AA A B =+。做此类题日的关键就是,正确展开立体图形,利用“两点之间线段最短”或“两边之和大于第三边”准确找出最短路径。 模型实例 例1.有一圆柱体油罐,已知油罐底面周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造房子,正好到达A 点的正上方B 处,问梯子 最短有 多长? 例2.如图,一直圆锥的母线长为QA=8,底面圆的半径2r =, 若一只小蚂蚁从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则蚂蚁爬行的最短 路线长是 。 例3.已知长方体的长、宽、高分别为30cm 、20cm 、10cm ,一只蚂蚁从A 处出发到B 处觅食,求它所走的最短路径。(结果保留根号)

热搜精练 1.有一个圆锥体如图,高4cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲沿侧面爬行到C处,求蚂蚁爬行的最短距离。 2.如图,圆锥体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图,则最短路程为。 3.桌上有一个圆柱形无盖玻璃杯,高为12厘米,底面周长18厘米,在杯口内壁离杯口距离3厘米的A处有一滴蜜糖,一只小虫22 杯子外壁,当它正好在蜜糖相对方向离桌面3厘米的B处时,突然发现了蜜糖,问小虫至少爬多少厘米才能到达蜜糖所在的位置。 4.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬行到点B,如果它运动的路径是最短的,则最短距离为。

相关文档
最新文档