002奇异函数建立侧移刚度矩阵的新方法

002奇异函数建立侧移刚度矩阵的新方法
002奇异函数建立侧移刚度矩阵的新方法

结构设计之刚度比详解

第三章 刚度比 2014.7.16 一、定义: 刚度比是指结构竖向不同楼层的侧向刚度比值。 二、计算公式: ⑴规范要求: ①、②《抗震规范》第3.4.2和3.4.3条及《高规》第3.5.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ③《高规》第E.0.2条规定当转换层设置在第2层以上时,按本规程式(3.5.2-1)计算的转换层与其相邻上层的侧向刚度比不应小于0.6。 ④《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 框架:i 1i 1i i △△++=V V γ ;其他(框剪、剪…):1 i i i 1i 1i i h h +++?=△△V V γ 详见《高规》P15 ⑶应用范围: ①《抗震规范》第3.4.2和3.4.3条用来判断竖向不规则 ②《高规》第3.5.2条规定的工程刚度比计算。用来避免竖向不规则 ③《高规》第E.0.2条用来计算转换层在二层以上时的侧向刚度比 ④《抗震规范》第6.1.14条规定的工程的刚度比的计算方法1。用于判断地下室顶板能否作为上部结构的嵌固端。 注:SATWE 软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”; 2、按剪切刚度计算 ⑴规范要求: ①《高规》第E.0.1条规定:当转换层设置在1、2层时,可近似采用转换层与其相邻上层结构的等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应小于0.4,抗震设计时γ不应小于0.5。 ②《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 1 22211h h ?=A G A G γ 详见《高规》P177 ⑶应用范围: ①《高规》第E.0.1条用来计算转换层在一二层时的侧向刚度比 ②《抗震规范》第6.1.14条规定的工程的刚度比的计算方法2。用于判断地下室顶板能否作为上部结构的嵌固端。 3、按剪弯刚度计算 ⑴规范要求: ①《高规》第E.0.3条规定:当转换层设置在第二层以上时,尚宜采用图E 所示的计算模型按公式(E.0.3)计算转换层下部结构与上部结构的等效侧向刚度比γe 2。γe 2宜接近1,非抗震设计时γe 不应小于0.5,抗震设计时γe 不应小于0.8。 ⑵计算公式: 2 112H H △△=γ 详见《高规》P178

ansys质量矩阵刚度矩阵提取

ansys质量矩阵刚度矩阵提取 看了这么久了都没人回,查了一些质料终于找到答案了,,下面提供三种方法:方便与其他程序进行接口编程1. Which matrix you would like? element stiffness matrix or full stiffness matrix? element stiffness is within file.emat. full stiffness matrix is within file.full A simple way to dump the matrix is as follow: ------------------- /aux2 fileaux2,file,emat form,long dump,all ------------------- 2. 可以使用/DEBUG命令来得到。详细步骤参见下面的宏文件 finish /clear PI=3.1415926 w1=3 w2=10 w3=6 w4=1.2 r=.8 t=0.08 /PREP7 !* ET,1,SHELL63 R,1,t ET,2,MASS21 R,2,500,500,500,2000,2000,2000,

!* UIMP,1,EX, , ,2e11 UIMP,1,NUXY, , ,0.3, UIMP,1,DAMP, , ,0.2, UIMP,1,DENS, , ,7800, BLC4,0,0,w2,w1 ESIZE,1.5,0, AMESH,all NSEL,S,LOC,X,0.0 D,all, , , , , ,ALL, , , , , allsel,all SFA,all,1,PRES,12 FINISH /OUTPUT,cp,out,, ! 将输出信息送到cp.out文件 /debug,-1,,,1 ! 指定输出单元矩阵 /SOLU SOLVE finish /OUTPUT, TERM ! 将输出信息送到output windows中 ! 这时用编辑器打开cp.out文件,可以看到按单元写出的质量、刚度等矩阵 3. 其原理很简单,即使用ansys的超单元即可解决问题。定义超单元,然后列出超单元的刚度矩阵即可。 面是一个小例题,自可明白。 /prep7 k,1 k,2,3000 l,1,2 et,1,beam3 mp,ex,1,2e5 mp,prxy,1,0.3 mp,dens,1,2e3 r,1,5000,2e7,200 lesize,all,,,10 lmesh,all

地震作用下框架内力和侧移计算

6 地震作用下框架内力和侧移计算 6.1刚度比计算 刚度比是指结构竖向不同楼层的侧向刚度的比值。为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。 7.0939.0/1136076/10669082 11 >== = ∑∑m m N m m N D D γ,满足规范要求; ()8.0939.0/113607611360761136076/1066908334 3 2 1 2>=++?= ++= ∑∑∑∑mm N mm N D D D D γ,满 足规范要求。 依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑i D ,见表6-4。 表5-4框架各层层间侧移刚度 楼层 1层 2层 3层 4层 5层 6层 突出屋面层 ∑i D 1066908 1136076 1136076 1136076 1136076 1136076 258396 6.2水平地震作用下的侧移计算 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。 T T T μψ7.11= (6-1) 式中:1T ——框架的基本自振周期; T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ;

提取刚度矩阵

============为什么折腾这个文档======== 我有一个计算线性动力学方程组的瞬态、谐响应和静力学的python程序,现希望开发一个将ANSYS组集好的总体矩阵导入该PYTHON程序中的接口。 该问题可分解为: [STEP1] [ANSYS]->[包含矩阵信息的文件] [STEP2] [包含矩阵信息的文件]->[python通用数据对象] [STEP3] [python通用数据对象]->[程序特定数据对象]->[进行计算] 因此检索了一些帖子,基本上完成了这项工作,本文是对[STEP1]和[STEP2]的整理,并且利用[STEP3]对结果进行了验证 ============主要内容================== 1,了解从ANSYS中提取总体矩阵和载荷向量的方法; 2,了解提取出来的矩阵是怎样表示的; 3,说明在Python中,如何读取这样的矩阵; 4,构造一个简单的算例,说明整个【建模】-【提取】-【读取】过程及其正确性; =========站内检索综述==================== 检索词:提取矩阵 得到21个结果,代表性的帖子有下面这9个: 编号[1] 标题:ansys中怎样提取质量,刚度,阻尼矩阵? 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:pengweicai给出了一段网上最常见的提取代码,该程序以fortran 写成,可以利用.full文件以及一些列约定将ANSYS中的总体矩阵读入FORTRAN中。 编号[2] 标题:如何得知HBMAT命令提取的质量、刚度矩阵对应的自由度? 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:提出了使用HBMAT命令提取稀疏矩阵时常见的问题:我们如何知道提取出来的信息是怎么储存的呢? 编号[3] 标题:[分享]ANSYS中整体、单元刚度和质量矩阵的提取 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:在该帖子的7楼,其实已经给出了帖子[2]中问题的解答,即HBMAT 中提取出来的矩阵是Harwell-Boeing格式的,并且给出了该格式的细节,可惜是英文的,没引起多少关注。 编号[4] 标题:帮我看看提取的刚度与质量矩阵 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:这个帖子所示的矩阵并非是使用HBMAT命令提出出来的,而应该是SELIST命令列举出来的未压缩的矩阵,后续楼层的回帖给了大家一个提示,即有可能提取出来的矩阵是引入了边界条件的(即删除了被约束的行和列的)。 编号[5] 标题:提取刚度矩阵的问题 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:本帖作者的工作是基于单元刚度矩阵的,因此ANSYS中提取的单元刚度矩阵是否处于总体坐标系就成为问题。该问题并非本文内容,但仍值得关注。 编号[6] 标题:提取刚度矩阵丢失节点的问题 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:帖子[5]作者的又一帖,在这里帖子[5]的问题得到了欧阳中华老师的回答。 编号[7] 标题:提取刚度矩阵的ANSYS操作过程 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:实际上这就是使用HBMAT从ANSYS中提取总体矩阵的全过程!只是还有一些细节待确定。 编号[8] 标题:提取整体刚度矩阵、质量矩阵及阻尼矩阵的简单方法 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:给出了利用“不减缩的”子结构方法来得到总体矩阵的方法(这也是网络上常见的代码之一) 编号[9] 标题:质量矩阵、刚度矩阵如何提取? 地址:https://www.360docs.net/doc/e12110455.html,/forum-vi ... fromuid-159019.html 要点:16443在5楼的回帖中给出了提取刚度矩阵的三种方法 =======站外检索略述======================== 百度检索:提取矩阵 比较好的帖子有: 编号[10] 来源:百度文库 标题:怎样从ansys中提取单元刚度矩阵与质量矩阵 地址:https://www.360docs.net/doc/e12110455.html,/view/3cf5e567f5335a8102d220d9.html 要点:这应该就是16443在帖子[9]中回复的内容了,全面的总结了在帖子[3,4,5,9]中涉及的问题。 编号[11] 来源:中华钢结构标题:ansys刚度矩阵Harwell-Boeing格式的具体含义讨论 地址:https://www.360docs.net/doc/e12110455.html,/forum/viewthread.php?tid=184007 要点:如题,后续楼层给出了一些将矩阵读入ANSYS的APDL(好不容易读出来,又读进去干嘛呢……) 编号[12] 来源:simwe 标题:关于ANSYS(质量、刚度、阻尼)矩阵Harwell-boeing格式数据的说明 地址:https://www.360docs.net/doc/e12110455.html,/archiver/tid-924778.html 要点:比[11]更透彻的HB格式说明! ============================================================= =======1.从ANSYS中提取总体矩阵的方法================================= ============================================================= 1,用/DEBUG命令 2,子结构法

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数

K K c +=2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层) ① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10=??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.01072.82102.345.42210 10 =???+?== ∑)(c b i i K

有侧移与无侧移的判别

关于框架钢柱的计算长度可以分为有支撑和无支撑两种情况: 如果是纯框架,可以按照刚结构规范的计算方法进行计算,其中又有有侧移和无侧移的区别,关于有侧移可以认为侧移大于1/1000,无侧移为小于1/1000的情况.不过需要注意的是,刚结构规范的计算方法是不完善的,有时计算出来很大,SATWE软件把这种情况简化为计算长度系数为10 如果是带支撑的,则需要判断是强支撑还是弱支撑,不过现在好多的软件还不能进行判断,比如PKPM就不能,不过现在的3D3S9.0可以进行判定了,并且和SATWE有数据借口,还算方便. 所以计算长度不能简单的相信软件,要分情况而定 如果两个方向都打了撑的话,基本上可以视为无侧移计算,楼主必须在SATWE里面有个复选框“是否考虑侧移”打上钩柱的计算长度才正常。 如果只有一个方向有撑,另外一个方向没有的话,要计算两遍,无侧移计算一遍,有侧移计算一遍,然后分别按照PKPM的计算出来的长度系数在按有侧移方向考虑的一侧手动输入。1,无支撑纯框架按照有侧移框架计算。 2,有支撑框架根据支撑强弱:强支撑按照无侧移框架计算;弱支撑框架介于无侧移、有侧移之间。 3,详细内容见钢规5.3.3条 这个问题其实很简单,不管做什么设计首先要对规范运用的很熟练,长细比跟什么有关系呢?柱子的计算长度系数和回转半径,回转半径就不用说了,主要看计算长度系数,楼主说了,你弱轴方向是有支撑的,只要你把支撑截面验算够,并保证支撑与柱的可靠连接,那根据规范,此方向的计算长度应该是支撑之间的这段距离,也就是柱子侧向支撑点之间的距离,如果设置的是单支撑,那就与柱子高度等高,计算长度系数就是1,在计算时需要手动设置钢柱弱轴方向的计算长度系数.那样弱轴方向的长细比就可以满足要求了. 另:楼上的说的所谓的按有侧移计算和无侧移都计算一遍的方法,听起来貌似有点道理,其实无根据可循的,不过你按无侧移计算,柱的计算长度系数就1,所以按无侧移就算根本连算都不用算. 再:无侧移和有侧移框架的定义确实不是你自己主观臆断的,规范里也有规定的,是要根据计算公式计算确定的,主要是通过计算看你这个结构形式是强支撑框架还是弱支撑框架,也就是看抗侧翼刚度的大小,如果你这个结构的抗侧移刚度足够大,那就是无侧移了,楼主你弱轴加了足够强的支撑,那此方向就是强支撑,那就是无侧移了. 还有:楼主这种结构形式是最常见的底层钢框架上层门式刚架的做法,可以用PKPM按照三维建模计算的,不过二层门式刚架部分要将所有参与受力的构件在模型中输入,包括垂直支撑,水平支撑,抗风柱和刚性系杆,计算时要在PKPM中将风荷载体型系数分段设置,下层为1.3,上层应设置为0,此时需要在手动输入特殊风荷载,主要是钢柱的受风面风荷栽(注意角柱),作为集中力加在柱顶和钢梁风吸力和风压力,做为线荷载加在钢梁上,还有抗风柱的风荷载,做为集中力加在柱顶. 以上看法,请参见<钢结构规范> 还是计算Sb>3(1.2Nbi-Noi),进行判断即可。 一般而言,强支撑条件很容易满足。这个说法可从《钢结构理解与应用》的到。当然最好算一下Sb。 1/1000的说法来源于高层钢结构规范。

提取单元刚度矩阵

单元刚度矩阵的提取 刚度矩阵在有限元求解过程中扮演者非常重要的角色,以最小位能原理求解过程为例最终越是转换为含有结构刚度矩阵的能量泛函的取值问题。有限元过程中涉及到三类刚度:单元刚度矩阵,组合结构刚度矩阵和最终求解刚度矩阵。 其中单元刚度矩阵:仅与单元的自身自由度有关,同一编号的单元矩阵的维数是固定。组合结构刚度:矩阵根据求解的初始变量个数决定刚度矩阵的维数,属于单元组装后的初始刚度,维数和整个单元初始变量个数相等。最终求解刚度矩阵:代入边界条件简化后的刚度。以《Finite Element Analysis-Theory and Application With ANSYS》中的梁单元例子为例,解释刚度提取过程: 此模型的单元刚度矩阵:(学则beam3梁单元后,该单元包含两节点,每个节点具有三个自由度,因此对应单元刚度矩阵为6*6的方阵)

组合结构刚度矩阵:(该结构含有三个节点,每个节点具有三个原始自由度,因此组合结构刚度矩阵具有9*9阶的形式) 最终求解刚度矩阵:(由于边界条件的存在,该结构中,1,3点的自由度不存在,求解参数中有六个参数已知,因此对最终求解刚度矩阵为三阶方阵) 通过最终的刚度矩阵组成的方程,求解出2节点的位移解,再以这些原始解得出应力,应变,支反力的其他的解。 ansys实现过程: 提取思路如下:通过/debug提取单元刚度矩阵,通过filname.full文件提取后两者的矩阵 ansys实现过程如下: finish /clear /filname,k,1 /prep7 N,1 N,2,120 N,3,120,-108 et,1,beam3 mp,ex,1,3.0e7 mp,prxy,1,0.3 R,1,7.65,204,10 E,1,2 E,2,3 /debug,-1,,,1,,,,,

基于matlab的有限元法分析平面应力应变问题刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) (K k I f) (k u) (k u A) (E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵

通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,,,0,,1) k1 = +006 * Columns 1 through 5 0 0 0 0 0 0 0 0 Column 6 >> NU= NU = >> t= t = >> k2=LinearTriangleElementStiffness(E,NU,t,0,0,,0,,,1)

3 重力荷载代表值计算及框架侧移刚度计算

3 重力荷载代表值计算及框架侧移刚度计算 楼层重力荷载代表值=全部的恒载+50%的楼面活荷载 屋面重力荷载代表值=全部的恒载+50%的屋面雪荷载 3.1 恒载标准值计算 3.1.1 屋面楼面恒载计算 屋面永久荷载标准值(上人): C细石混凝土 1.0 kN/m2 40厚20 1.2厚高分子卷材 0.15 kN/m2 25厚1:3水泥砂浆 20×0.025=0.5k N/m2 90厚水泥珍珠岩板2×0.09=0.18kN/m2最薄处15厚水泥焦渣 13×0.015=1.95kN/m2 120厚钢筋混凝土板25×0.12=3kN/m2合计 6.797kN/m2屋面永久荷载标准值(不上人): 20厚水泥砂浆 20×0.02=0.4 kN/m2 1.2厚合成高分子防水卷材 0.15 kN/m2 25厚水泥砂浆 20×0.025=0.5k N/m2 65厚聚苯乙烯保温板 0.2×0.065=0.013kN/m2最薄处15厚1:6水泥焦渣 13×0.015=1.95kN/m2 120厚钢筋混凝土板25×0.12=3kN/m2合计 6.183kN/m2楼面永久荷载标准值: 普通楼面 8厚瓷面砖19.8×0.008=0.16kN/m2 30厚1:3水泥砂浆20×0.03=0.6kN/m2 30厚聚苯乙烯泡沫板保温层0.2×0.03=0.006kN/m2 10厚1:3水泥砂浆 20×0.01=0.2kN/m2 120厚钢筋混凝土板25×0.12=3kN/m2合计 4.136kN/m2卫生间楼面 8厚瓷面砖19.8×0.008=0.16kN/m2 50厚1:3水泥砂浆20×0.05=1kN/m2 1.5厚合成高分子 0.15kN/m2 100厚钢筋混凝土板25×0.1=2.5kN/m2 10厚水泥石灰膏砂浆0.01×17=0.17kN/m2 合计 3.98 kN/m2

水平荷载作用下的结构侧移计算

水平荷载作用下的结构侧移计算 5.1 风荷载作用下的位移验算 (1)侧移刚度(表5.1~表5.2所示) (2)风荷载作用下的框架侧移计算(表5.3~表5.4所示)。 2~5层柱的D 值得计算 采用8.8级摩擦型高强度螺栓M24,摩擦系数μ=0.4,一个螺栓的预拉力P=175kN 。 单个螺栓的抗剪承载力设计值为: N v =0.9n f μp=0.9×1.0×0.4×175kN=63kN n ≥V/N v 表5.1 2-5层柱的D 值 m 21606.5K N/m /K N 7.1026724.5669D =+?= ∑)( 表5.2 横向底层柱D 值 构件名称 = =)()(2i /5.0i ++ D= (kN/m) A 轴柱 0.236 0.329 17700.54 B 轴柱 0.472 0.393 21144.54 /m 56545.62kN m /kN 54.21144254.17700D =+?=∑)( 构件名称 = =/(2+) D= (kN/m) A 轴柱 0.236 0.105 5669.4 B 轴柱 0.472 0.191 10267.7

水平荷载作用下的框架的层间侧移可按下式计算 Δu j =j v /∑ij D 式中 j v ——第j 层的总剪力; ∑ij D —— 第j 层所有柱的抗侧刚度之和 Δj u ——第j 层的层间侧移 表5.3 集中风荷载标准值 第一层的层间侧移值求出以后,就可就可计算各楼板标高处的侧移值是该层以上各层层间的侧移之和,顶点侧移是所有各层层间侧移之和,框架在风荷载作用下侧移的计算见表5.4: 表5.4 风荷载作用下侧移的计算

ansys质量矩阵刚度矩阵提取说课材料

a n s y s质量矩阵刚度 矩阵提取

ansys质量矩阵刚度矩阵提取 看了这么久了都没人回,查了一些质料终于找到答案了,,下面提供三种方法:方便与其他程序进行接口编程1. Which matrix you would like? element stiffness matrix or full stiffness matrix? element stiffness is within file.emat. full stiffness matrix is within file.full A simple way to dump the matrix is as follow: ------------------- /aux2 fileaux2,file,emat form,long dump,all ------------------- 2. 可以使用/DEBUG命令来得到。详细步骤参见下面的宏文件 finish /clear PI=3.1415926 w1=3 w2=10 w3=6 w4=1.2 r=.8 t=0.08 /PREP7 !* ET,1,SHELL63 R,1,t ET,2,MASS21 R,2,500,500,500,2000,2000,2000,

!* UIMP,1,EX, , ,2e11 UIMP,1,NUXY, , ,0.3, UIMP,1,DAMP, , ,0.2, UIMP,1,DENS, , ,7800, BLC4,0,0,w2,w1 ESIZE,1.5,0, AMESH,all NSEL,S,LOC,X,0.0 D,all, , , , , ,ALL, , , , , allsel,all SFA,all,1,PRES,12 FINISH /OUTPUT,cp,out,, ! 将输出信息送到cp.out文件 /debug,-1,,,1 ! 指定输出单元矩阵 /SOLU SOLVE finish /OUTPUT, TERM ! 将输出信息送到output windows中 ! 这时用编辑器打开cp.out文件,可以看到按单元写出的质量、刚度等矩阵 3. 其原理很简单,即使用ansys的超单元即可解决问题。定义超单元,然后列出超单元的刚度矩阵即可。 面是一个小例题,自可明白。 /prep7 k,1 k,2,3000 l,1,2 et,1,beam3 mp,ex,1,2e5 mp,prxy,1,0.3 mp,dens,1,2e3 r,1,5000,2e7,200 lesize,all,,,10 lmesh,all

最新7.4-单元刚度矩阵组装及整体分析

7.4 单元刚度矩阵组装及整体分析 7.4.1 单刚组装形成总刚 根据全结构的平衡方程可知,总体刚度矩阵是由单元刚度矩阵集合而成的.如果一个结构的计算模型分成个单元,那么总体刚度矩阵可由各个单元的刚度矩阵组装而成,即 [K]是由每个单元的刚度矩阵的每个系数按其脚标编号“对号入座”叠加而成的.这种叠加要求在同一总体坐标系下进行.如果各单元的刚度矩阵是在单元局部坐标下建立的,就必须要把它们转换到统一的结构(总体)坐标系.将总体坐标轴分别用表示,对某单元有 式中,和分别是局部坐标系和总体坐标系下的单元结点位移向量;[T]为坐标转换阵,仅与两个坐标系的夹角有关,这样就有 是该单元在总体坐标系下的单元刚度矩阵.以后如不特别强调,总体坐标系下的各种物理参数 均不加顶上的横杠. 下面就通过简单的例子来说明如何形成总体刚度矩阵.设有一个简单的平面结构,选取6个结点,划分为4个单元.单元及结点编号如图3-27所示.每个结点有两个自由度.总体刚度矩阵的组装过程可分为 下面几步:

图7-27 (1)按单元局部编号顺序形成单元刚度矩阵.图7-27中所示的单元③,结点的局部编号顺序为.形成的单元刚度矩阵以子矩阵的形式给出是 (2)将单元结点的局部编号换成总体编号,相应的把单元刚度矩阵中的子矩阵的下标也换成总体编号.对下图3-27所示单元③的刚度矩阵转换成总体编号后为 (3)将转换后的单元刚度矩阵的各子矩阵,投放到总体刚度矩阵的对应位置上.单元③的各子矩阵投放后情况如下:

(4)将所有的单元都执行上述的1,2,3步,便可得到总体刚度矩阵,如式(3-9).其中右上角的上标表示第单元所累加上的子矩阵. (3-9)(5)从式(3-9)可看出,总体刚度矩阵中的子矩阵AB是单元刚度矩阵的子矩阵转换成总体编号后 具有相同的下标,的那些子矩阵的累加.总体刚度矩阵第行的非零子矩阵是由与结点相联系的那些单元的子矩阵向这行投放所构成的. 7.4.2 结点平衡方程 我们首先用结构力学方法建立结点平衡方程.连续介质用有限元法离散以后,取出其中任意一个结点,从环绕点各单元移置而来的结点载荷为 式中表示对环绕结点的所有单元求和,环绕结点的各单元施加于结点的结点力为

第12章 模态分析21

第12章 模态分析 12.1 模态分析概述 模态分析是ANSYS 中分析结构自然频率和模态形状的方法;它假设:①结构刚度矩阵和质量矩阵不发生改变;②除非指定使用阻尼特征求解方法,否则不考虑阻尼效应;③结构中没有随时间变化的载荷。 在无阻尼系统中,结构振动方程如下 []{}[]{}{}0=+u K u M (12-1) 式中,[]M 为质量矩阵;[]K 为刚度矩阵;{}u 为节点加速度向量;{}u 节点位移向量。其中刚度矩阵可以包括预应力效应带来的附加刚度。对线性系统而言,自由振动满足下面方程 {}{}t u i i ω?cos = (12-2) 式中,{}i ?为第i 阶模态形状的特征向量; i ω第i 阶自然振动频率;t 时间。 将(12-2)代入方程(12-1),得到 [][]() {}{}02=+-i i K M ?ω (12-3) 从式(12-3)中得到结构的振动特征方程为 [][]02=+-K M i ω (12-4) 通过式(12-4)可以求出第i 阶自然振动频率i ω,进而代入(12-3)可以求出第i 阶模态形状的特征向量{}i ?。将{}i ?对质量矩阵[]M 进行归一化处理,使用命令MODOPT,,,,,,,OFF ,可以得到 {}[]{}1=i T i M ?? (12-5) 如果{}i ?,向自身做归一化处理,使用命令MODOPT ,,,,,,ON ,那么{}i ?中最大的向量坐标将归一化为1.0。 如果使用缩减模态提取方法,使用MODOPT,REDUC ,第i 阶模态形状的特征向量{}i ?可以通过使用MXPAND 命令进行扩展。

12.2模态分析过程 ANSYS的模态分析是线性分析的一种,对于任何非线性特性,如塑性和接触(间隙)单元,在模态分析中将被忽略。 模态分析过程由4个主要步骤组成,即前处理、加载与求解、扩展模态,以及查看结果和后处理。 12.2.1前处理 建模是指建立分析的有限元数学模型,包括建立几何模型和划分网格,模态分析的建模过程与一般的建模过程并没有实质性的区别,具体建模可以参见第三章。但根据模态分析的特点,需要注意以下几点: ?定义材料特性时,必须考虑质量的问题。如果最终得到的模型中没有任何质量, 那么质量矩阵将为[]0,而无法求解系统的固有频率。 ?模态分析只考虑材料的线性行为。材料可以为线性各向同性、正交各向异性、温 度无关和温度有关等类型,必须定义材料的杨氏模量和质量相关属性。对于可能 定义的非线性特性,ANSYS在求解时都将忽略。 模态分析只考虑网格单元的线性行为,对于非线性的单元类型将会被视为线性单元处理,例如在结构中定义了接触单元,在分析中将计算接触单元初始状态的刚度矩阵,而将此刚度矩阵应用到分析的其他任何时候。对于预应力分析,模态分析将接触单元的刚度矩阵取为静态预应力分析结束时的刚度矩阵。 如果定义特殊的阻尼单元类型(如COMBIN14, COMBIN37等),必须按单元的要求定义需要的实常数。 12.2.2加载与求解 在这个步骤中要定义分析类型和分析选项,施加载荷,指定加载阶段选项,并进行固频率的有限元求解。应在求解前设置模态扩展选项,或在得到初始解后,对模态进行扩展以供查看。1.设置分析类型 首先进入求解器,并使用ANTYPE命令或GUI交互的方式,定义求解类型为模态分析。具体操作方法如下。 命令方式: ANTXPE, 2 GUI方式: 选择Main Menu > Solution > Analysis Type > New Analysis命令,弹出New Analysis对话框,在对话框中选中Modal,单击OK按钮确认。 2.设置分析选项

水平地震作用下的框架侧移验算和内力计算

水平地震作用下的框架侧移验算和内力计算 5.1 水平地震作用下框架结构的侧移验算 5.1.1抗震计算单元 计算单元:选取6号轴线横向三跨的一榀框架作为计算单元。 5.1.2横向框架侧移刚度计算 1、梁的线刚度: b /l I E i b c b = (5-1) 式中:E c —混凝土弹性模量s I b —梁截面惯性矩 l b —梁的计算跨度 I 0—梁矩形部分的截面惯性矩 根据《多层及高层钢筋混凝土结构设计释疑》,在框架结构中有现浇层的楼面可以作为梁的有效翼缘,增大梁的有效侧移刚度,减少框架侧移,为考虑这一有利因素,梁截面惯性矩按下列规定取,对于现浇楼面,中框架梁Ib=2.0Io,,边框架梁Ib=1.5Io ,具体规定是:现浇楼板每侧翼缘的有效宽度取板厚的6倍。 2、柱的线刚度: c c c c h I E i /= (5-2) 式中:Ic —柱截面惯性矩 hc —柱计算高度 一品框架计算简图: 3、横向框架柱侧移刚度D 值计算: 212c c c h i D α= (5-3) 式中:c α—柱抗侧移刚度修正系数 K K c += 2α(一般层);K K c ++=25.0α(底层) K —梁柱线刚度比,c b K K K 2∑= (一般层);c b K K K ∑=(底层)

① 底层柱的侧移刚度: 边柱侧移刚度: A 、E 轴柱:68.010 5.61045.41010=??==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:18.1105.6102.345.410 10 =??+== ∑)(c b i i K ② 标准层的侧移刚度 边柱的侧移刚度: A 、E 轴柱:51.010 72.821045.4221010=????==∑c b i i K 中柱侧移刚度: C 、 D 轴柱:88.010 72.82102.345.42210 10 =???+?== ∑)(c b i i K 因为 7.08.070172 55960 5 21 >== ∑∑-D D ,所以满足条件。 5.1.3 框架自振周期 采用能量法计算基本周期。

框架侧移刚度的计算

第三章框架侧移刚度的计算3.1横梁线刚度i b的计算: 表3-1横梁线刚度ib 类别Ec (N/ mm2) b×h (mm × mm) I0(mm4)L(m) EcI0/l (N·mm) 1.5EcI0/l (N·mm) 2EcI0/l (N·mm) AB跨CD 跨30000 300× 600 5.4×109 6 2.7×1010 4.05×1010 5.4×1010 BC跨30000 250× 500 2.6×109 2.1 3.71×1010 5.57×1010 7.43×1010 3.2柱线刚度计算表3—2柱线刚度ic 层次hc(mm)Ec(N/mm2)b×h (mm× mm) Ic (mm4) EcIc/hc (N·mm) 1 4550 3.0×104 600×600 1.08×1010 7.12×1010 2--6 3600 3.0×104 600×600 1.08×1010 9×1010 1.底层 A,D: K=5.4/7.12=0.758

αc=(0.5+K)/(2+K)=0.456 Di6=αc×12×i c/h2 =0.456×12×7.12×1010/45502 =18819.3 B,C: K=(7.3+5.4)/7.12=1.8 αc=(0.5+K)/(2+K)=0.61 Di6=αc×12×i c/h2 =0.61×12×7.12×1010/45502 =24979.4 ∑D1=18819.3×2+24979.4×2=87597.4 2、第二~六层: A,D: K=5.4×2/(9×2)=0.6 αc=K/(2+K)=0.23 Di1=αc×12×i c/h2 =0.23×12×9×1010/36002 =19230.77 B,C: K=(5.4+7.43)/9=1.425 αc=K/(2+K)=0.416 Di6=αc×12×i c/h2 =0.416×12×9×1010/36002 =34685

ansys 常见技巧汇总

一、前处理 1.实体显示*.sat、*.x_t等外部导入模型/facet,fine /replot Gui: Utility Menu>PlotCtrls>Style>Solid Model Facets 2.修改ansys背景jpgprf,500,100,1 /replot 3.隐藏坐标系的显示/triad,off /replot Gui: Utility Menu>PlotCtrls>Window Controls>Reset Window Options Utility Menu>PlotCtrls>Window Controls>Window Options 4.设置参考温度TREF, TREF Gui:Main Menu>Solution>Define Loads>Settings>Reference Temp 5.显示单元实际形状/eshape,1.0 Gui: Utility Menu>PlotCtrls>Style>Size and Shape 6.透明显示单元、体、面/TRLCY, Lab, TLEVEL, N1, N2, NINC Gui: Utility Menu>PlotCtrls>Style>Translucency 7.显示编号/PNUM, Label, KEY Gui: Utility Menu>PlotCtrls>Numbering 8.导入hypermesh有限元模型/input,filename,prp Gui: Utility Menu>File>Read Input from 9.导入abaqus格式的有限元模型/input,filename,inp Gui:Gui: Utility Menu>File>Read Input from 10.ansys作为fluent前处理输出 cdwrite,db,filename,cdb gui: Main Menu>Preprocessor>Archive Model>Write 11.不显示单元轮廓线 /gline,1,-1 Gui: Utility Menu>PlotCtrls>Style>Edge Options 12.显示施加到几何元素上的约束 dtran /replot Gui:Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Constraints 13.显示施加到几何元素上的面载荷 sftran /replot Gui:Main Menu>Preprocessor>Loads>Define Loads>Operate>Transfer to FE>Surface Loads 14.显示载荷标记及数值 /pbc,f,,2 Gui: Utility Menu>PlotCtrls>Symbols 15.设置显示容差BTOL, PTOL默认值PTOL为1e-5,可以根据需要修改GUI: Main Menu>Preprocessor>Modeling>Operate>Booleans>Settings 16.如何使用用户定义用户自定义矩阵 Matrix 27用户定义用户自定义矩阵,由单元选项控制定义质量、刚度或阻尼矩阵,你只要在同一组接点,分别定义三次MATRIX27单元(KEYOPT(2)分别为2,4,5)即可,然后在定义实常数时,分别定义三种单元对应的质量、刚度、阻尼矩阵系数。 17.ANSYS的UNDO功能 ANSYS的UNDO功能,多数人都认为ansys没有undo功能。其实这个功能一直就存在,在安装目录\apdl\start100.ans(10.0版,其他版本相应数值变化),后面加上两行命令 /undo,on$*abbr,undo,undo.启动ansys以后就会出现一个undo的快捷工具18.运算完成后电脑自动关机 喜欢用apdl的朋友可能会碰到这么一个麻烦:就是当运算量较大的时候不知道

框架柱抗侧移刚度验算 Microsoft Word 文档

1.水平荷载作用下框架结构的变形验算 前面已经得到该框架结构各层梁柱的线刚度。 1.1首先进行风载作用下的水平位移变形验算。 对于框架各层层间的位移: (1)首层:Δu 1 =( P 1+P 2+P 3+P 4+P 5)/K 1=(14.818+15.70+14.36+13.385+14.929)/46383.75=73.192/46383.175 Δu 1/H 1 =0.001577985/4.8=,经验算符合要求。 用同样的验算方法可得到其他各层也符合抗侧移要求。 (2)最上层顶点位移验算: U =Δu 1 +Δu 2 +Δu 3+Δu 4 +Δu 5 = 0.001577985+0.000540884+0.000399402+0.000257919+0.000116437= 0.003296798 m U/H = 0.003296798/(4.8 + 3.9×4) =697001<6501,经验算也符合要求。 1.1然后进行水平地震作用下的水平位移变形验算。 (1)首层:Δu 1=F Ek1/K 1 = 229.259/46383.175 = 0.004942718m Δu 1/H 1 =0.004942718/4.8=,经验算符合要求。 用同样的验算方法可得到其他各层也符合抗侧移要求。 (2)最上层顶点位移验算: U =Δu 1 +Δu 2 +Δu 3+Δu 4 +Δu 5 =0.004942718+0.0042618+0.003659396+0.002798763= 0.022709826 m U/H = 0.022709826 /(4.8 + 3.9×4) = 8361<6501,经验算也符合要求。 验算完毕。

相关文档
最新文档