污水源热泵空调技术国内外研究应用进展

污水源热泵空调技术国内外研究应用进展
污水源热泵空调技术国内外研究应用进展

污水源热泵空调技术国内外研究应用进展

大连理工大学土木水利学院张吉礼马良栋

摘要:污水源热泵空调技术是我国当前各类热泵技术中发展和应用前景最被看好的一类技术,节能减排效果显著。本文系统地综述了污水源热泵空调技术在北欧、日本和我国的发展过程,介绍了污水源热泵技术国外研究和应用最新进展和技术发展趋势,总结了我国污水源热泵空调技术的特色和进展状况,最后分析了污水源热泵空调技术在实际应用中存在的问题,指出了污水换热器污水侧除污与强化换热是目前污水源热泵技术在解决稳定取水问题后,又一个迫切需要解决的关键问题。

关键词:污水源热泵,节能减排,污水热能直接提取,污水换热

1 前言

城市污水是一种蕴涵丰富低位热能的可再生热能资源[1-9],污水源热泵空调则是以城市污水为建筑供热源和排热汇、解决建筑物冬季采暖、夏季空调和全年热水供应的重要技术[1-3, 10-13],也是城市污水资源化开发利用的新思路和有效途径,目前在我国、日本、特别是北欧等国已经得到一定程度的应用[1-5, 10-14]。

污水源热泵空调系统的节能效果首先表现在一次能源利用效率上。由于城市污水温度比室外空气温度、地下/表水温度、土壤温度、海水温度等更有利于减小热泵制冷热力循环温区,从而使得污水源热泵空调系统的制热和制冷性能都高于其它热泵系统[12,18]。东京Koraku 1-chome污水源热泵空调系统的制热性能比空气源热泵和水源热泵相比提高了60%,比空气源热泵节省电能20%[2];东京Ochiai污水处理厂的污水源热泵系统比电制冷加燃油锅炉节约运行费用40%[15];哈尔滨地区污水源热泵空调系统的一次能源利用率比燃气直燃机组高36.3%、比燃煤锅炉加电制冷机组高58.9%,年运行费用却低10%以上,系统的初投资分别是直燃机和燃煤锅炉加电制冷的88.5%和82%[20];秦皇岛某污水处理厂污水源热泵系统全年运行费用比电制冷加燃油锅炉低60%[16];北京地区污水源热泵系统的总运行费用是地下水源热泵系统的70%、是燃气加空冷空调系统的45%[19],而初投资是地下水源热泵系统的80%[19];北京某大型城市广场采用污水源热泵供热系统,其年运行费用是空气源热泵的62.5%、是电热锅炉的23.6%、是燃气壁挂采暖炉的57.6%、是溴化锂直燃机的57.8%[13]。可见,污水源热泵空调系统比现有其它冷热源具有较大的节能效果和较低的运行费用。污水源热泵空调技术的节能效果其次体现在节约空调冷却水方面。在夏季空调运行时,由于污水源热泵空调系统不需要常规空调冷却塔,而采用城市污水直接或间接带走热泵机组在实现建筑空调降温时所产生的大量冷凝热,从而节省了大量的冷却水资源,具有显著的节约水资源的效果。另外,污水源热泵空调技术的节能效果还体现在全年向建筑提供生活热水方面。污水源热泵空调系统在对建筑物实现冬季采暖、夏季空调的同时,还可以替代现有电热水器、燃油燃气锅炉和燃煤锅炉全年向建筑物提供生活热水,同样从一次能源利用效率和运行费用的角度,污水源热泵空调系统具有较大的节能效果。

污水源热泵空调系统的减排效果主要体现在以下两个方面。我国以火电为主,煤炭在我国总的能源消费结构中约占67%。因此,污水源热泵空调系统在节能的同时,首先减少了CO2、SO2、NOx、粉尘等污染物的排放量。日本学者N.C. Baek的仿真结果表明,污水源热泵空调系统较空气源热泵可以减少68%的CO2排放量和75%的NOx排放量[21];东京Koraku 1-chome污水源热泵系统较空气源热泵减少了40%的CO2排放量和37%的NOx排放量[2];哈尔滨地区污水源热泵空调系统的CO2排放量约是燃煤锅炉加电制冷的49.9%[20];可见,污水源热泵空调技术具有显著的减少大气污染、减少温室气体排放的环境效益。其次,污水源热泵空调技术在夏季具有较大的建筑物废热减排效果。夏季,大量的建筑内部废

热通过不同的形式排向建筑室外环境,加剧了城市热岛效应。研究表明,城市内部环境温度比城市周围环境温度高1~5oC、甚至10oC以上[22],城市热岛效应加剧了城市高温出现的频率和高温灾害,不仅恶化了城市环境,而且又反过来增大了建筑空调负荷和空调耗电[23,24],造成民众生活、城市建筑和城市环境的恶性循环。污水源热泵空调系统在夏季可以将大量的建筑内部废热直接排放到城市污水中、而不是通过冷却塔或空调室外机组排放到建筑室外环境中,具有显著地降低城市“热岛效应”的废热减排效果。

因此,开发利用城市污水低位热能资源,降低建筑冬季采暖、夏季空调和生活热水供应对化石燃料能源资源的消耗,对促进我国建设节约型社会、节约能源、保护环境具有重要的社会发展意义,对促进人与建筑、人与城市环境、建筑与环境的和谐并存和可持续发展具有重要的建筑科学学术发展意义。目前,国内外污水源热泵空调技术的研究、开发和应用主要集中在北欧、日本和中国。

2 北欧污水源热泵空调技术进展分析

瑞典是利用污水源热泵进行城市区域供热最早的国家。1981年6月世界第一个污水源热泵系统在斯德哥尔摩Sala镇投入运行[1],装机容量为3.3MW。从污水热能提取利用方式看,该污水源热泵系统采用污水热能直接提取方式,即城市污水经过净化后喷淋在水平管束式热泵机组蒸发器上[10],热泵工质与城市污水直接换热,没有中介水系统。污水换热管束采用镀锌碳钢管,运行结果表明[1],该类管材可以满足污水防腐蚀要求。随后,10余套大型污水源热泵系统在瑞典投入运行,如表1所示,到1986年瑞典该类热泵系统的总装机容量已达到541.3MW[10]。

表1 瑞典以城市污水为低温热源的大型热泵系统[10]

序号地点总装机容量(MW) 投入运行时间

1 塞勒 3.3 1981

2 伊索喔80 1986

3 哥德堡1期27 1983

4 哥德堡2期29 1984

5 奥斯特桑德10 1984

6 乌穆奥34 1984

7 耶夫勒14 1984

8 厄勒布鲁40 1985

9 哥德堡3期84 1986

10 斯德哥尔摩100 1986

11 索尔纳120 1986

1983年挪威的第一个城市污水源热泵系统在奥斯陆Sk?yen Vest投入运行[10, 25],热泵站容量为8~9MW;该采用污水热能直接提取方式,城市污水经过缝宽为2mm的旋转式筛分器过滤后,由粗孔喷嘴直接喷淋到开式板式蒸发器上[25, 26]。在实际运行中,蒸发器板式污水侧存在堵塞和表面结垢问题[25]。2006年1月奥斯陆完成了Sk?yen Vest污水源热泵系统的改造,新系统供热量可达到19.5MW。新系统设有两个污水蓄水池,在每个蓄水池中分别安装了缝宽为3mm的格栅式传送带,来过滤原生污水中的污杂物;过滤后污水经污水泵进入壳管式蒸发器。为防止蒸发器换热管的堵塞和污垢沉积,通过四通换向阀改变换热管内污水的流向,该系统每小时换向一次,每次12秒[25]。蒸发器换热管采用铜-镍合金管,管内污水流速达到1.9m/s。热泵机组采用双级循环中间抽汽离心式压缩机,设计供热温度为90/60oC,

实际运行COP可达到3.3[25]。该系统是目前规模较大、污水取水换热技术较先进的污水源热泵系统。

1989年奥斯陆Sandvika地区的污水源热泵系统投入运行,供热量为6.5MW,供冷量为4.5MW[26]。该系统同样采用污水热能直接提取方式,城市污水经机械过滤、沉淀池沉淀、经污水泵直接进入热泵机组的壳管式蒸发器[26]。该系统的同样采用格栅式传送带对污水来过滤污水中的污杂物。

污水源热泵技术瑞士、德国、芬兰和荷兰等国家也有不同程度的应用[26, 27],间接提取污水热能的方式在这些国家的中小型污水源热泵系统也有应用,该方式主要利用浸泡式污水换热器和中介水系统来实现[26]。

从污水源热泵系统的规模看,北欧国家主要发展大型污水源热泵站,其供热规模总量目前在国际上绝对处于领先地位。从污水热能提取方式看,北欧国家以污水热能直接提取方式为主,城市污水经过过滤后直接喷淋或进入热泵机组蒸发器,该方式换热效果好,污水热能输送能耗低。从换热设备防堵塞技术看,北欧国家早期主要采用机械过滤(或筛分器)和沉淀技术,近几年格栅式传送带和四通换向反冲洗技术在大型污水源热泵中开始应用。从污水换热设备形式看,北欧国家早期采用喷淋式管束式或板式换热器,随着污水防堵塞技术的成熟,大型壳管式污水换热器的应用越来越多,并成为主导换热器形式;浸泡式污水换热器在中小型系统中也有一定程度的应用。污水换热管有镀锌碳钢管和铜镍合金管。另外,热泵机组由早期的螺杆式热泵机组逐步被大型离心式压缩热泵机组替代,系统供热温度一般按区域供热温度要求来设计。综上,污水源热泵技术在北欧国家已经得到大规模应用,技术发展成熟且处于国际领先地位,这对北欧国家降低化石燃料能源消耗、保护生态环境、减少污染物排放具有重要作用。

3 日本污水源热泵空调技术进展分析

日本是利用城市污水热能较早的国家,1987年东京大区污水管理局启动了污水热能开发利用计划[12],先后建设了12个污水源热泵空调系统,其中4个系统使用城市原生污水,8个系统使用污水处理

厂的二级处理后污水,总供热量为8.94MW,供冷量为11.64MW[5]。

在此项计划中,日本的污水源热泵技术在国际上取得了突破性进展,首先提出了有别于北欧国家、专门针对城市污水水质特点的城市污水取水换热技术,日本开发了污水自动清污过滤器[5]。该设备主要由筒状旋转滤筛(Rotating Cylinder)、刮刷(Cleaning Brush)、驱动电机(Driving Motor)和排污阀(Blow Valve and Reverse Flow Valve)等部件组成,筒状滤筛过滤掉污水中的杂质,电机带动滤筛旋转,挂在滤筛上的污杂物将被刮刷清除下来,然后被反冲排回污水干渠。整个污水取水除污过程连续、自动进行,保证了下游污水源热泵的稳定运行。其次,日本开发了专门用于污水换热的污水换热器(Inflow Sewage Water Heat Exchanger)和自动清洗系统(Automatic Heat Transfer Tube Cleaning Device)[5],如图6所示。污水换热器的换热管(Heat Transfer Tube)不同与普通壳管式换热器的换热管,其内置滑动毛刷(Brush),两端设有毛刷容纳管(Brush Receiver),毛刷在水流换向时沿管内壁往复滑动,达到清除换热管内壁污物的作用。为实现换热器内部污水流向的改变,日本发明了四通换向阀(Four-way Valve),该换向阀安装在污水换热器和污水泵之间,调节换向阀即可实现污水在换热管内流动方向的转变。需要说明的是,日本发明的四通换向反冲洗除污技术要比北欧国家早15年以上。结合上述技术,日本提出了污水热能直接提取式污水源热泵系统形式[5]。该系统由砂滤池(Grit Tank)、自动过滤器(Auto Strainer)、四通换向阀(4-way Valve)、污水直接换热冷凝器(Inflow Sewage Water Heat Exchanger--Condenser)和热泵等设备组成。在污水换热设备设计方面,日本通过浸泡式试验,研究了铜基和钢基换热管的污水换热特性[5]。综合考虑管材的腐蚀热阻、传热性能和管材的价格后,日本选用铜基管材作为污水换热器的管材;自1987年的实际应用结果也表明,该类管材没有出现任何问题[5]。

上述技术于1987年首次在东京Ochiai污水处理厂的污水源热泵系统中,运行效果良好。该系统实际供冷量为297kW,供应7oC冷冻水,制冷COP达到4.65;供热量为289kW,供热温度为45oC,供热

COP为3.59。该技术还广泛用于其它大型系统,如Chiba Makuhari区的污水源热泵系统[5],该系统采用两台离心式压缩热泵,制冷量10.5MW。

污水热能间接提取技术在日本也有应用,1995年投入运行的东京Koraku 1-chome污水源热泵区域供热供冷系统即为该技术方式[2]。该系统设备间主要分为两层,下层为3台热泵机组(Heat Pump),上层为砂滤室(Grit Chamber)、污水换热器(Sewage Water Heat Exchanger)和区域供热供冷管道(DHC Pipes)。上下层之间由热泵热源水管(Heat Source Water Pipes,即中介水管)和循环泵(Suction Pump)将污水换热器和热泵机组联系起来。该系统采用开式自动旋筛过滤器来过滤城市原生污水中的污杂物。自动旋筛过滤器由旋转筛滤筒(Rotary Screen)、刮刀(Scraping Equipment)、反冲洗喷嘴(Header for Back Washing Water)、电机(Motor)、污水入口(Inflow Nozzle)、过滤后污水出口(Outflow Nozzle)、排污口(Scum)和壳体(Casing)构成。原生污水由污水入口进入过滤器,在筛滤筒的连续旋转作用下,实现污杂物的过滤和排除;筛滤筒在反冲洗喷嘴喷出的水流作用下实现筛滤筒滤面的清洗。不锈钢刮刀可以刮掉筛滤筒表面的污杂物。该设备可以实现污水连续稳定的过滤和滤面清洗再生,保证了后端热泵机组运行的稳定性。

Koraku 1-chome污水源热泵系统同样采用了换热管自清洗型污水换热器[2],换热管为钛金属管。实际运行时污水中含有的大量细小纤维性污杂物,可能会堵塞换热管两端的毛刷容纳管。为解决这一问题,该热泵系统配置了换热管热水清洗系统,实现对毛刷容纳管的定期清洗,很有效地解决了这一问题[2]。

Koraku 1-chome污水源热泵系统设置了两台热泵机组,供冷量为10.5MW,供热量为12.8MW,冷冻水供水温度为7oC,供热温度为47oC,所服务的商业建筑面积为12.6万m2,为充分利用东京峰谷平电价差优势,该系统还设置了水蓄能系统。该系统1995年投入运行,制冷COP为4.3,制热COP为3.9,性能远高于空气源和普通水源热泵系统。

与北欧国家污水源热泵技术相比,日本污水源热泵技术突出的特点在于针对城市原生污水在堵塞和换热过程中的特殊性,开发了闭式污水自动清污过滤器和开式自动旋筛过滤器,保证了城市污水取水的连续性和稳定性;开发了内置滑动毛刷的、具有能够实现换热管内污水流向自动换向功能的自清洗污水换热器,减小了因污水中的污杂物在换热管内的沉积而带来的换热器换热效率降低的问题,提高了污水换热器的换热效率。尽管该项技术在挪威已有应用,但从该技术出现的年代看,日本此项技术要比挪威的技术早15年以上。

北欧和日本污水源热泵技术的发展和应用给人们提供了极具参考价值和启发性的污水取水换热过程理论研究和相关技术开发的新思路、新方向和有效途径,不仅向人们预示了污水热能资源化利用的前景,而且也有力地说明了发展大型污水源热泵技术的可行性,有力地说明了利用热泵技术直接提取污水热能的可行性,有力地说明了换热管内置填充物加换向反冲洗技术的可行性,也预示了污水换热器换热管除污和强化换热将是污水源热泵技术进一步迫切需要研究和解决的关键科学问题。

4 我国污水源热泵空调技术进展分析

我国学者早在80年代末就开始关注国外污水源热泵技术的研究与应用进展[26],马最良教授分析了工业污水源热泵在不同地区的节能效果[28],对早期在我国推广应用热泵技术起到重要作用。首例城市污水源热泵系统到2000年才在北京高碑店污水处理厂示范成功[10, 11],此后,北京北小河污水处理厂、秦皇岛海港区污水处理厂、石家庄桥东污水处理厂等相继建成污水源热泵系统[12, 16, 29],但上述工程均采用污水厂二级污水(水质好、污杂物含量低)为低位热源,没有解决污水取水过程中的污杂物堵塞问题。真正对我国城市污水源热泵空调技术的应用和发展起到重大推动作用的研究,是哈尔滨工业大学孙德兴教授的科研团队完成的城市原生污水热能资源化工艺与技术,该技术于2003年9月份开始应用于哈尔滨望江宾馆[30],成功运行两年后,于2005年6月通过黑龙江省科技鉴定,鉴定委员会对该技术给予了“世界首创,国际领先”的好评。

滤面连续再生污水取水机是孙德兴教授提出的城市原生污水源热泵技术的核心设备,该设备被隔板、旋转滤筒和壳体分成A、B、C、D四个腔,原生污水由A腔流向B腔,污水中的污杂物被滤筒过滤,带有污杂物的滤面旋转到C腔,在污水换热后回水反冲作用(注意,反冲洗速度高于正常过滤速度)下此部分滤面得到再生,并继续旋转实现过滤过程。滤面连续再生污水取水机实现了原生污水的连续取水过程,保证了热泵机组运行的稳定性。该项技术在哈尔滨、大庆、北京、天津等多个城市取得了成功的应用,取得了很好的节能环保效果。在理论研究上,孙德兴教授带领课题组以污水换热器为对象,连续测试分析了原生污水在换热器中的流动阻塞特性,根据设备运行的时间,将换热器污泥污染划分为5个阶段,分析了其对污水换热器结构设计的影响大小[17];针对污水换热器的换热特性,指出原生污水流动换热效果很差,对于钢制换热管,其换热系数仅有600W/(m2?oC),并受污水流速的变化影响很小;指出原生污水流动具有非牛顿特性,常规的换热准则关联式不再适用[17]。从城市原生污水源热泵系统设计和运行的角度,该课题组研究了某实际系统的制热和制冷工况下的运行参数,评价了该系统的运行效率[30]。随后该课题组又研究了图10所示的系统双级水泵的运行调节特性,为双级污水泵的合理选型和稳定运行调节提供了理论依据[31]。孙德兴教授在城市原生污水源热泵技术上所取得的研究成果极大地推动了我国城市污水源热泵空调技术的应用和普及。

针对污水厂二级污水,哈尔滨工业大学姚杨教授提出了基于淋激式换热器的污水源热泵系统,二级污水通过淋激式换热器实现与热泵工质的热交换[32]。随后,该课题组又完成了淋激式换热器的结构设计方法[32]、热泵系统关键设备设计方法[33]和淋激式换热器污垢热阻变化对热泵系统性能影响的仿真分析[34]等,为淋激式换热型污水源热泵技术的应用提供了理论基础。为提高污水源热泵系统的污水换热效率,大连理工大学提出了污水换热过程流化除垢与强化换热方法[35]。城市污水经取水机和污水泵后,以一定速度将固液分离器中的小球引射到流化床污水换热器,小球在换热器中与换热管壁发生碰撞,实现对管壁的除垢和强化换热。然后,小球在水流作用下进入固液分离器,在重力作用下从污水中分离出来再循环利用。文[35]研究了小尺度污杂物在换热过程中的污垢形成机理及其对换热性能的影响,研究了流化除垢的技术实现方法和除垢效果,试验研究了流化强化换热效果,为污水源热泵系统污水防垢和强化换热提供了新的研究思路。

作者在哈尔滨工业大学工作期间也针对壳管式污水换热器管内污泥污垢生长特性和除污强化换热方法进行了试验研究[36],建立了热阻法冷凝换热管内污垢生长特性试验台,试验研究了污水换热管污泥污垢生长特性曲线,研究表明,对于新的换热管在连续运行190小时,其污泥污垢热阻即达到最大值,亦即要求对管内污水侧进行清洗除污[36]。为实现管内自动除污,申请者提出了能够与壳管式换热器一体化的旋转四通换向阀[37],实现了换热管内污水流向的自动换向,试验研究了不同反冲洗流速下的反冲洗除污效果[36];提出了污水换热管内置弹簧除污方法,试验研究了该方法的除污特性,目前上述方法已经加工成产品,并应用于天津某原生污水源热泵系统中。

另外,北京工业大学针对污水流动换热的特殊性,在污水源热泵系统中采用了浮头式壳管式换热器[38],为提高污水换热器的换热特性,讨论了管内插入扭转带强化换热方法的可行性。曲云霞和陈志峰

等分别对污水换热器的换热管材质和塑料换热管的换热性能进行了研究分析[39, 40]。

5 问题分析与结语

污水取水和换热是污水源热泵空调系统中的关键问题。在污水取水技术上,我国已形成具有自主知识产权的多种污水取水技术,成功地解决了城市原生污水和污水厂二级处理污水取水问题。在污水换热技术上,我国则刚刚起步,许多问题亟待解决。

首先,从污水换热器结构设计的角度,由于城市污水的非牛顿特性和复杂性,其黏度特性的测定非常困难,污泥污垢导热性能也难以测试,因此增加了污水换热器的设计难度,在设计污水换热器时目前

只能进行估算,黏度取清水的10倍以上[17]。

其次,从污泥污垢对换热性能的影响看,由于污水中小尺度污杂物浓度高,极易在换热管内外表面沉积形成粘性污泥层,一台新的污水换热器在实际运行1周后,污泥层热阻将达到最大值,此时人们在换热管及强化换热技术方面所做的任何努力都毫无意义;另外,根据对已运行多年的具有中介水系统的污水源热泵系统的现场测试发现,夏季运行时污水和中介水之间的换热温差高达15oC以上,这也说明了换热器污水侧污泥污垢淤积严重,这也导致夏季热泵机组冷却水(即中介水)平均温度过高,有的高达45oC,远远高于当地湿球温度,这样夏季污水源热泵实际运行能耗将高于冷却塔冷却的制冷系统。

第三,从国内外现有强化换热技术看,污水侧换热管内置毛刷和弹簧的清污方法尽管提高了污水换热效率,但也增加了内置物被污泥粘住、发生换热管路堵塞的问题;循环流化床除污和强化换热技术也存在长期运行后清污小球是否被污泥粘住、不能继续工作的问题。而对于城市污水在管外强化换热的问题,目前国内外基本处于空白状态。

另外,从污水源热泵技术发展过程中人们的工作重点看,人们普遍重视该技术工程应用类问题的研究和开发,而对污水取水换热过程中污水流动特性、污泥污垢生长和去除、污水换热和强化换热等关键基础性问题的研究仅处于刚刚起步阶段,而该类问题的研究和解决必将是解决上述工程应用问题的前提和基础。

因此,污水换热器污水侧除污与强化换热是目前污水源热泵技术在解决稳定取水问题后,又一个迫切需要解决的关键问题,它直接关系到污水源热泵空调系统在全年运行能耗的高低,关系到该项技术的实际节能效果,关系到污水换热设备结构大小和设备投资,关系到污水源热泵空调技术进一步的推广应用。

参考文献

[1] H. O. Lindstr?m. Experiences with a 3.3 MW Heat Pump Using Sewage Water as Heat Source. Journal of

Heat Recovery Systems, 1985, 5(1):33-38.

[2] CADDET (The Centre for The Analysis And Dissemination Of Demonstrated Energy Technologies)

Energy Efficiency. First DHC System in Japan Using Untreated Sewage as a Heat Source. Result 290, JP97.503/5X.D01, 1997, 112-125.

[3] Arashi Norio and Inaba Atsushi. Evaluation Of Energy Use In District Heating And Cooling Plant Using

Sewage And One Using Air As Heat Source. Journal of the Japan Institute of Energy, 2000, 79(5): 446-454.

[4] T. Yoshii. Technology for Utilizing Unused Low Temperature Difference Energy. Journal of the Japan

Institute of Energy, 2001, (8): 696-706.

[5] N. Funamizu, M. Iida and Y. Sakakura. Reuse of Heat Energy in Waste Water: Implementation Examples in

Japan. Water Science and Technology, 2001, 43(10): 277-286.

[6] 尹军,韦新东. 我国城市污水中可利用热能状况初探. 中国给水排水,2001,17(4):27-30.

[7] 王宏哲,伊均. 城市污水热能回收与利用发展状况、评价和意义. 中国环境管理,2001,19(5):21-23.

[8] 冯彦刚. 城市污水资源化的研究. 北京:北京工业大学, 2002.

[9] 尹军,陈雷,王鹤立. 城市污水的资源再生及热能回收利用. 北京:化学工业出版社,2003.

[10] 马最良,姚杨,赵丽莹. 污水源热泵系统的应用前景. 中国给水排水,2003,19(7):41-43.

[11] 吴荣华,孙德兴,张成虎,等. 城市污水源热泵的应用与研究现状. 哈尔滨工业大学学报,2006,

38(8):1326-1329.

[12] 周文忠,李建兴,涂光备. 污水源热泵系统和污水冷热能利用前景分析. 暖通空调,2004,34(8):

25-29.

[13] 黄国琦. 城市污水源热泵的开发和应用. 流体机械,2005,33(6): 76-38.

[14] N.C. Baek, U.C. Shin and J.H. Yoon. A Study On The Design And Analysis Of A Heat Pump Heating

System Using Wastewater As A Heat Source. Solar Energy. 2005, 78: 427-440.

[15] CADDET (The Centre for The Analysis And Dissemination Of Demonstrated Energy Technologies)

Energy Efficiency. Reduced Fouling of Sewage Water Heat Pumps Demo33, JP93.501/5X.H03, 1995: 156-188.

[16] 周文忠. 污水源热泵空调系统在污水处理厂的应用. 暖通空调,2005,35(1): 83-86.

[17] 吴荣华,孙德兴,张成虎,等. 热泵冷热源城市原生污水的流动阻塞与换热特性. 暖通空调,2005,

35(2): 86-88.

[18] 吴荣华,刘志斌,黄磊,孙德兴. 污水及地表水地源热泵系统规范化设计研究. 暖通空调,2006,

36(12): 63-69.

[19] 吕监,冯彦刚. 城市污水低位热能回收利用的研究. 工业用水与废水,2002,33(1):10-12.

[20] 吴学慧,孙德兴. 城市原生污水源热泵经济性分析. 暖通空调,2007,37(11): 36-39.

[21] N.C. Baek and et al.. Development Of Off-Peak Electric Water Heater Using Heat Pump

(1999-E-ID01_P11). 2001, 3-7.

[22] 魏真真,张瑞波,耿庆龙,等. 城市热岛效应研究进展. 新疆师范大学学报,2007,26(3): 232-235.

[23] S. Hassid and M. Santamouris. The Effect of the Athens Heat Island on Air Conditioning Load. Energy

and Buildings, 2000, 32(2): 131-141.

[24] M. Santamouris and N. Papanikolaou. On the Impact of Urban Climate on the Energy Consumption of

Buildings. Solar Energy, 2001, 70(3): 201-216.

[25] Svein Erik Pedersen and J?rn Stene. 18 MW heat pump system in Norway utilizes untreated sewage as

heat source. IEA Heat Pump Centre Newsletter, https://www.360docs.net/doc/e115633480.html,, 2006, 24(4): 37-38.

[26] 徐邦裕,陆亚俊,马最良. 热泵. 北京:中国建筑工业出版社,1988.

[27] https://www.360docs.net/doc/e115633480.html,. Energy from Sewage Water --- District Heating and District Cooling in Sandvika,

with 2 Unitop 28C Heat Pump Units. 1989.

[28] 马最良,刘永红. 热泵站的现状及在我国应用的前景. 暖通空调,1994,No.5: 6-10.

[29] 江雄志,赵会芳,刘炳虎,等. 桥东污水厂污水(中水)源热泵系统设计. 中国给水排水,2005,21(12):

74-76.

[30] 吴荣华,张成虎,孙德兴. 城市原生污水源热蹦系统运行工况与参数特性. 流体机械,2005,33(11):

73-76.

[31] 张成虎,吴荣华,刘志斌,孙德兴. 污水源热泵系统双级水泵运行特性研究. 哈尔滨工业大学学报,

2007, 39(10): 1601-1605.

[32] 姚杨,宋艳,那威. 污水源热泵系统中多级淋激式换热器的设计与分析. 暖通空调,2007,37(3):

63-67.

[33] 姚杨,马最良,赵丽莹. 污水源热泵系统的设计计算. 煤气与热力,2005,25(2): 39-42.

[34] 姚杨,宋艳,那威. 污垢对污水源热泵系统性能影响. 哈尔滨工业大学学报,2007,39(4): 599-603.

[35] 毕海洋. 污水源热泵系统取水换热过程流化除垢与强化换热方法. 大连理工大学博士学位论文(指

导教师:朱颖心,端木琳),2007年12月.

[36] 曹达君. 壳管换热器管内污垢生长及旋转换向反冲洗除污方法. 哈尔滨工业大学硕士研究生论文

(指导教师:孙德兴,张吉礼),2006年12月.

[37] 张吉礼,旋转四通换向阀,发明专利,2005100099465,公示日:2005.8.12.

[38] 闫桂兰. 污水源热泵系统的设计研究及污水换热器性能的改进. 北京工业大学硕士学位论文(指导

教师:唐志伟),2007年6月.

[39] 曲云霞,李梅,杨勇,等. 污水源热泵系统污水水质与换热管材质的选择. 可再生能源,2007,25(4):

72-75.

[40] 陈志峰,闫泽生. 塑料换热器在污水源热泵系统中的应用分析. 哈尔滨商业大学学报,2006,22(3):

55-57.

张吉礼,男,1969年10月生,教授,地址:大连市凌工路2号,大连理工大学土木水利学院暖通空调教研室,邮政编码:116024,电话:(0411)84706713,传真:(0411)84706713;E-mail: zhangjili@https://www.360docs.net/doc/e115633480.html,

污水源热泵空调技术国内外研究应用进展

作者:张吉礼, 马良栋

作者单位:大连理工大学土木水利学院

本文链接:https://www.360docs.net/doc/e115633480.html,/Conference_6845285.aspx

污水源热泵系统介绍.

污水源热泵系统介绍 供热空调的能源消耗占社会总能耗的比例大达30%,而环境污染的20%也是由供热空调燃煤引起的。因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。预计2010年我国污水排放量达720亿t/a,水温全年在10-25℃之间,按开发50%的水量计算,可供热空调的面积至少在5亿㎡以上。另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。而地表水源在南方水源丰富的地区以及沿海城市更具有广阔的应用前景。 1 热泵原理 各类低位的清洁能源利用是通过热泵技术实现的。热泵空调技术是根据逆卡诺循环原理,将低温热源或低位能源(如城市污水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的,是以存在合适的低位能源为必要条件的。 3-膨胀阀 图1 热泵工作原理示意图

图1示意了一种水源热泵向建筑物供热的工作原理。所谓水源热泵,就是指以环 境中的水(污水、地表水、地下水等)作为热源。热泵工质(例如氟利昂)在压缩机1的驱动下,在压缩机1、冷凝器2、膨胀装置3、蒸发器4几个主要部件中循环运动。工质的热力性质决定了蒸发器中的工质温度可以保持在例如2℃(称为蒸发温度)左右,而冷凝器中则为60℃(称为冷凝温度)左右。这里的水源虽然在冬季可能仅为11℃,但却可以作为热泵系统的热源,因为当将它引入温度为2℃的蒸发器时,它必然要把自身中的热能(称为内能)交给机组,变为例如6℃排放出去。获取了水源热能的工质被压缩机压缩到例如60℃,在冷凝器中加热来自建筑物的系统循环水,由该水将热量带到建筑物的散热设备中。 总的来看,热泵能够从常温或低温(11℃)的环境中提取热量,以较高的温度(50℃)向建筑物供热。过程中机组每消耗1份高位能源(例如电能),能够从环境中提取3份以上的温差热量,建筑物实际可以得到的热量则为4份以上。 然而热泵技术应用的关键问题已不是热泵机组的效率有多高,而是需要有合适的低位能源或低温热源,以及整个系统的全面高效低能耗运行,以保证节能性。 2 污水源热泵 污水热泵是以污水(包括地表水)作为低温热源,利用热泵技术回收或提取污水中的低温热能,其中污水包括市政管网中未处理的原生污水、污水处理厂已处理污水,地表水包括江河湖水、海水及污水处理后的再生水。 由于污水及地表水的水质条件较差,利用过程中又是开式循环,悬浮物和杂质成迅速的累积过程,因此提取热量时需要解决防堵、防垢及低能耗运行等一系列可能影响到系统的运行效果、运行维护、投资、运行费的相关问题。 2.1 污水特性 2.1.1 污水源流量特性—量大且稳定

对污水源热泵方案建议

酒店洗浴会所生活热水余热回收+井水源热源系统建议书 2016-04 **有限公司

目录 第一章水源热泵系统的特点及介绍 (2) 一、水源热泵系统的特点 (2) 二、水源热泵系统介绍 (3) 1、井水源系统 (4) 2、生活热水废水系统 (4) 第二章项目介绍及系统设计描述 (5) 一、项目概况 (5) 二、设计依据 (5) 三、冷热源估算 (6) 1、泳池废水用量 (6) 2、地下井水量 (6) 四、冷热源提供热量计算 (6) 1、冬季工况 (6) 1)生活热水废水用量 (6) 2)淋浴头及地下井水量 (7) 3)结论 (7) 2、夏季工况 (7) 1)生活热水废水用量 (7) 2)淋浴头及地下井水量 (8) 3)结论 (8) 五、冷热源系统流程图 (8) 六、机房面积估算 (8) 第三章水源热泵系统与其他系统的比较 (9) 第四章水源热泵机组介绍 (11) 第五章初投资分析 (15)

第一章水源热泵系统的特点及介绍 一、水源热泵系统的特点 由于水源热泵技术利用地表水作为各机组的冷热源,所以其具有以下优点: 1、属于可再生能源 利用技术水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供热系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 2、高效节能 水源热泵机组可利用的水体温度冬季为10-35℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。据美国环保署EPA估计,设计安装良好的水源热泵,平均来说可以节约用户30~40%的供热的运行费用。 3、运行稳定可靠 水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 4、环境效益显著 水源热泵是利用了地表水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以说,

国内外大数据产业发展现状与趋势研究

龙源期刊网 https://www.360docs.net/doc/e115633480.html, 国内外大数据产业发展现状与趋势研究 作者:方申国谢楠 来源:《信息化建设》2017年第06期 大数据作为新财富,价值堪比石油。 进入21世纪以来,随着物联网、电子商务、社会化网络的快速发展,数据体量迎来了爆炸式的增长,大数据正在成为世界上最重要的土壤和基础。根据IDC(互联网数据中心)预测,2020年的数据增长量将是2010年的44倍,达到35ZB。世界经济论坛报告称,“大数据为新财富,价值堪比石油”。随着计算机及其存储设备、互联网、云计算等技术的发展,大数据应用领域随之不断丰富。大数据产业将依赖快速聚集的社会资源,在数据和应用驱动的创新下,不断丰富商业模式,构建出多层多样的市场格局,成为引领信息技术产业发展的核心引擎、推动社会进步的重要力量。 大数据产业发展现状 全球大数据产业发展概况 目前,大数据以爆炸式的发展速度迅速蔓延至各行各业。随着各国抢抓战略布局,不断加大扶持力度,全球大数据市场规模保持了高速增长态势。据IDC预测,全球大数据市场规模 年增长率达40%,在2017年将达到530亿美元。美国奥巴马政府于2012年3月宣布投资2亿美元启动“大数据研究和发展计划”,将“大数据研究”上升为国家意志;2015年发布“大数据研究和发展计划”,深入推动大数据技术研发,同时还鼓励产业、大学和研究机构、非盈利机构与政府一起努力,共享大数据提供的机遇。目前,美国大数据产业增长率已超过71%,大数据在美国健康医疗、公共管理、零售业、制造业等领域产生了巨大的经济效益。英国政府自2013年开始就注重对大数据技术的研发投入,2015年投入7300万英镑用于55个政府的大数据应用项目,投资兴办大数据研究中心,通过大数据技术在公开平台上发布了各层级数据资源,直接或间接为英国增加了近490亿至660亿英镑的收入,并预测到2017年,大数据技术可以为英国提供5.8万个新的工作岗位,或将带来2160亿英镑的经济增长。法国2011年推出了公开的数据平台 date.gouv.fr,以便于公民自由查询和下载公共数据;2013年相继发布《数字化路线图》、《法国政府大数据五项支持计划》等,通过为大数据设立原始扶持资金,推动交通、医疗卫生等纵向行业设立大数据旗舰项目,为大数据应用建立良好的生态环境,并积极建设大数据初创企业孵化器。日本在《日本再兴战略》中提出开放数据,将实施数据开放、大数据技术开发与运用作为2013-2020年的重要国家战略之一,积极推动日本政务大数据开放及产业大数据的发展,零售业、道路交通基建、互联网及电信业等行业的大数据应用取得显著效果。韩国政府高度重视大数据发展,科学、通信和未来规划部与国家信息社会局(NIA)共建大数据中心,大力推动全国大数据产业发展。根据《2015韩国数据行业白皮书》统计显示, 数据服务市场规模占韩国总行业市场规模的47%,位列第一;数据库构建服务以41.8%的占有

污水源热泵在污水处理厂中的应用

污水源热泵在污水处理厂的应用 [摘要] 伴随着污水处理行业在我国的飞速发展和广泛重视,污水源热泵技术的发展更形成了一个新的高潮,目前面临着全球性质的能源危机,多项节能环保的技术及措施得到了各国的认可与推崇,水源热泵技术占有着一席之地,其中在全国范围内,污水源热泵技术已广泛的应用在各大污水处理厂之中。 [关键词] 污水源热泵;污水处理厂;热泵技术的应用 伴随着污水处理行业在我国的飞速发展和广泛重视,污水源热泵技术的发展更形成了一个新的高潮,目前面临着全球性质的能源危机,多项节能环保的技术及措施得到了各国的认可与推崇,水源热泵技术占有着一席之地,其中在全国范围内,污水源热泵技术已广泛的应用在各大污水处理厂之中。 污水源热泵系统利用污水中的能量,以污水作为热源,通过热泵机组将低品位水中难以直接利用的能源提取出来,供冬季供暖或夏季制冷使用。按照其使用的污水的状态可分为以原生水或二级出水或中水作为热源,一般污水处理厂采用二级出水作为热源。 一、污水源热泵技术的特点 (1)使用污水源热泵技术供热采暖或制冷对大气及环境无任何污染,而且高效节能,属于绿色环保技术和装置,符合目前我国能源、环保的基本政策,对用户本身也无形中起到自我宣传的作用。以周边供暖面积157万平方米的沈阳北部污水处理厂为例,按冬季供暖室内温度达到16℃、以每平方米平均耗煤45公斤的经验值估算,仅这157万平方米的供暖面积改用污水源热泵供暖后,一个采暖期就可以减少使用燃冬季供暖室内温度达到16℃、以每平方米平均耗煤45公斤的经验值估算,仅这157万平方米的供暖面积改用污水源热泵供暖后,一个采暖期就可以减少使用燃煤7万吨,减排二氧化硫700吨、烟尘500吨、二氧化碳14万吨。 (2)热泵机组可以达到一机两用的效果,即冬季利用热泵采暖,夏季进行制冷。既节约了制冷机组的费用,有节省了锅炉房的占地面积,同时达到了环保。污水源热泵比燃煤锅炉环保,污染物的排放比空气源热泵减少40%以上,比电供热减少70%以上。它节省能源,比电锅炉加热节省2/3以上的电能,比燃煤锅炉节省1/2以上的燃料。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,运行费用仅为普通中央空调的30%~55%。(3)污水源热泵具有热量输出稳定、COP值高、换热效果好、环保效益显著,水源热泵机组供热时省去了燃煤、燃气、然油等锅炉房系统,无燃烧过程,避免了排烟、排污等污染;供冷时省去了冷却水塔,避免了冷却塔的噪音、霉菌污染及水耗。所以,水源热泵机组运行无任何污染,无燃烧、无排烟,不产生废渣、废水、废气和烟尘,不会产生城市热岛效应,对环境非常友好,是理想的绿色环保产品。 二、热泵技术在污水处理厂中的应用 (1)污水源热泵系统的工作原理 污水源热泵系统,是利用其压缩机的作用,通过消耗一定的辅助能量(如电能),在污水中吸取较低温热能,然后转换为较高温热能释放至循环介质(如水、空气)中成为高温热源输出。在此因压缩机的运转做工而消耗了电能,压缩机的运转使不断循环的制冷剂在不同的系统中产生的不同的变化状态和不同的效果

污水源热泵文献综述

城市污水源热泵的探析 摘 要:随着全球气候变化、不可再生能源的日益枯竭问题的日益凸显,节能与环保重要性更加突出。城市污水作为一种清洁能源,对其所携带的废热的利用的研究受到国内外专家的关注。污水源热泵技术作为一种新型能源技术,可充分利用污水中得废热,实现污水的资源化。本文简要介绍了我国污水资源的现状,污水源热泵的工作原理、分类,污水源热泵系统在国内外研究现状,分析了污水热泵节能环保方面的优势,以及污水源热泵当前遇到的难题及解决方法。 关键词:节能环保; 污水源热泵; 废热利用; 经济 0、前言 随着经济的迅速发展、人口的增加、常规能源的大量消耗,能源供需形式日趋紧张。能源资源短缺对世界经济发展的约束性日益突出。据世界能源年鉴数据统计,截止到2010年,中国石油可采储量为148亿吨,占世界总量的1.1%,世界排名第14;天然气可采储量为2.8万亿立方米,占世界总量的1.5%,世界排名第14;煤炭储量为1145万吨,占世界总量的66.8%,世界排名第3。可见中国能源储量在总量十分丰富。但是人均水平却只相当于世界人均水平的 6.4%、5.6%、66.8%,人均资源储量非常,远远低于世界水平。 20世纪50年代以来,中国的能源工业开始发展,特别是改革开放以后,能源的开采和供给能力不断的增强,促进经济的快速发展;20世纪90年代末,能源对外开放和投入的增加缓解了能源对经济发展的制约。1993年,中国成为石油净进口国,1996年中国成为原油净进口国;21世纪以来,能源供需形势又日趋紧张,中国经济面临着能源的严重挑战 [1]。中国能源的开采和供需面临着资源约束,特别石油是对外依存度的提高[2]。 能源的短缺严重制约着中国经济的发展,开发洁净能源和可再生能源越来越受到国内外专家学者的关注。高污染、高耗能、低效益的发展模式不仅极大的浪费了一次性资源,对环境的污染也非常严重,因而改善能源结构、提高能源利用率尤为重要。对开发地热能、太阳能等新能源、煤炭净化、余热回收等研究的推广称为如今的热点。 一.余热利用 余热利用是指回收生产工艺过程中排出的具有高于环境温度的气态(如高温废气)、液态(如冷却水、生活废水)、固态(如各种高温钢材)物质所载有的热能,并加以重复利用的过程。余热是能源利用过程中没有被利用的、废弃的能源,它包括高温废气余热、冷却介质余热、废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余热等七种。 我国余热普遍存在,特别冶金、化工、纺织等行业的生产过程中、城市排放生活污水中存着这丰富的余热资源。这些余热余压以及其它没有得到利用的余能不仅造成能源的浪费,而且还污染了环境。 1.1工业余热 统计数据表明,我国工业余热资源的回收率仅为33.5% [3]。回收利用潜力巨大。城市消耗了全球近60% 的水资源,它排放的污水中的余热巨大,回收价值高。 工业余热按照能量形态分为三大类,即载热性余热、可燃性余热和有压性余热。 (1)载热性余热 载热性余热指的是工业生产过程中排出的废气和物料、产物等所带走得高温热以及化学反应热等。例如:燃气轮机、内燃机等动力机械的排气,钢厂产品所携带的热,钢厂厂冷却水、凝结水所携带的显热,炉窑产生的高温烟气、高温炉渣、高温产品等。 (2)可燃性余热

污水源热泵系统工程技术规范

污水源热泵系统工程技术规范 (草拟稿) Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技有限公司 起草人:张昊

目录 1 总则 (2) 2 术语 (3) 3 工程勘察 (4) 4 污水换热系统设计 (6) 5 室内系统 (12) 6、整体运转、调试与验收 (13) 7、附录A 换热盘管外径及壁厚 (15) 1 总则 1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先

进、经济合理、安全适用,保证工程质量,制定本规范。 1.0.2 本规范适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。 1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 污水源热泵系统sewage source heat pump system 以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑

物内系统组成的供热空调系统。 2.0.2 污水源sewage source 含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。 2.0.3 污水源热泵机组sewage source heat pump unit 以污水或与污水进行热能交换的中介水为低温热源的热泵。 2.0.4 污水换热系统sewage heat transfer system 与污水进行热交换的污水热能交换系统。分为开式污水换热系统和闭式污水换热系统。 2.0.5 开式污水换热系统open-loop sewage heat transfer system 污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。 2.0.6 闭式污水换热系统closed-loop sewage heat transfer system 将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。 2.0.7 传热介质heat-transfer fluid 污水源热泵系统中,通过换热管与污水进行热交换的一种液体。一般为水或添加防冻剂的水溶液。 2.0.8 城市原生污水city original sewage 污水渠中未经任何处理的城市污水称为城市原生污水。 2.0.9 污水换热器sewage heat exchanger 在含污水源热泵系统中,从污水中吸取热量或释放热量的换热设备。 2.0.10 中介水intermediate water 污水换热器中与污水换热的清洁水,视需求其中可加防冻液。 2.0.11 污水防阻机defend against hinder machine 含污水源热泵系统中分离污水中的悬浮物,防止悬浮物阻塞管路与设备的一种专利产品。 3 工程勘察 3.1 一般规定

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

污水源热泵影响因素

1.影响热泵系统运行的因素 水量、水温、水质和供水稳定性是影响污水源热泵系统运行性能的重要因素。 1. 1污水流量对热泵系统的影响 在热泵机组运行时,若污水流量过低,不利于机组的安全运行;污水流量过高时循 环水泵的功率就会增大,耗电量增加。 假设其它条件不变分析水流量对热泵机组性能的影响。在制冷工况下,当增大水的流量时,换热器的出口水温就会降低,换热系数增大,从而制冷量增加。然而,当水的流量增加到一定值时,换热系数不再增加,制冷量达到一定值不再变化,如图1.1。同样的,在冬季工况下增大水的流量时,水侧换热系数增大,蒸发温度升高,从而制热量也会增加,如图1.2 水量也会对热泵COP产生一定的影响。如图1.3所示,在夏季制冷运行时,增加冷凝器的水流量会导致冷凝压力的降低,使得压缩机的输入功率降低,从而COP值增大。然而,当水的流量增加到一定值时,COP值的增加速率趋于稳定。同样地,图1.4中的冬季制热运行时,增加蒸发器中水量使得热泵COP值增大。因为在蒸发压力增加的同时,压缩机内蒸汽的比体积增加虽然会导致工质的质量流量增加,但压缩比减小又使得单位质量压缩功下降,两者作用相互抵消,使得压缩机输入功率增加的幅度较制热量增加的幅度小,所以COP值增加。 图1.1 夏季工况下水流量和进水温度对制冷量的影响

图1.2 冬季工况下水流量和进水温度对制热量影响 1. 2污水温度对热泵系统的影响 在夏季制冷工况下,污水源热泵机组使用污水作为冷源,水的温度越低越好;在冬 季工况下污水作为热源时,温度则是越高越好。而且蒸发温度要适度,不能过高,否则 会导致压缩机的排气温度过高,可能导致润滑油发生炭化。因此,污水温度在200 C左 右时机组的制热和制冷将处于最佳工况点。 水温对热泵COP值是有一定影响的。夏季制冷时,如果升高冷凝器入口处的水温,则会导致冷凝压力的增加,此时制冷量会降低,同时压缩机的功率会增大,COP值反而 下降,如图1.3所示。冬季以制热工况运行时,如果升高蒸发器入口处的水温,则会导 致蒸发压力的增加,制热量增大,此时压缩机功率的增加速度较为缓慢,热泵COP值 增大。然而,当水温增加到一定值时,热泵的COP值不再发生改变,如图1.4

污水源热泵系统工程技术要求规范

实用文档 污水源热泵系统工程技术规 (草拟稿) Technical code for sewage source air-conditioning system 起草单位:广西瑞宝利热能科技 起草人:昊

目录 1 总则 (2) 2 术语 (3) 3 工程勘察 (4) 4 污水换热系统设计 (6) 5 室系统 (12) 6、整体运转、调试与验收 (13) 7、附录A 换热盘管外径及壁厚 (15)

1 总则 1.0.1 为使污水源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规。 1.0.2 本规适用于以污水源为低温热源,以污水为传热介质,采用蒸汽压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。 1.0.3 污水源热泵系统工程设计、施工及验收除应符合本规外,尚应符合国家现行有关标准的规定。

2 术语 2.0.1 污水源热泵系统sewage source heat pump system 以污水源为低温热源,由污水换热系统、污水源热泵机组、建筑物系统组成的供热空调系统。 2.0.2 污水源sewage source 含有固体悬浮物的城市污水、江河湖水、海水等,统称污水源。 2.0.3 污水源热泵机组sewage source heat pump unit 以污水或与污水进行热能交换的中介水为低温热源的热泵。 2.0.4 污水换热系统sewage heat transfer system 与污水进行热交换的污水热能交换系统。分为开式污水换热系统和闭式污水换热系统。 2.0.5 开式污水换热系统open-loop sewage heat transfer system 污水在循环泵的驱动下,经处理后直接流经污水源热泵机组或通过中间换热器进行热交换的系统。 2.0.6 闭式污水换热系统closed-loop sewage heat transfer system 将封闭的换热盘管按照特定的排列方法放入具有一定深度的污水体中,传热介质通过换热管管壁与污水进行热交换的系统。 2.0.7 传热介质heat-transfer fluid 污水源热泵系统中,通过换热管与污水进行热交换的一种液体。一般为水或添加防冻剂的水溶液。 2.0.8 城市原生污水city original sewage 污水渠中未经任何处理的城市污水称为城市原生污水。 2.0.9 污水换热器sewage heat exchanger 在含污水源热泵系统中,从污水中吸取热量或释放热量的换热设备。 2.0.10 中介水intermediate water 污水换热器中与污水换热的清洁水,视需求其中可加防冻液。 2.0.11 污水防阻机defend against hinder machine 含污水源热泵系统中分离污水中的悬浮物,防止悬浮物阻塞管路与设备的一种专利产品。

浅析国内污水源热泵

浅析国内污水源热泵 城市污水是由工业废水和生活污水组成,水量巨大,是一种蕴含丰富低位热能的可再生热能资源,污水源热泵空调系统则是以城市污水作为建筑的冷热源,解决建筑物冬季采暖、夏季空调和全年热水供应的重要技术,也是城市污水资源化开发利用的思路和有效途径。同时减少了城市废热和CO2、SO2、NOX、粉尘等污染物的排放。 专家介绍,污水源热泵系统是我国当前各类热泵技术中发展和应用前景最被看好的一种。目前,该技术较为成熟,国内外工程实例很多,20世纪80年代初在瑞典、挪威等北欧国家就已经开始对污水源热泵技术的应用,而现在我国污水源热泵也得到一定程度的应用。数据统计显示,应用污水源热泵系统比电锅炉加热节省2/3以上的电能,比传统的燃煤锅炉节省l/2以上的煤炭资源。由于污水源热泵的热源温度全年较为稳定,其制冷、制热系数比传统的空气源热泵高出40%左右,其运行费用仅为普通中央空调的50-60%。 虽然污水源热泵系统的应用前景被看好,但是还有几个问题急需要解决。污水源热泵系统污水的取水和换热是污水源热泵技术中的关键问题。在污水取水技术上,我国已经形成具有自主知识产权的多种污水取水技术,成功的解决了城市原生污水和污水厂二级处理污水取水问题。在污水换热技术上,我国则刚刚起步,许多问题等待解决。 首先,从污水源热泵技术的换热器结构设计的角度,由于城市污水的非牛顿特性和复杂性,其年度特性的测定非常困难,污泥污垢导热性能也难以测试,因此增加了污水换热器的设计难度,在设计污水换热器时目前只能进行估算,黏度取清水的10倍以上。其次,从国内外现有强化换热技术看,污水侧换热管内置毛刷和弹簧的清污方法尽管提高了污水换热效率,但也增加了内置物被污泥粘住、发生换热管路堵塞的问题;循环流化床除污和强化换热技术也存在长期运行后清污小球是否被污泥粘住、不能继续工作的问题。而对于城市污水在管外强化换热的问题,目前国内外基本是处于空白状态。另外,从污水源热泵技术发展过程中人们的工作重点看,人们普遍重视该技术工程应用类问题的研究和开发,而污水污水换热过程中污水流动特性、污泥污垢生长和去除、污水换热和强化换热等关键基础性问题的研究处于刚刚起步阶段,而该类问题的研究和解决必将是解决工程应用问题的前提和基础。 专家认为,污水换热器污水侧除污与强化换热是目前污水源热泵技术在解决稳定取水问题后,又一个迫切需要解决的关键问题,它直接关系到污水源源热泵技术系统在全年运行能耗的高低,关系到该项技术的实际节能效果,关系到污水换热设备结构大小和设备投资,关系到污水源热泵技术进一步推广应用。

2019国内外大数据行业现状

当前,许多国家的政府和国际组织都认识到了大数据的重要作用,纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手,实施大数据战略,对大数据产业发展有着高度的热情。 美国政府将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。在美国的先进制药行业,药物开发领域的最新前沿技术是机器学习,即算法利用数据和经验教会自己辨别哪种化合物同哪个靶点相结合,并且发现对人眼来说不可见的模式。根据前期计划,美国希望利用大数据技术实现在多个领域的突破,包括科研教学、环境保护、工程技术、国土安全、生物医药等。 其中具体的研发计划涉及了美国国家科学基金会、国家卫生研究院、国防部、能源部、国防部高级研究局、地质勘探局等6 个联邦部门和机构。 目前,欧盟在大数据方面的活动主要涉及四方面内容:研究数据价值链战略因素;资助“大数据”和“开放数据”领域的研究和创新活动;实施开放数据政策;促进公共资助科研实验成果和数据的使用及再利用。 英国在2017 年议会期满前,开放有关交通运输、天气和健康方面的核心公共数据库,并在五年内投资1000 万英镑建立世界上首个“开放数据研究所”;政府将与出版行业等共同尽早实现对得到公共资助产生的科研成果的免费访问,英国皇家学会也在考虑如何改进科研数据在研究团体及其他用户间的共享和披露;英国研究理事会将投资200 万英镑建立一个公众可通过网络检索的“科研门户”。 法国政府为促进大数据领域的发展,将以培养新兴企业、软件制造商、工程师、信息系统设计师等为目标,开展一系列的投资计划。法国政府在其发布的《数字化路线图》中表示,将大力支持“大数据”在内的战略性高新技术,法国软件编辑联盟曾号召政府部门和私人企业共同合作,投入3 亿欧元资金用于推动大数据领域的发展。法国生产振兴部部长ArnaudMontebourg、数字经济部副部长FleurPellerin 和投资委员LouisGallois 在第二届巴黎大数据大会结束后的第二天共同宣布了将投入1150 万欧元用于支持7 个未来投资项目。这足以证明法国政府对于大数据领域发展的重视。法国政府投资这些项目的目的在于“通过发展创新性解决方案,并将其用于实践,来促进法国在大数据领域的发展”。众所周知,法国在数学和统计学领域具有独一无二的优势。 日本为了提高信息通信领域的国际竞争力、培育新产业,同时应用信息通信技术应对抗灾救灾和核电站事故等社会性问题。2013 年6 月,安倍内阁正式公布了新IT 战略——“创建

污水源热泵系统工作原理及特点优势.

污水源热泵系统工作原理及特点优势 污水源热泵系统利用污水(生活废水、工业温水、工业设备冷却水、生产工艺排放的废温水),借助制冷循环系统,通过消耗少量的电能,在冬天将水资源中的低品质能量“汲取”出来,经管网供给室内空调、采暖系统、生活热水系统;夏天,将室内的热量带走,并释放到水中,以达到夏季空调的效果。污水源热泵系统的特点与优势:我国北方地区,冬季采暖主要是依靠煤、石油、天然气等石化燃料的燃烧来获得。采暖与环保成为一对难以解决的矛盾。城市污水是北方寒冷地区不可多得的热泵冷热源。它的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵系统比传统空调系统运行效率要高,节能和节省运行费用效果显著。原生污水源热泵系统以原生污水为热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。它有以下特点: 1。环保效益显著原生污水源热泵系统是利用了原生污水作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、燃油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1。1%,若按暖通空调的一次能源消耗量10 亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。 2。高效节能冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 3。污水源参数 (1)污水水质问题城市污水包括工业废水,工业冷却水,及生活污水,而城市二级污水是经过一级物化处理和二级生化处理,去除了污水中大量的杂质,降低了污水的腐蚀度,更有利于污水中热能提取。 (2)污水水温保障城市污冬暖夏凉,常年温度稳定,污水水温在冬季比环境温度高15--20度,夏季温度比环境温度低10--15度。因此热泵具有良好的热源,污水源热泵系统利用温差在5度,因此污水源热泵空调系统完全可以在高效率运行。 (3)污水量的保证城市污水水量的变化主要是生活污水的变化,而生活污水的出水量基本保持不变。(4)污水换热器: 污水中含有大量油性污物,流经换热管时会产生挂膜现象,关闭黏结粘泥,从而增大换热热阻,影响换热效率,因此在设计污水换热时使污水走管程,同时设置自动反清洗装置,在换热器运行期间定时进行反冲洗,保证换热效率,提高热能利用 率。 4。综合分析 (1)污水源热泵系统运行稳定水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵系统运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问 题。 (2)一机多用此热泵系统可供暖、空调,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。城市污水源热泵系统利用城市污水,冬季取热供暖,夏季排热制冷,全年取热供应生活热水,夏季空调

空气源与水源热泵对比分析

空气源热泵与水源热泵比较 一、概述: 在我国主要利用三种热泵技术,分别是水源热泵,地源热泵,以及空气源热泵。 热泵即可制冷,又可制热。制冷时,其工作原理跟一般的冷气机没有区别;制热时,利用制冷循环系统的热端,将冷凝器排出的热量送入室内采暖或加热生活用水。这时,热泵的运行过程看起来就像是把低温端的热量,源源不断地抽送到高温端一样,所以形象地称之为热泵。如果热泵的冷端(蒸发器)直接置于室外的空气之中,称之为空气源热泵;如果其冷端(蒸发器)通过管道埋植于水中,则称之为水源热泵。 二、水源热泵 2.1优点: 2.1.1水源热泵技术属可再生能源利用技术 2.1.2水源热泵属经济有效的节能技术 2.1.3水源热泵环境效益显著 2.1.4水源热泵一机多用,应用范围广 2.1.5水源热泵空调系统维护费用低 2.1.6水源热泵高效节能。水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7(空气源热泵理论值为2--6),实际运行4~6。 2.2水源热泵的应用限制 2.2.1利用会受到制约;

2.2.2可利用的水源条件限制,对开式系统,地源要求必须满足一定的温度、水量和清洁度; 2.2.3水层的地理结构的限制,对于从地下抽水回灌的使用,必须考虑到使用地的地质的结构,保证用后尾水的回灌可以实现; 2.2.4投资的经济性,由于受到不同地区、不同用户及国家能源政策、燃料价格的影响,虽然总体来说,水源热泵的运行效率较高、费用较低,但与传统的空调制冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有所不同; 2.3水源热泵目前的市场状况: 水源热泵目前主要应用在北方冬季寒冷的地区,而在广阔的南方很少见到身影。 主要原因:南方主要以空气源热泵为主,冬天对空调制热的依赖不如北方明显,主要用来洗澡,所以空气源热泵基本能满足需要,并且工程相对简单,造价成本要低。所以这类产品有较大的局限性,所以必须要走产品的差异化道路,来做好产品的推广! 三、污水源热泵: 3.1简介:污水源热泵是水源热泵的一种。众所周知,水源热泵的优点是水的热容量大,设备传热性能好,所以换热设备较紧凑;水温的变化较室外空气温度的变化要小,因而污水源热泵的运行工况比空气源热泵的运行工况要稳定。处理后的污水是一种优良的引入注目的低温余热源,是水/水热泵或水/空气热泵的理想低温热源。 3.2污水源热泵的形式

大数据的国内外研究现状与发展动态分析报告

大数据的国内外研究现状及发展动态分析大数据的概念 产生的背景与意义 上世纪60年代到80年代早期,企业在大型机上部署财务、银行等关键应用系统,存储介质包括磁盘、磁带、光盘等。尽管当时人们称其为大数据,但以今日的数据量来看,这些数据无疑是非常有限的。随着PC的出现和应用增多,企业内部出现了很多以公文档为主要形式的数据,包括Word、Excel文档,以及后来出现的图片、图像、影像和音频等。此时企业内部生产数据的已不仅是企业的财务人员,还包括大量的办公人员,这极大地促进了数据量的增长。互联网的兴起则促成了数据量的第三次大规模增长,在互联网的时代,几乎全民都在制造数据。而与此同时,数据的形式也极其丰富,既有社交网络、多媒体等应用所主动产生的数据,也有搜索引擎、网页浏览等被动行为过程中被记录、搜集的数据。时至今日,随着移动互联网、物联网、云计算应用的进一步丰富,数据已呈指数级的增长,企业所处理的数据已经达到PB级,而全球每年所产生的数据量更是到了惊人的ZB级。在数据的这种爆炸式增长的背景下,“大数据”的概念逐渐在科技界、学术界、产业界引起热议。在大数据时代,我们分析的数据因为“大”,摆脱了传统对随机采样的依赖,而是面对全体数据;因为所有信息都是“数”,可以不再纠结具体数据的精确度,而是坦然面对信息的混杂;信息之“大”之“杂”,让我们分析的“据”也由传统的因果关系变为相关关系。 大数据热潮的掀起让中国期待“弯道超越”的机会,创造中国IT企业从在红海领域苦苦挣扎转向在蓝海领域奋起直追的战略机遇。传统IT行业对于底层设备、基础技术的要求非常高,企业在起点落后的情况下始终疲于追赶。每当企业在耗费大量人力、物力、财力取得技术突破时,IT革命早已将核心设备或元件推进至下一阶段。这种一步落后、处处受制于人的状态在大数据时代有望得到改变。大数据对于硬件基础设施的要求相对较低,不会受困于基础设备核心元件的相对落后。与在传统数据库操作层面的技术差距相比,大数据分析应用的中外技术差距要小得多。而且,美国等传统IT强国的大数据战略也都处于摸着石头过河的试错阶段。中国市场的规模之大也为这一产业发展提供了大空间、大平台。大数据对于中国企业不仅仅是信息技术的更新,更是企业发展战略的变革。随着对大数据的获取、处理、管理等各个角度研究的开展,企业逐渐认识数据已经逐渐演变成“数据资产”。任何硬件、软件及服务都会随着技术发展和需求变化逐渐被淘汰,只有数据才具有长期可用性,值得积累。数据是企业的核心资产,可以是也应该是独立于软硬件系统及应用需求而存在的。大数据是信息技术演化的最新产物,确立了数据这一信息技术元素的独立地位。正因为数据不再是软硬件及应用的附属产物,才有了今天爆炸式的数据增长,从而奠定了大数据的基础。

城市污水源热泵的开发和应用

76FLUIDMACHINERYV01.33,No.6,2005 城市污水源热泵的开发和应用 黄国琦 (北京华清集团公司,北京102218) 摘要:介绍了国内外城市污水源热泵发展情况,阐述了城市污水源热泵的技术开发重点,分析了城市污水源热泵与各种常规供暖、制冷方式的经济指标、环境影响。最后结合北京市的城市污水数据,进行了市场应用前景分析。 关键词:热泵;城市污水;技术;能源利用;发展 中图分类号:TQ051.5文献标识码:A HUANGGuo-qi (Beijingn岫qingGroupCo.,Ltd.,BeijiIlg102218,China) Ab醴嘲:The developmentofheatpumpsusageofenergyfromurbnwastewaterwasintroducedintheworld.31aeresearchonheatpumpwasdescribed.¥吲嘲鹏ofair-conditioningintheeconomyandenvironmentwaseomp眦a.Finally,themarketofBeijingaccordingtothenumberofBeijingmbnwastewaterwassketched,andtheheat-pumps曲蚴111lyforsavingenergy,protectingenvironmentandsavingwaterwasanalysed. Keywords:heatpump;urbnwastewater;technology;energyreuse;development 1国内外技术发展现状 20世纪80年代以来,美国、13本等国家相继建立了一批大型城市污水源热泵系统。从开始时单机容量仅几兆瓦已发展至今单机容量达30MW,单个项目总装机容量达160MW。以瑞典为例,到1987年已有约100座热泵站投人运行,总供热能力达到1200MW,已成为世界上应用大型污水源热泵的代表国家之一。 大型城市污水源热泵系统在国外已有十几年的运行历程,已形成一套较完备的技术和经验。我国目前尚未实施较大项目的城市污水源热泵;但在北京高碑店污水处理厂、北小河污水处理厂、卢沟桥污水处理厂内利用污水二级出水实施了几个小型实验性项目,均取得了较好的效果。 2技术开发重点 根据污水与热泵的热交换部分是否直接进行收稿日期:2005—O卜18热交换,城市污水源热泵可分为间接利用系统和直接利用系统,如图1所示。 贮水池蓄热池 (a)污水间接利用空调系统 (b)污水直接利用空调系统 图1城市污水源热泵系统示意  万方数据万方数据

城市污水源热泵系统特点与展望

城市污水源热泵系统优越性分析 北京瑞宝利热能科技有限公司 一、城市污水源热泵系统简介 伴随着城市化高峰的到来与工业化进程的突飞猛进,使得我国能源消耗的比重与环境的污染程度与日俱增,城市污水源热泵系统作为一项节能新技术,不仅能节约能耗减少污染,减轻了我国目前面临的能源与环境压力,还将为全面建设小康社会提供了新的可再生清洁能源,实现能源结构的优质化转变。因此,开发利用城市污水源热泵系统作为热泵冷热源具备广阔的发展空间。 污水源热泵系统主要是一种制冷供暖装置系统。该系统主要以城市污水为热源水,通过消耗少许电力,将其热量提取出来并加以提升,实现采暖目的。而在夏季,利用污水源热泵机组则将空调场所热量通过污水带走,使之冷却。城市污水源热泵系统具备有制冷、采暖两种功能,并可同时提供卫生热水,节省了设备造价。 据了解,城市污水温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵比传统空调系统运行效率要高,节能和节省运行费用效果显著,极具有市场竞争力。 二、城市污水源热泵系统特点 1.环保效益显著 污水源热泵技术是利用了城市废热作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1.1%,若按暖通空调的一次能源消耗量10亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。 2.高效节能 冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。污水源热泵将污水热能连同热泵机组本身产生热能一并转移到室内,能效比高达4.5~6.0,污水源热泵与空气源热泵相比,夏季冷凝温度低,冬季蒸发温度高, 能效比和性能系数大大提高,而运行工况稳定,比传统中央空调节省30~40﹪的运行费用。

相关文档
最新文档