第1讲 集合与逻辑

第1讲 集合与逻辑
第1讲 集合与逻辑

第一讲 集合与逻辑

一、填空题:

1.设{}0,1,2,3U =,{}20A x U x mx =∈+=,若{}1,2U A =e,则实数m =_______ .

2.对于平面上的点集Ω,如果连接Ω中任意两点的线段

必定包含于Ω,则称Ω为平面上的凸集,给出平面上4

个点集的图形如下(阴影区域及其边界).

其中为凸集的是 (写出所有凸集相

应图形的序号).

3.设集合{}2log 1A x x =<, 112x B x x -??

=

, 则

A B = . 4.设全集{U A B x ==∈ *N }lg 1x <,若

{}21

,0,1,2,3,4U A B m m n n ==+= e,则集合B = . 5.(){}

2

137A x x x =-<+,则集合A Z 中有 个元素.

6.若{U n n =是小于9的 正}整数,{A n U n =∈是}奇数,{B n U n =∈是3的}倍数,则

()U A B = e .

7.已知集合{}0,P m =,{}2250,Q x x x x Z =-<∈,若P Q ≠? ,则m 等于 .

8.集合{}2A x x =<的一个非空真子集是 .

9.非空集合G 关于运算⊕满足:①对于任意,a b G ∈,都有a b G ⊕∈;②存在e G ∈,使对一切a G ∈, 都有a e e a a ⊕=⊕=,则称G 关于运算⊕为融洽集,现有下列集合运算:

(1)G ={非负整数},⊕为整数的加法,(2)G ={偶数},⊕为整数的乘法,(3)G ={平面 向量},⊕为平面向量的加法,(4)G ={二次三项式},⊕为多项式的加法.其中关于运算⊕的 融洽集有 .

10.设A 是整数集的一个非空子集,对于k A ∈,如果1k A -?且1k A +?,那么k 是A 的一个“孤 立元”,给定{}1,2,3,4,5,6,7,8S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合

共有 个.

11.已知p 是r 的充分条件而不是必要条件,s 是r 的必要条件,q 是r 的充分条件,q 是s 的必要 条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④p ?是S ?的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题序号是 .

12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参 加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同 时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人.

13.设P 是一个数集,且至少含有两个数,若对任意a 、b P ∈,都有a b +、a b -、ab 、a

P b ∈(除

札记

数0b ≠),则称P 是一个数域,例如有理数集Q 是数域.有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q M ?,则数集M 必为数域;④数域必为无限集.其中正

确的命题的序号是 .(把你认为正确的命题的序号都填上) 二、选择题: 1.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}20N x x x =+=关系的韦恩(Venn )图是(

2.“2,4

x k k π=π+∈Z ”是 “tan 1x =”成立的( )

( ) A .充分不必要条件 B .必要不充分条件 C .充分条件 D .既不充分也不必要条件 3.已知A ,B 均为集合{}1,3,5,7,9U =的子集,且{}3A B = ,{}9U B A = e,则A =( )

A .{}1,3

B .{}3,7,9

C .{}3,5,9

D .{}3,9

4.已知0a >,则0x 满足关于x 的方程ax b =的充要条件是( ) A .x ?∈R ,22001122ax bx ax bx -≥- B .x ?∈R ,22

001122ax bx ax bx -≤-

C .x ?∈R ,22001122ax bx ax bx -≥-

D .x ?∈R ,22

001122ax bx ax bx -≤-

5.集合{1A x x a =-<,x ∈}R ,{15B x x =<<,x ∈}R .若A B =? ,则实数a 的取值范围

是( ) A.{}06a a ≤≤ B.{2a a ≤或}4a ≥

C . {0a a ≤或}6a ≥ D.{}24a a ≤≤

6.设U =R ,{}

0A x x =>,{}

1B x x =>,则U A B = e ( )

A .{

}

01x x ≤< B .{}01x x <≤ C .{}0x x < D .{}

1x x >

7.命题“存在0x ∈R ,0

20x ≤”的否定是( )

A .不存在0x ∈R ,020x >

B . 存在0x ∈R ,0

20x ≥

C .对任意的0x ∈R ,020x ≤

D .对任意的0x ∈R ,0

20x >

8.设集合{1A x x a =-<,x ∈}R ,{

2B x x b =->,x ∈}R .若A B ?,则实数,a b 必满足( ) A.3a b +≤ B.3a b +≥ C.3a b -≤ D .3a b -≥

札记

9.若集合12

1log 2A x x ???

?=≥??????,则R eA =( )

A .(]2,0,2??-∞+∞ ? ???

B .2,2??+∞ ? ???

C .(]2,0,2??-∞+∞?????

D .2,2??

+∞?????

10.“1

4

m <”是“一元二次方程20x x m ++=”有实数解的( )

A .充分非必要条件

B .充分必要条件

C .必要非充分条件

D .非充分必要条件

11.在集合{},,,a b c d 上定义两种运算⊕和 如下:

a b c d a a b c d

b b b b b

c c b c b

d d b b d

那么()d a c ⊕= ( ) A .a B .b C .c D .d

12.设非空集合{}S x m x l =≤≤满足:当x S ∈时,有2

x S ∈.给出如下三个命题:①若1m =,则 {}1S =;②若12m =-,则114l ≤≤;③若12l =,则2

02

m -≤≤.其中正确命题的个数是( )

A.0

B.1

C.2

D.3

13.记实数12,,,n x x x 中的最大数为{}12max ,,,n x x x ,最小数为{}12min ,,,n x x x .已知ABC ?的 三 边边长为a 、b 、()c a b c ≤≤,定义它的倾斜度为max ,,min ,,a b c a b c t b c a b c a ???

?=?????????

,则“1t =” 是“ABC ?为等边三解形”的( )

A .充分布不必要的条件

B .必要而不充分的条件

C .充要条件

D .既不充分也不必要的条件

14.若命题“p 或q ”是真命题,“p 且q ”是假命题,则( )

A .命题p 和命题q 都是假命题

B .命题p 和命题q 都是真命题

C .命题p 和命题非q 的真值不同

D .命题p 和命题q 的真值不同

15.设M ,P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ?,则()M M P -- 等于( )

A .P

B .M P

C .M P

D .M

16.若A 、B 均是非空集合,则A B ≠? 是A B ?的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .即不充分也不必要条件

17.命题“2230ax ax -+>恒成立”是假命题, 则实数a 的取值范围是( )

札记

A .

0a <或

a b c d a a a a a

b a b

c

d c a c c a

d a d a d

3a ≥ B .0a ≤或3a ≥ C .0a <或3a > D .03a << 18.原命题:“设a 、b 、c ∈R ,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.

A .0

B .1

C .2

D .4 三、解答题:

1.设集合{1284,,,M u u m n l m n l ==++∈}Z ,{201612,,,N v v p q r p q r ==++∈}Z . 求证:M N =.

2.已知函数()(2,,f x x ax b a b =++∈)R ,且集合(){}A x x f x ==,(){}

B x x f f x ==????.

(1)求证:A B ?;

(2)当{}1,3A =-时,用列举法表示B ; (3)若A 只含有一个元素,则A B =.

札记

集合与简易逻辑重要知识点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一)集合 1.基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用 . 2.集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A ; ②空集是任何集合的子集,记为A ; ③空集是任何非空集合的真子集; 如果B A ,同时A B ,那么A=B. 如果C A C B B A ,那么,. [注]:①Z ={整数}(√)Z ={全体整数}(×) ②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例: S=N ;A=N , 则C s A={0}) ③空集的补集是全集. ④若集合A =集合B ,则C B A =,C A B =C S (C A B )=D (注:C A B =). 3.①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R 二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R }一、三象限的点集. [注]:①对方程组解的集合应是点集. 例:1323 y x y x 解的集合{(2,1)}.

②点集与数集的交集是.(例:A={(x ,y )|y =x +1}B={y |y =x 2+1}则A ∩B =) 4.①n 个元素的子集有2n 个.②n 个元素的真子集有2n -1个.③n 个元素的非空真子集有2n -2个. 5.⑴①一个命题的否命题为真,它的逆命题一定为真.否命题逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题逆否命题. 例:①若325b a b a 或,则应是真命题. 解:逆否:a =2且b =3,则a+b =5,成立,所以此命题为真. ②,且21y x 3y x . 解:逆否:x+y =3x=1或y =2. 21y x 且3y x ,故3y x 是21y x 且的既不是充分,又不是必要条件. ⑵小范围推出大范围;大范围推不出小范围. 3.例:若255x x x 或,. 4.集合运算:交、并、补. 5.主要性质和运算律 (1)包含关系:,,,, ,;,;,. U A A A A U A U A B B C A C A B A A B B A B A A B B I I U U C (2)等价关系:U A B A B A A B B A B U I U U C (3)集合的运算律: 交换律:. ;A B B A A B B A 结合律:) ()();()(C B A C B A C B A C B A 分配律:.) ()()();()()(C A B A C B A C A B A C B A 0-1律:,,,A A A U A A U A U I U I U 等幂律:. ,A A A A A A 求补律:A ∩C U A =φA ∪C U A=U?C U U =φ?C U φ=U 反演律:C U (A ∩B)=(C U A)∪(C U B)C U (A ∪B)=(C U A )∩(C U B) 6.有限集的元素个数 定义:有限集A 的元素的个数叫做集合A 的基数,记为card(A)规定card(φ)=0. 基本公式: (3)card (?U A )=card(U)-card(A) (二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法) ①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”; (为了统一方便)

2020-2021学年高一数学晚练(一) 命题人:范修团 时间:45分钟 满分:80分 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各项中,能组成集合的是( ) A .高一(3)班的好学生 B .嘉兴市所有的老人 C .不等于0的实数 D .我国著名的数学家 2.已知集合P ={|14}<,若A B =R ,则实数m 的 取值范围是( ) A .1m -< B .2m < C .12m -<< D .12m -≤≤ 5.已知集合2{|10}A x x =++=,若A =?R ,则实数m 的取值范围是( ) A .4m < B .4m > C .04m << D .04m ≤< 6.已知集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-.若B A ?,则实数m 的取值范围为( ) A .3m ≥ B .23m ≤≤ C .2m ≥ D .3m ≤ 7.已知R b R a ∈∈,,若集合{}2, ,1,0,b a a a b a ??=-????,则20192019a b +的值为( ) A .2- B .1- C .1 D .2 8.已知集合{,,}{0,1,2}a b c =,且若下列三个关系:①2a ≠;②2b =;③0c ≠,有且只有一个正确,则10010a b c ++=( ) A .12 B .21 C .102 D .201

一. 本周教学内容: 集合与简易逻辑 知识结构: 【典型例题】 例1. 已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合共有 A. 2个 B. 4个 C. 5个 D. 6个 解:集合A可有三类:第一类是空集;第二类是A中不含奇数;第三类是A中只含一小结:应充分理解“至多”两字,然后进行分类计数。 例2. 设全集I=R,集合A={x|(x-1)(x-3)≤0},B={x|(x-1)(x-a)<0}且 解:解不等式(x-1)(x-3)≤0,得1≤x≤3,故A={x|1≤x≤3},当a<1时, 是[1,3] 小结:这类问题一般可采用画数轴进行分析解决。 例3. 解:

小结:此题将解方程与集合运算有机地结合起来,对解题能力的要求略高一些,当然 例4. 解不等式|x+2|+|x|>4 解法一: 综上可知,原不等式的解集为{x|x<-3或x>1} 解法二:不等式|x+2|+|x|>4表示数轴上与A(-2),O(0)的距离之和大于4的点,如图所示。 小结:①我们常用脱去绝对值的方法来解含有绝对值的不等式,即零点分区间法,其实质是转化为分段求解,如解法一。 ②解法二是充分考虑绝对值的几何意义,从形的方面来考虑的,解决任何一个数学问题都要养成从数、形两个方面去思考的习惯,数形结合是数学中的一种基本的思维方法。 例5. 若关于x的不等式x2-ax-6a<0的解集为一开区间,且此区间的长度不超过5,试求a的取值范围。 解: 小结: 解a的范围。但韦达定理不能保证有实根,故应注意Δ>0这一条件。 例6. 解: 依题意有:

小结:关于方程根的讨论一般用函数的观点和方法去解决会使问题简洁。 例7. 等差数列{a+bn|n=1,2,…}中包含一个无穷的等比数列,求a,b(b≠0)所需满足的充分必要条件 解:设有自然数n1

第一章 集合与简易逻辑 一、集合的定义小测 姓名 : 座号: 1、下列对象中不能组成集合的是( B ) A.所有小于10的自然数; B.某班个子高的同学 C.方程012=-x 的所有解 D.不等式02>-x 的所有解。 2、指出下列各集合中,( C )集合是空集。 A.方程60x +=的解集; B.方程012=-x 的解集 C.大于-4且小于-2的所有偶数组成的集合 D.方程226>0x x -+的解集 3、指出下列各集合中,(B )是空集,( A)是有限集,(C D )是无限集. A.{|10}x x += B.2{|10}x x += C.{(,)|}x y x y = D.{|50}x x -≤< 4、用符号“∈”或“?”填空 1)3- ? N 5.0 ? N 3 ∈ N 2)5.1 ? Z 5- ∈Z 3 ∈ Z 3)2.0- ∈ Q π ?Q 21.7∈ Q 4) 5.1∈ R 2.1- ∈ R π ∈ R 5、用列举法表示下列各集合; 1)大于-4且小于12的所有偶数组成的集合{2,0,2,4,6,8,10}- ;

2)方程2560x x -+=的解集 {2,3} ; 6、描述法表示下列各集合 1)小于5的所有整数组成的集合 {|5,}x x x Z <∈ ; 2)不等式210x +≤的解集 1{|}2 x x ≤- ; 3)所有的奇数组成的集合 {|21,}x x k k Z =+∈ ; 4)在直角坐标系中,由x 轴上所有的点组成的集合 {(,)|0}x y y = ; 5)在直角坐标系中,由第一象限的所有点组成的集合 {(,)|0,0}x y x y >> 。 7、用列举法表示下列各集合; 1)方程2340x x --=的解集;2)方程430x +=的解集; {1,4}- 3{}4- 3)由数1,4,9,16,25组成的集合;4)所有的正奇数组成的集合 {1,4,9,16,25} {|21,}x x k k N =+∈ 7、描述法表示下列各集合 1)大于3的所有实数组成的集合 {|3}x x > ; 2)小于20的所有自然数组成的集合 {|20,}x x x N <∈ ; 3)大于5的所有偶数组成的集合 {|2,,2}x x k k N k =∈> ; 4)不等式450x -<的解集 5{|}4x x < ; 5)由第四象限所有点组成的集合 {(,)|0,0}x y x y >< ; 8、用列举法表示下列各集合; 1)小于5的所有正整数组成的集合; {1,2,3,4}

集合与常用逻辑用语 第一节 集 合 一、基础知识 1.集合的有关概念 (1)集合元素的三个特性:确定性、无序性、互异性. 元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为?. (4)五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2.集合间的基本关系 (1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B (或B ?A ). (2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A . A B ?????? A ? B ,A ≠B . 既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不 属于A . (3)集合相等:如果A ?B ,并且B ?A ,则A =B . 两集合相等:A =B ?? ???? A ? B , A ? B .A 中任意一个元素都符合B 中元素的特性,B 中任意一 个元素也符合A 中元素的特性. (4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3.集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A ∩B ,即A ∩B ={x |x ∈A ,且x ∈B }. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x |x ∈A ,或x ∈B }. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . 二、常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] (1)(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 (2)已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中 元素的互异性可知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意.

第1练集合与常用逻辑用语 [考情分析] 1.集合作为高考必考内容,命题较稳定,难度较小,常与简单的一元二次不等式结合命题.2.高考对常用逻辑用语考查的概率较低,其中充分必要条件的判断需要关注,常与函数、平面向量、三角函数、不等式、数列等结合命题. 考点一集合的概念与运算 要点重组 1.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2. 2.A∩B=A?A?B?A∪B=B. 3.若已知A∩B=?,要注意不要漏掉特殊情况:A=?或B=?; 若已知A?B,要注意不要漏掉特殊情况:A=?. 1.(2020·全国Ⅱ)已知集合U={-2,-1,0,1,2,3},A={-1,0,1},B={1,2},则?U(A∪B)等于() A.{-2,3} B.{-2,2,3} C.{-2,-1,0,3} D.{-2,-1,0,2,3} 答案 A 解析∵A={-1,0,1},B={1,2}, ∴A∪B={-1,0,1,2}. 又U={-2,-1,0,1,2,3}, ∴?U(A∪B)={-2,3}. 2.(2020·全国Ⅲ)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()

A .2 B .3 C .4 D .6 答案 C 解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素. 3.(2020·聊城模拟)已知集合A ={x |x ≥2},B ={x |x 2-x -6≥0},则A ∩(?R B )等于( ) A .{x |2≤x <3} B .{x |2

{}9B =,;B A =B B = )()(); U U B A B =? )()()U U B A B =? ()()card A B card A =+ ()()card B card A B - ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有两相)(,2121x x x x <有两相等a b x x 221- ==无实根 有意义的

①一个命题的否命题为真,它的逆 命题一定为真. (否命题?逆命 题.)②一个命题为真,则它的逆 否命题一定为真.(原命题?逆 否命题.) 4.反证法是中学数学的重要方法。 会用反证法证明一些代数命题。 充分条件与必要条件 答案见下一页

数学基础知识与典型例题(第一章集合与简易逻辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=,则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3a =±①当3 a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集 合中元素用字母表示,检验必不可少。 例4C 例5C 例6①?,②ü,③ü,④ 例7填2 例8C 例9? 例10解:∵M={y|y =x 2+1,x ∈R}={y |y ≥1},N={y|y =x +1,x ∈R}={y|y ∈R}∴ M∩N=M={y|y ≥1} 注:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合。实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。一般地,集合{y |y =f (x ),x ∈A}应看成是函数y =f (x )的值域,通过求函数值域化简集合。此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y =x 2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例如{y|y ≥1}={x |x ≥1}。 例11填?注:点集与数集的交集是φ. 例12埴?,R 例13解:∵C U A = {1,2,6,7,8} ,C U B = {1,2,3,5,6}, ∴(C U A)∩(C U B) = {1,2,6} ,(C U A)∪(C U B) = {1,2,3,5,6,7,8}, A ∪ B = {3,4,5,7,8},A∩B = {4},∴ C U (A ∪B) = {1,2,6} ,C U (A∩B) = {1,2,3,5,6,7,8} 例145,6a b ==-; 例15原不等式的解集是{}37|<<-x x 例16 53|332 2x R x x ??∈-<-+-->+?? ≥或,即3344123x x x x ? 2或x <31,∴原不等式的解集为{x | x >2或x <31}.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x < 31,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1-x ,∴}32 1 |{<2 1}. 方法2:数形结合:从形的方面考虑,不等式|x -3|-|x +1|<1表示数轴上到3和-1两点的距离之差小于1的点 ∴原不等式的解集为{x |x > 2 1 }. 例19答:{x |x ≤0或1??????????-<>-<>≤≤--≠????? ? ? ???>+-<+-≤-+≠+13 21 0121 0)1(2230)1(24020 12k k k k k k k k k k k k k 或或. 1 3 212<<-<<-?k k 或∴实数k 的取值范围是{k|-2?=+-R 的解集为函数在上恒大于 22,2, |2||2|2. 2,2,1|2|121.,,2 11 0.,, 1.(0,][1,). 22 x c x c x x c y x x c c c x c x x c R c c P c P c c -?+-=∴=+-??>?> <≥?+∞R ≥函数在上的最小值为不等式的解集为如果正确且Q 不正确则≤如果不正确且Q 正确则所以的取值范围为 例26答:552x x x >?><或. 例27答既不充分也不必要 解:∵“若 x + y =3,则x = 1或y = 2”是假命题,其逆命题也不成立. ∴逆否命题: “若12x y ≠≠或,则3x y +≠”是假命题, 否命题也不成立. 故3≠+y x 是12x y ≠≠或的既不充分也不必要条件. 例28选B 例29选A

知识点——集合与常用逻辑用语【知识梳理】 一、集合及其运算 1.集合与元素 (1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或?表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 集合自然数集正整数集整数集有理数集实数集 符号N N*(或N+)Z Q R 2.集合间的基本关系 关系自然语言符号语言Venn图 子集集合A中所有元素都在集合B中(即若 x∈A,则x∈B) A?B (或B?A) 真子集集合A是集合B的子集,且集合B中 至少有一个元素不在集合A中 A?B (或B?A) 集合相等集合A,B中的元素相同或集合A,B 互为子集 A=B 3.集合的基本运算 运算自然语言符号语言Venn图 交集由属于集合A且属于集合B 的所有元素组成的集合 A∩B={x|x∈A且x∈B} 并集由所有属于集合A或属于集 合B的元素组成的集合 A∪B={x|x∈A或x∈B} 补集由全集U中不属于集合A的 所有元素组成的集合 ?U A={x|x∈U且x?A} 【知识拓展】 1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1. 2.A?B?A∩B=A?A∪B=B. 3.A∩(?U A)=?;A∪(?U A)=U;?U(?U A)=A. 二、命题及其关系、充分条件与必要条件 1.四种命题及相互关系

2.四种命题的真假关系 (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件 (1)如果p ?q ,则p 是q 的充分条件,同时q 是p 的必要条件; (2)如果p ?q ,但q p ,则p 是q 的充分不必要条件; (3)如果p ?q ,且q ?p ,则p 是q 的充要条件; (4)如果q ?p ,且p q ,则p 是q 的必要不充分条件; (5)如果p q ,且q p ,则p 是q 的既不充分也不必要条件. 【知识拓展】 1.两个命题互为逆否命题,它们具有相同的真假性. 2.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ?B ,则p 是q 的充分条件; (2)若A ?B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A ?B ,则p 是q 的充分不必要条件; (5)若A ?B ,则p 是q 的必要不充分条件; (6)若A B 且A ?B ,则p 是q 的既不充分也不必要条件. 【易错提醒】 1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集. 2.易混淆0,?,{0}:0是一个实数;?是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0??,而??{0}. 3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性. 4.空集是任何集合的子集.由条件A ?B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =?的情况. 5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ?”,其否命题为“若p ?,则q ?”. 6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.

集合及其表示方法 一、复习巩固 1.方程x 2-2x +1=0的解集中元素个数为( ) A .0 B .1 C .2 D .3 解析:方程x 2-2x +1=0有两个相等的实数根x 1=x 2=1,根据元素的互异性知其解集中有1个元素. 答案:B 2.下列各组中集合P 与Q 表示同一个集合的是( ) A .P 是由元素1, 3,π构成的集合,Q 是由元素π,1,|- 3|构成的集合 B .P 是由π构成的集合,Q 是由3.141 59构成的集合 C .P 是由2,3构成的集合,Q 是由有序实数对(2,3)构成的集合 D .P 是满足不等式-1≤x ≤1的自然数构成的集合,Q 是方程x 2=1的解集 解析:由于A 中P ,Q 的元素完全相同,所以P 与Q 表示同一个集合.而B ,C ,D 中P , Q 的元素不相同,所以P 与Q 不能表示同一个集合.故选A. 答案:A 3.若集合A 中有三个元素1,a +b ,a ;集合B 中有三个元素0,b a ,b .若集合A 与集 合B 相等,则b -a =( ) A .1 B .-1 C .2 D .-2 解析:由题意可知a +b =0且a ≠0,∴a =-b ,∴b a =-1,∴a =-1,b =1,故b -a = 2.

答案:C 4.设集合A 只含有一个元素a ,则下列各式正确的是( ) A .0∈A B .a ?A C .a ∈A D .a =A 解析:由于集合A 中只含有一个元素a ,由元素与集合的关系可知,a ∈A ,故选C. 答案:C 5.已知集合A 中有四个元素0,1,2,3,集合B 中有三个元素0,1,2,且元素a ∈A ,a ?B ,则a 的值为( ) A .0 B .1 C .2 D .3 解析:∵a ∈A ,a ?B ,∴由元素与集合之间的关系知,a =3. 答案:D 6.若1-a 1+a 是集合A 中的元素,且集合A 中只含有一个元素a ,则a 的值为________. 解析:由题意,得1-a 1+a =a ,所以a 2+2a -1=0且a ≠-1,所以a =-1± 2. 答案:-1± 2 7.已知集合A 中的元素x 满足2x +a >0,且1?A ,则实数a 的取值范围是________. 解析:∵1?A ,∴2+a ≤0,即a ≤-2. 答案:a ≤-2 8.用符号“∈”和“?”填空:0________N *,3________Z,0________N ,3+2________Q ,4 3 ________Q . 解析:只要熟记常见数集的记法所对应的含义就很容易判断,故填?,?,∈,?,∈. 答案:? ? ∈ ? ∈ 9.若a 2=3,则a ________R ;若a 2=-1,则a ________R .

2013高考数学基础检测:01专题一-集合与简易逻辑

专题一 集合与简易逻辑 一、选择题 1.若A={x ∈Z|2≤22-x <8}, B={x ∈R||log 2x|>1}, 则A ∩(C R B)的元素个数为( ) A .0 B .1 C .2 D .3 2.命题“若x 2<1,则-11或x<-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1 3.若集合M={0, 1, 2}, N={(x, y)|x-2y+1≥0且x-2y-1≤0, x 、y∈M},则N 中元素的个数为( ) A .9 B .6 C .4 D .2 4.对于集合M 、N ,定义M-N={x|x∈M,且x ?N},M ○+N=(M-N)∪(N -M).设A={y|y=x 2-3x, x∈R}, B={y|y=-2x , x∈R},则A ○+B=( ) A .],094(- B . )0,4 9[- C .),0()49,(+∞--∞ D .),0[)4 9,(+∞--∞ 5.命题“对任意的x∈R ,x 3-x 2+1≤0”的否定是( )

{x|x>0}=ф,则实数m 的取值范围是_________. 10.(2008年高考·全国卷Ⅱ)平面内的一个四边形为平行四边形的充分条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①_____________________; 充要条件②_____________________.(写出你认为正确的两个充要条件) 11.下列结论中是真命题的有__________(填上序号即可) ①f(x)=ax 2+bx+c 在[0, +∞)上单调递增的一 个充分条件是-2a b <0; ②已知甲:x+y ≠3;乙:x ≠1或y ≠2.则甲是乙的充分不必要条件; ③数列{a n }, n ∈N * 是等差数列的充要条件是 P n (n, n S n )共线. 三、解答题 12.设全集U=R ,集合A={x|y=log 2 1 (x+3)(2-x)}, B={x|e x-1 ≥1}. (1)求A ∪B ; (2)求(C U A)∩B .

集合、简易逻辑 知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?;

第一章:集合与常用逻辑用语 §·集合的概念及运算 一、知识清单 1.集合的含义与表示 (1)集合:集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。 (2)常用的集合表示法:①列举法;②描述法;③数轴或图像表示法;④venn 图法 2.集合的特性 3.常用的集合 特 性 理 解 应 用 确定性 要么属于该集合,要么不属于,二者必居其一; 判断涉及的总体是否构成集 合 互异性 集合中的任意两个元素都是不同的; 1.判断集合表示是否正确; 2.求集合中的元素 无序性 集合的不同与元素的排列无关; 通常用该性质判断两个集合 的关系 集合 (){}0|=x f x (){}0|>x f x (){}x f y x =| (){}x f y y =| ()(){}x f y y x =|, (){}x f y =

常见数集的记法: 4.集合间的基本关系 (2)有限集合中子集的个数

【提醒】空集是任意集合的子集,是任意非空集合的真子集。符号表示为:5.集合的运算 集),写作C S A。

二、高考常见题型及解题方法 1.解决集合问题的常用方法 2.集合问题常见题型 (1)元素与集合间关系问题 (2)集合与集合间关系问题 (3)集合的基本运算: ①有限集(数集)间集合的运算; ②无限集间集合的运算:数轴(坐标系)画图、定域、求解; ③用德·摩根公式法求解集合间的运算。 【针对训练】 例1.已知集合A={0,1,2},则集合B={x-y|x ∈A ,y ∈A}中元素的个数是( ) A.1 B.3 C.5 D.9 例2.设集合{} {}R x x x P R x x x y y M ∈≤≤-=∈--==,42|,,12|2 ,则集合M 与P 之间的关系式为( )

第1课 集合与常用逻辑用语 本节主要考察以下几个方面: 1、考察求几个集合的交、并、补集; 2、通过给定的新材料考查阅读理解能力和创新解题的能力; 3、“命题及其关系” 主要考查四种命题的意义及相互关系;4、“简单的逻辑联结词”主要考查逻辑联结词“或”“且”“非”的含义,能用“或”“且”“非”表述相关的数学内容;5、“全称量词与存在量词”主要考查对含有一个量词的命题进行否定;6、考查对充分条件、必要条件、充要条件等概念的理解。7、会用集合语言、分类讨论、数形结合(数轴、韦恩图解),探究集合问题,把握充要条件,实现命题的等价转换。 〖基点问题1〗(集合的运算) 例1、 已知集合{}1 349,46,(0,)A x R x x B x R x t t t ? ? =∈++-≤=∈=+ -∈+∞???? ,则 集合A B = ________。 〖基点问题2〗(充分必要条件) 例2、设0<x < 2 π,则“x sin 2x <1”是“x sinx <1”的 ( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 〖基点问题3〗(复合命题真假的判定) 例3、已知命题p 1:函数y=2x -2-x 在R 上为增函数,p 2:函数y=2x +2-x 在R 上为减函数,则 在命题112212312q :p p ,q :p p ,q (p )p ∨∧?∨: 和412:p (p )q ∧?中,真命题是( ) A.q 1,q 3 B.q 2,q 3 C.q 1,q 4 D.q 2,q 4 〖基点问题4〗(命题的否定与否命题) 例4、命题“所有能被2整除的整数都是偶数”的否定是( ) A.所有不能被2整除的整数都是偶数 B. 所有能被2整除的整数都不是偶数 C. 存在一个不能被2整除的整数是偶数 D. 存在一个能被2整除的整数不是偶数 〖热点考向1〗 例5、已知函数12cos 32 )4 ( sin 4)(2 --+=x x x f π ,且给定条件p :“ 2 4 π π ≤ ≤x ”,(1)求)(x f 的最大值及最小值 (2)若又给条件"2|)(|:"<-m x f q 且p 是q 的充分条件,求实数m 的取值范围。

专题一集合与简易逻辑 一、考点回顾 1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义; 2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等; 3、逻辑联结词的含义,四种命题之间的转化,了解反证法; 4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定; 5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系; 6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。 二、经典例题剖析 考点1、集合的概念 1、集合的概念: (1)集合中元素特征,确定性,互异性,无序性; (2)集合的分类: ①按元素个数分:有限集,无限集; ②按元素特征分;数集,点集。如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2} 表示开口向上,以y轴为对称轴的抛物线; (3)集合的表示法: ①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描 述法。 2、两类关系: (1)元素与集合的关系,用∈或?表示; (2)集合与集合的关系,用?,≠?,=表示,当A?B时,称A是B的子集;当A≠?B时,称A是B的真子集。 3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题 4、注意空集?的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A?B,则有A=?或A≠?两种可能,此时应分类讨论 例1、下面四个命题正确的是 (A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2} (C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1} m}.若B?A,则实数m=.例2、已知集合A={-1,3,2m-1},集合B={3,2

{}9B =,;B A = )()();U U B A B =? ()()A B card A =+ ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有意义的q 同为假时为假,其他情况时为真即当当为真;③“非

数学基础知识与典型例题(第一章集合与简易逻 辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=, 则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3 a =±①当3a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集合中元素用字母表示,检验必不可少。 例 例y |y ≥1},≥,N 分别是二集合{y |y =f (x ),|y=x 2+1,x ∈R} y =x 2+1 x |x ≥1}。 φ. 8} ,C U B = {1, A)∪(C U B) = ,∴ C U (A ∪B) }3< 3x ?+,即123x x ??>2或x < 3 1 }.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x <3 1 ,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1 -

相关文档
最新文档