FEM有限单元法

FEM有限单元法
FEM有限单元法

其基本思想可简单的概括为如下2点。

(1)将一个表示结构或连续体的求解域离散为若干个子域(单元),并通过他们边界上的节点相互联结为一个组合体。

(2)用每个单元内所假设的近似函数来分片表示全求解域内待求解的未知变量,而每个单元内的近似函数由未知场函数(或其导数)在单元各个节点上的数值和与其对应的插值函数来表示。由于在联结相邻单元的节点上,场函数具有相同的数值,则将它们作为数值求解的基本未知量。

因此,求解原待求场函数的无穷多自由度问题转换为求解场函数节点值的有限自由度问题。

3.1.2有限元法的特点

有限元方法之所以用途如此广泛,是因为它有其自身的特点,概括如下:

(1)对于复杂几何构形的适应性。由于单元在空间上可以是一维、二维、三维的,而且每一种单元可以有不同的形状,同时各种单元可以有不同的连接方式,所以,工程实际遇到的非常复杂的结构和构造都可以离散为由单元几何体表示的有限元模型。

(2)对于各种物理问题的适应性。由于用单元内近似函数分片表示全求解域的未知场函数,并未限制场函数所满足的方程形式,也未限制各个单元所对应的方程必须有相同的形式,因此它适用于各种物理问题。

(3)建立于严格理论基础上的可靠性。因为用于建立有限元方程的变分原理或加权余量法在数学上己证明是微分方程和边界条件的等效积分形式,所以只要原问题的数学模型是正确的,同时用来求解有限元方程的数值算法是稳定可靠的,则随着单元数目的增加(即单元尺寸的缩小)或是随着单元自由度数的增加(即插值函数阶次的提高),有限元解的近似程度不断地被改进。如果单元是满足收敛准则的,则近似解最后收敛于原数学模型的精确解。

(4)适合计算机实现的高效性。由于有限元分析的各个步骤可以表达成规范化的矩阵形式,所以求解方程可以统一为标准的矩阵代数问题,特别适合计算机的编程和执行。随着计算机硬件技术的高速发展,以及新的数值算法的不断出现,大型复杂问题的有限元分析已成为工程技术领域的常规工作。

3.1.3有限元法的分析过程

由于本论文主要是结构分析,所以主要介绍有限元分析过程中针对结构分析的主要步骤,通常分为7步,概括如下。

(1)结构的离散化。按照问题的几何特征和精度要求等因素将结构物分割成有限个单元体,并在单元体的指定点设置节点,使相邻单元的有关参数具有一定的连续性,形成有限元网格,即将原来的连续体离散为在节点处相互连接的有限单元组合体,用它来代替原来的结构。(2)选择位移模式。假定位移是坐标的某种简单函数(位移模式或插值函数),通常采用多项式作为位移模式。在选择位移模式时,应该注意以下几点:

a.多项式项数应等于单元自由度数;

b.多项式阶次应包含常数项和线性项;

c.单元自由度应等于单元节点独立位移的个数。

位移矩阵为:

(3.1)式中,为单元的节点位移,为形函数矩阵。

(3)分析单元的力学性能。用节点位移表示的单元应变为:

(3.2)式中,为单元应变,是单元的节点位移,为几何矩阵或应变矩阵,反映了节点位移与应变之间的转换关系。

由本构方程导出用节点位移表示的单元应力可表示为:

(3.3) 为与单元材料有关的弹性矩阵。

由变分原理,建立单元上节点力与节点位移的关系式,即平衡方程为:

(3.4) 其中,为单元刚度矩阵,其形式为:

(3.5) [D]为与单元材料有关的弹性矩阵。

(4)集合所有单元的平衡方程。建立整个结构的平衡方程,即组集总刚,总刚矩阵为[k]。

(3.6)由总刚形成的整个结构的平衡方程为:

(3.7)上述方程在引入几何边界条件时,将进行适当修改。(5)求解未知节点位移和计算单元应力。对平衡方程求解,解出未知的节点位移,然后根据前面给出的关系计算节点的应变和应力以及单元的应力和应变。

(6)整理并输出单元应变和应力。

(7)结合计算结果进行一系列处理,得到问题的最终分析结果。

公式不显示

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限单元法第十章

复习题 10.8如何利用一个单元模型对K 非奇异性和s K 奇异性进行估计?为什么说仅是 估计?两种情况下,一个单元的模型有何区别?为什么? 解:由于不可能事先规定单元数和自由度数,常采用如下公式: K 非奇异性b b s s e n d n d N +≥——○1 s K 奇异性s s n d j <或1s s j r n d =>——○2 e N 一个单元仅给予刚体运动约束后的自由度数。 j 在已形成部分网格的基础上再增加一个单元所增加的自由度数。 r 奇异性指标,r 越大表示s K 的奇异性越高。 ○1式不是K 非奇异性的必要条件,也不是充分条件;○2不是s K 奇异性的充分条件,因为具有不同网格和边界约束情况的实际系统的自由度数N 既可能小于, 也肯能大于○ 2式中的自由度数j 推算出的M j ?。 两种情况? 10.9什么是用于Mindlin 板单元的假设剪切应变方法?如何选择它的取样点和插值函数? 如同Timoshenko 梁情况,为避免剪切锁死,可以从分析造成锁死的根源出发,另行假设剪切应变场以代替原泛函中按应变和位移的几何关系得到的剪切应变场。

C型拉格朗日单元的方法构造,8,12 节点Serendipity单元可按Serendipity单元的方法构造。即分别按两个方向一维拉格朗日插值函数相乘的方法和变结点的方法构造。 练习题 10.5 同上题分析的四边固支的方板受均布载荷q 作用。板边长L,厚度t。由于对称取1/4进行分析,网格分别取2×2,4×4,6×6;L/t 分别取100,300,500;对4 节点,8 节点,9 节点的Mindlin 板单元是否发生剪切锁死情况进行检验并对结果进行分析。 解: 10.6 问题同题10.5,只是板的四边改为简支。 解:

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限单元法读书报告

有限单元法读书报告 摘要:有限单元法以变分原理和加权余量法为基础,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限单元法;插值函数;网格划分;实例分析 1 有限单元法概述 1.1 有限单元法的简介 有限单元法[1]是应用局部的近似解来建立整个定义域的解的一种方法。先把注意力集中在单个单元上,进行上述所谓的单元分析。基本前提是每一单元要尽可能小,以致其边界值在整个边界上的变化也是小的。这样,边界条件就能取某一在结点间插值的光滑函数来近似,在单元内也容易建立简单的近似解。因此,比起经典的近似法,有限元法具有明显的优越性。比如经典的Ritz法,要求选取一个函数来近似描述整个求解区域中的位移,并同时满足边界条件,这是相当困难的。而有限元法采用分块近似,只需对一个单元选择一个近似位移函数,且不必考虑位移边界条件,只须考虑单元之间位移的连续性即可。对于具有复杂几何形状或材料、荷载有突变的实际结构,不仅处理简单,而且合理适宜。 1.2 有限单元法的基本方法简介 有限单元法,是一种有效解决数学问题的解题方法。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中[2],常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

有限单元法

《有限元法》复习题 一. 单选题 1.平面刚架单元坐标转换矩阵的阶数为( ) A .2?2 B .2?4 C .4?4 D .6?6 2.图示的四根杆组成的平面刚架结构,用杆单元进行有限元分析,单元和节点的划分如图示,则总体刚度矩阵的大小为( ) A.8?8阶矩阵 B.10?10阶矩阵 C.12?12阶矩阵 D.16?16阶矩阵 3.坐标转换矩阵可归类为( ) A.正交矩阵 B.奇异矩阵 C.正定矩阵 D.对称矩阵 4.图示弹簧系统的总体刚度矩阵为( ) A 111123 2224443400 0000k k k k k k k k k k k k k k -????-++-???? -+??-+?? B. 111122224443400 0000k k k k k k k k k k k k k -????-+-???? -+-??-+?? C. 111123 2322443 4 3400 00 k k k k k k k k k k k k k k k k -????-++--???? -+-??--+?? D. 111122322443 4 340 00 k k k k k k k k k k k k k k k -????-+--???? -+??--+?? 5.确定已知三角形单元的局部码为1(e),2(e),3(e),对应总码依次为3,6,4,则其单元的刚度矩阵中的元素k 24应放在总体刚度矩阵的( )。 A.1行2列 B.3行12列 C.6行12列 D.3行6列 6.对一根只受轴向载荷的杆单元,k 12为负号的物理意义可理解为( ) A.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相同 B.当节点2沿轴向产生位移时,在节点1引起的载荷与其方向相反 C.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相同 D.当节点2沿轴向产生位移时,在节点1引起的位移与其方向相反 7.平面桁架中,节点3处铅直方向位移为已知,若用置大数法引入支承条件,则应将总体刚度矩阵中的( ) A.第3行和第3列上的所有元素换为大数A B.第6行第6列上的对角线元素乘以大数A C.第3行和第3列上的所有元素换为零 D.第6行和第6列上的所有元素换为零 8.在任何一个单元内( ) A.只有节点符合位移模式 B.只有边界点符合位移模式 C.只有边界点和节点符合位移模式 D.单元内任意点均符合位移模式 9.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A.XY 平面内 B.XZ 平面内 C.YZ 平面内 D.XYZ 空间内 12.刚架杆单元与平面三角形单元( ) A.单元刚度矩阵阶数不同 B.局部坐标系的维数不同 C.无任何不同 D.节点截荷和位移分量数不同 13.图示平面结构的总体刚度矩阵[K]和竖带矩阵[K *]的元素总数分别是( ) A.400和200 B.400和160 C.484和200 D.484和160 14.在有限元分析中,划分单元时,在应力变化大的区域应该( ) A.单元数量应多一些,单元尺寸小一些 B.单元数量应少一些,单元尺寸大一些 C.单元数量应多一些,单元尺寸大一些 D.单元尺寸和数量随便确定 15.在平面应力问题中,沿板厚方向( ) A.应变为零,但应力不为零 B.应力为零,但应变不为零 C.应变、应力都为零 D.应变、应力都不为零 16.若把平面应力问题的单元刚度矩阵改为平面应变问题的单元刚度矩阵只需将( ) A. E 换成E/(1-μ2),μ换成μ/(1-μ2) B. E 换成E/(1-μ2),μ换成μ/(1-μ) C. E 换成E/(1-μ),μ换成μ/(1-μ2) D. E 换成E/(1-μ),μ换成μ/(1-μ) 17.图示三角形单元非节点载荷的节点等效载荷为( ) A.F yi =-100KN F yj =-50KN F yk =0 B. F yi =-80KN F yj =-70KN F yk =0 C. F yi =-70KN F yj =-80KN F yk =0

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

有限单元法原理与应用(第三版)

122123 60 组建 周年60组建 周年 主要完成人:朱伯芳 受奖单位:水电中心/结构材料所 【创新性】 全面系统地阐述了有限单元法的基本原理及其在土木、水利工程问题中的应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、极限分析、混凝土和钢筋混凝土、流体力学、渗流分析、热传导、工程反分析、仿真分析、网格自动生成、误差估计及自适应技术等。本书取材实用、由浅入深、先易后难,便于自学;对于实际工程中有用的计算方法力求讲述清楚并给出具体计算公式,便于应用;对有限元法的工程应用,注意工程的物理特性,要求采用的概化假定、计算参数和计算荷载等尽量接近实际,注重计算方法精度的适应性等,并重视有限元计算结果与实际观测资料相验证。【影响力】 我国最早的有限元专著之一,为在我国推广有限元法发挥了重要作用;本书共出版三版,第一版于1976年8月,第二版于1998年10月,第三版于2009 年6月;曾作为多所高校的有限元课程教材使 用;英文版已由清华大学出版社和美国Wiley 出版社联合出版;中国科学技术信息研究所编著的《中国高被引指数分析》(2011版)中,本书列为国内水利工程领域高被引图书第2名。 有限单元法原理与应用(第三版) 著作类成果 【Innovation】 This book expounds, in an all-round and systematic manner, the basic theory of the finite element method and its application to civil engineering and hydraulic engineering , including plane and space problems of elasticity, thin plate, thin shell, thick plate, thick shell, elastic stability, plasticity, large displacement, fracture, dynamic response, creep, rock and soil mechanics, limit analysis, concrete and reinforced concrete, fluid mechanics, seepage analysis, heat conduction, back analysis in engineering, simulated analysis, automatic generation of meshes, error estimation and adaptive technique. This book is learner-friendly because it contains practical content and expounds knowledge step by step and from easy to difficult; and is also easy to use because it strives to clarify the computing methods usable in actual engineering and gives corresponding formulas. Regarding the engineering application of the finite element method, it pays attention to the physical characteristics of projects, requires adopted conceptualized assumption, calculation parameter and calculation load be close enough to reality and accuracy of calculation methods be adaptive, and stresses the verification between the calculation result of the finite element method and actual observational data. 【Influence】 Amongst the earliest finite element books in China, this book plays an important role in generalizing the finite element method in China. It has registered three editions, with the first edition published in August, 1976, the second edition in October, 1998 and the third edition in June, 2009. It served as a finite element textbook of many colleges and universities; and its English version has been published jointly by Tsinghua University Press and the U.S.-based Wiley & Sons, Inc. This book ranks second amongst the highly-cited books of hydraulic engineering in China, according to the Analysis Report of Chinese Highly Cited Paper 2011 of the Institute of Scientific and Technical Information of China (ISTIC) Main Contributor : Zhu Bofang Award-winning Unit : Research Center for Sustainable Hydropower/Department of Structures and Materials THE FINITE ELEMENT METHOD THEORY AND APPLICATIONS(EDITION III)

有限单元法

任务书 如图所示为带方孔(边长为 80mm)的悬臂梁,其上受部分均布载荷(p=10Kn/m)作用,试采用一种平面单元,对图示两种结构进行有限元分析,并就方孔的布置进行分析比较,如将方孔设计为圆孔,结果有何变化?(板厚为 1mm,材料为钢)

《有限元法》课程实训原创性声明 本人郑重声明:本课程设计的所有工作,都是在老师的指导下,由作者本人独立完成的。有关观点、方法、数据和文献的引用已在文中指出,并与参考文献相对应。除文中已注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品成果。对本文的研究做出重要贡献的个人和集体,均己在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者(签字): 日期:年月日

目录 绪论 (1) 一.ANSYS 软件简介 (2) 1. 进入ANSYS 系统的方法 (2) 2. 删除操作错误的方法 (2) 3. 对ANSYS 中单位制的一点说明 (2) 二.问题阐述 (2) 三.几何建模与分析 (3) 四.有限元建模及计算结果分析 (3) 1.定义单元类型及其选项 (3) 2.定义实常数: (4) 3.生成有限元模型 (4) 4.施加位移约束条件和载荷 (5) 5.求解计算 (5) 6.结果显示 (5) 7.有限元分析结果 (6) 心得体会 (13) 参考文献 (15)

绪论 有限单元法,是一种有效解决数学问题的解题方法。其基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。 有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。1960年,Clough进一步处理了平面弹性问题,并第一次提出了"有限单元法",使人们认识到它的功效。 有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。 在科学研究和工程设计中,基于建模与仿真的数字化已经成为当今科技发展的必然趋势,有限元分析已成为该领域的最重要方法之一。随着有限元理论和计算机硬件的发展,有限元软件越来越成熟,已逐渐成为工程师实现工程创新和产品创新的得力助手和有效工具。ANSYS 软件是融结构、流体、电磁场、声场和热场分析于一体的大型通用有限元分析软件,可广泛应用于航空航天、机械工程、土木工程、车辆工程、生物医学、核工业、电子、造船、能源、地矿、水利、轻工等一般工业和科学研究。它能与多数CAD软件接口,实现数据共享和交换,如Pro/E、UG 及 AUTOCAD 等。经过近 40 年的发展及完善,ANSYS 软件已经成为国际上最知名、应用领域最广泛、使用人员最多的软件之一,是实施有限元分析的最重要平台之一。

有限单元法考试重点

1有限单元法的分析过程,结构离散化,确定单元位移模式单元特性分析,建立整体刚度方程,解方程组和输出计算结果。 补充:①结构离散化:将需要分析的结构对象用一些假象的线、面进行切割。使其成为具有选定切割形状的有限个单元体;②确定单元位移模式:在单元内只具有有限自由度的简单位移代替真实位移;③单元特性分析:;④按离散情况集成所有单元的特性,建立表示整个结构结点平衡的方程组)(k△=P+PE=P);⑤解方程组合输出计算结果。 2平面应力和平面应变问题,表示荷载作用平行于平板中面且沿厚度均匀分布,板厚远小于平面内两方向的尺寸,这类问题称为平面应力问题,长度远远大于平面内两方向的尺寸且沿长度荷载作用相同,这时可以取单位长度垻体进行分析,这类问题称为平面应变问题。 3虚功原理,任何一个处于平衡状态的变形体,当发生任意一个虚位移时,变形体所受外力所做的总虚功恒等于变形体所接受的总虚变形功。虚位移原理,受给定外力的变形体处于平衡状态的充分,必要条件,对一切虚位移,外力所作的总虚功恒等于变形体所接受的总虚变形功。 4最小势能原理,位移状态d为真实位移状态的充分、必要条件是对应位移d的势能一阶变分为零,即对应的位移d的势能取驻值,进一步可以证明,对线性弹性问题势能为最小值。 5结构离散化问题,对用结点将结构进行划分所得到的单元体集合体,按一定顺序对结点,单元分别进行加以编号,为用数据来描述结构做准备。 6单元刚度矩阵的性质,对称性,自由式单元的奇异性。 7坐标转换,两套坐标系下对应物理量之间必然存在相互转换的关系,在进行具体整体分析之前应该将局部的量转换成整体的量,或反之将整体的量转换成局部的量。 8结构整体刚度矩阵的性质,对称性,奇异性,带状稀疏性。 9结构离散化(平面问题),人为地用假想的线或面将连续体分割成有限个部分,这每一部分即为单元,然后进行结点,单元的编码和选取坐标系等离散和数据化工作。 10面积坐标,三角形的任一点的位置都可以用量纲为一的参数Li,Lj,L?k中的两个来确定,其中Li,L,L?k为Ll=Al/A(具体参照书125页) 11单元位移场,就是单元内的任一点的位移用结点位移来表示(d?=N*结点位移)N为形函数矩阵。 12.位移模式(位移函数)定义:对结构离散化所得的任一典型单元进行所谓的单元特性分析时,对该单元中任意一点的位移分布做出假设,对位移单元来说,就是将单元中任意一点的位移近似地表示成该单元结点位移的函数。。 13.常应变三角形单元:假设采用三角形单元,把弹性体划分为有限个互不重叠的三角形。这些三角形在其顶点(即节点)处互相连接,组成一个单元集合体,以替代原来的弹性体。同时,将所有作用在单元上的载荷,都按虚功等效的原则移置到节点上,成为等效节点载荷 14.矩形双线性单元:假设采用线性单元,把弹性体划分为有限个互不重叠的线段。这些三角形线段在其顶点(即节点)处互相连接,组成一个单元集合体,以替代原来的弹性体。同时,将所有作用在单元上的载荷,都按虚功等效的原则移置到节点上,成为等效节点载荷 11.形函数的性质、特点:①本端为1,它端为0;N1(0)=1,N2(0)=0;N1(1)=0,N2(1)=1。②任意一点之和为N1(ψ)+ N2(ψ)=1 9.结构的离散化工作:①离散化:按一定顺序对结点,单元分别进行编号;②数据化:用数组描

最新整理有限单元法参考答案知识讲解

有限单元试题参考答案 一、问答题(50分) 1.(5分)有限单元位移法求解弹性力学问题的基本步骤有哪些? 1)选择适当的单元类型将弹性体离散化 2)建立单元体的位移插值函数 3)推导单元刚度矩阵 4)将单元刚度矩阵组装成整体刚度矩阵 5)代入边界条件和求解 2.(5分)有限元法在单元划分的时候应注意哪些问题? 1)集中载荷的作用点、分布载荷的突变点和约束的支撑点都应取为结点 2)在应力变化激烈的区域,单元划分得细一些,其它应力平缓的区域划分得粗一些 3)为了避免在计算中产生过大的误差,单元的长细比最好不要大于2 3.(5分)有限元法中建立位移函数一般有广义坐标法和插值函数法,我们经常用插值函数的哪些性质来直接建立位移函数? 1)形函数与位移插值函数是相同次数的多项式 2)形函数N i 在结点i 处等于1,在其它结点上的值等于0 3)在单元任意一点,三个形函数之和为1 4.(10分)在有限元法中,单元刚度矩阵和整体刚度矩阵具有哪些性质? 1)单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题每列元素之和为零 2)单元刚度矩阵对角线元素总为正 3)单元刚度矩阵为对称矩阵 4)单元刚度矩阵为奇异矩阵 整体刚度矩阵前三条性质和单元刚度矩阵一样。另外: 1) 整体刚度矩阵为奇异矩阵,排除刚体位移后为正定矩阵 2)整体刚度矩阵是带状矩阵 5.(5分)什么是等参数单元?它与三角形单元和矩形单元相比有哪些优势? 1)在建立局部坐标系下的形状规则的标准单元与整体坐标系下形状复杂的实际单元之间的变换时,如果坐标变换函数中的形函数及插值结点与描述单元位移函数的形函数及插值结点完全相同,则这种变换我们成为等参数变换,当中的实际单元单元称为等参数单元。(其它描述意思一样也可) 2)三角形单元和矩形单元不能适应复杂的曲线边界,等参数单元可以。 6.(10分)平面三角形单元与轴对称问题的三角形截面单元的不同之处在哪里?轴对称问题三角形截面单元刚度方程的推导当中,为了简化计算和消除在对称轴上r=0引起的麻烦,可怎样处理? 1)平面三角形单元的三个应力分量xy y x τσσ和三个应变分量

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列阵(δ)e表示: {δ}e=[u i v i u j v j u m v m]T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[F ix F iy F jx F jy F mx F my]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系

有限元分析技术的应用

计算机辅助分析 题目:有限元分析技术的应用 学院:机电工程学院 专业:机械设计制造及其自动化 班级: 姓名: 学号: 年月日

有限元分析技术的应用 摘要 有限元单元法,简称有限元法,是伴随着电子计算机技术的进步而发展起来 的一种新兴数值分析方法,是力学、应用数学与现代计算技术相结合的产物。有 限元法是一种高效能、常用的计算方法。本文主要讲述了有限元的特点、作用、 基本思想、分析步骤,以及有限元的应用,除此之外,也对有限元的应用软件进 和有限元的发展趋势行了简单介绍。 关键词:有限元法,基本思想,应用软件,发展趋势 The application of finite element analysis technology Summary The finite element method, finite element method, is accompanied by advances in computer technology and the development of a new numerical analysis method, is a product of mechanics, applied mathematics and modern technology combine. The finite element method is an efficient computing method, commonly used. This paper mainly describes the characteristics, finite element function, basic thought, analysis steps, and the application of finite element method, in addition, also do a simple introduction on the application software of finite element and finite element development trend. Keywords: finite element method, the basic idea, application, development trend

有限单元法第一章

1.13.如何利用最小位能原理建立数值解的求解方程?方程有何特点?解的收敛性和极值性的条件是什么? 建立系统总位能, 1 ()()()()2P ij i i ijkl ij kl i i i V S V S U u dV u dS D fu dV Tu dS σσεφψεε??∏=++=--??????真实位移使系统总位能取最小值,0 P δ∏=0i a ?∏ =?,其中i a 为位置参数。 方程系数对称正定。 解的收敛性和极值性的条件:一阶变分为0,二阶变分大于0。 1.14.什么是最小余能原理?它是如何导出的?场函数是什么? 它事先应满足什么条件? 对场函数的试探函数有什么要求? 最小余能原理:在所有在弹性体内满足平衡方程,在边界上满足力的边界条件的可能应力中,真实的应力使系统的总余能取驻值。 推导过程:由几何方程和位移边界条件的等效积分“弱”形式,即虚应力原理, 0u i ij ij i V s dV T u dS δσε δ-=?? ij ijkl kl C εσ=代入得0u i ij ijkl kl i V s C dV T u dS δσσδ-=?? 1()()2 ij ijkl kl ijkl ij kl mn C C V δσσδσσδσ== 0c δ∴∏=其中12 u i c ijkl ij kl i V S C dV T u dS σσ∏=-?? 由泛函知场函数为应力。 事先满足应力边界条件。 场函数的试探函数的要求:完备性和协调性。 练习题 1.3某问题的微分方程是 22220c Q x x φφ φ??+++=?? 在Ω内 边界条件是 =φφ(在1Γ上) q n φ ?=?(在2Γ上) 其中c 和Q 仅是坐标的函数,试证明此方程的微分算子是自伴随的,并建立相应的自然变分原理。 解:

相关文档
最新文档