设备故障率计算方法

设备故障率计算方法
设备故障率计算方法

设备运行参数管理办法

为规范设备管理程序,提高设备利用率和使用寿命,监控设备运行情况特制定以下设备运行

参数管理办法。设备运行参数的定义方式不同表示的含义不同,我们采用以下方式定义,能同时反映出关键设备与一般设备故障对设备运行率的影响以及整体平均设备故障率和设备故障对生产的影响程度大小:

一 . 运行参数注解

1.日单生产线运行率α: %1008?=小时计)

生产线计划开机(按生产线实际运行时间i α 备注:运行率反应单线整体设备利用率及运行情况

当α>1时表示设备运行时间超过8小时;

当α<1时包含设备闲置,设备故障,无计划停机,模具更换调试等情况; 当α=1时表示符合正常计划生产,各设备运行正常,利用率高;

2.日单生产线故障率β: %1008?=小时计)

和(一般按各单台设备计划时间之和各单台设备故障时间之β 备注:此故障率利用平均值方式按故障发生时间仅反应单线平均设备故障情况;与日单

生产线运行率结合能一定程度反映出关键设备与一般设备对生产的影响程度。

3.设备日总运行率Α1:

Α=n i ∑? (即当天所运行的各线运行率的平均值)

备注:能反映整体设备平均利用率情况。

4.设备日总故障率Β1:

Β=∑i β (即当天各线故障率之和)

备注:利用求和方式能反映各设备故障对生产的影响程度大小

5.设备年或月运行率A=日运行率平均值;设备年或月故障率B=日故障率平均值;

月故障率采用单线平均值,各线求和的方式即反映出整体平均设备故障率又反映出设备

故障对生产的影响程度大小:其值高低能从一定程度反映一段时间内设备故障的控制情况。

月运行率高低仅能从一定程度上反映一段时间内开线的生产线的利用率(影响因素包括

一般和关键设备停机的影响,细小停机及生产准备等)不能反映全厂整体设备产能的发挥程

度,产能发挥由产量总值反映;

6.非计划停机时间:分为设备故障停机时间、模具故障停机时间、细小停机时间、物料短缺

及其他突发情况时间总和。

7.保养计划完成率:时间完成保养项数/计划保养项数 (一定程度反映保养计划的完成情

况)

8.维修频次:日平均维修频次 (结合故障率和非计划停机时间反映出设备故障的种类和次

数,值越大一定程度反映小修次数越多)

按以上定义举例:

假如月平均故障率2.56% ;对应日维修时间约3.4小时;月故障时间约3.4*25=85

小时;非计划停机时间110-125小时; 维修频次3.5次相当于每次维修1小时;

运行率87%对于单线平均有效工作时间8h*87*=6.96小时

二.运行参数统计方式:

1.每天由各线保全按照标准填写《设备保全日报表》;次日早7:30之前上交生产部办公室;

2.设备保全日报表填写标准如下:

设备保全日报表

当班产量:

3.生产部办公室人员于次日上午下班前对昨日设备运行参数计算完毕并记录保存;定期根据设备运行参数进行原因分析,确定改进方案;

生产部

2014.2.11

设备完好率设备利用率设备故障率设备开动率OEEMTTRMTTFMTBF

1、设备完好率 定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑系统正常、 设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各种不同类 型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率; 设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100% 3、设备故障率

回收率包括绝对回收率和相对回收率

回收率包括绝对回收率和相对回收率。 绝对回收率也称提取回收率,包括萃取回收率。提取回收率在最新的“化学药物临床药代动力学研究的技术指导原则"z中是这样定义的”从生物样品基质中回收得到分析物质的响应值除以标准品产生的响应值即为分析物的提取回收率。也可以说是将供试生物样品中分析物提取出来供分析的比例。”其具体做法是取标准品,以流动相(最好同样品进样溶剂)溶解,做一个5点的标准曲线,另取三个浓度的标准品,加入到空白生物基质中,处理后进样测定,每浓度5个样品,这样来计算绝对回收率。 相对回收率的做法和上面不同的是标准曲线也是加入到基质中配成的。 如果做绝对回收率时,如果标准曲线不是直接进样,而是同样品处理,只是不加基质是不对的,因为这样会使操作和系统的其它一些影响因素被掩盖。比如有机相的转移不完全,处理容器的吸附等。绝对回收率的目的就是要看你能将分析物从样品中提取出来用于分析的比例。 之所以用标准曲线,而不是单点相比,是因为萃取回收率小于100%,有的只有百分之二三十或更低,依药物性质和方法而定,这样一来峰面积只有标准品峰面积的百分之几十,如果峰面积浓度的关系不是过原点的直线,而是有截距或线性不好,那么就有偏差了,这个好理解。另外单点也是需要进几次样来重复的,不然也有误差。既然进几次,不如换成几个点做标准曲线,几种误差都可以消去。 峰面积与浓度是对应关系的,我不认为这两者的比有什么差别。实际也是拿峰面积代进去算。 to lydialydia 比如有一个药绝对回收率设三个点20、100、500ng/ml,取相应标准品加入空白基质中,使成此三个浓度(每浓度5个样品),处理后进样。另取标准品以回收率样品进样溶剂溶解,5个点分别为10、50、100、250、500ng/ml。样品峰面积代入标准曲线算出浓度,与理论浓度比即得回收率。相对回收率只是将标准曲线的5个点也是加入空白基质处理。 1)绝对回收率(萃取回收率或提取回收率) 反映方法的萃取效率,与样品检测灵敏度有关。例如:分别取一定量被测药物标准品两份,其中一份加到空白样品中,按设定方法处理、进样测定,测定色谱峰面积A测,另一份用纯品溶剂溶解并稀释至同浓度,进样测得峰面积A真,回收率=A测/A真×100% 应考察高、中、低三个浓度,高浓度在标准曲线上限附近,低浓度在定量限附近,中间取一个浓度。 对于回收率的大小与变异不宜苛求,一般添加量在10-6~10-9g,绝对回收率达50%~80%令人满意。 内标法:分别取相同量的药物标准品和内标物两份,其中一份加到空白样品中,按设定方法处理,测定药物和内标峰面积,求出比值R测=A药/A内。另一份用纯溶剂溶液进样,测得药物和内标峰面积,计算其比值,回收率=R测/R真×100%。 内标法中要求药物与内标物各自用外标法测得的绝对回收率应相近,两者相差小于10%,否则回收率偏离100%太远。 2)方法回收率 取一系列浓度的药物标准品加到空白体液中,按设定的分析方法测定,根据标准品浓度及相应的测定信号绘制标准曲线,然后取高、中、低浓度的药物标准品加到空白体液中,按标准曲线制备方法同法测定,每个浓度至少平行测定5份,测得值代入方程,与加入量比较,即为方法回收率,除定量限外,各浓度测得的平均值偏离实际加入量应小于15%,定量限这点应小于20%。 回收率测定时,不管采用何种方法,要求添加的药物量必需与实际测量相近;必须与实际存在的状态相似;必须同时做空白实验。否则测得结果不可靠,因此报道方法的回收率时,必须说明添加量。

设备管理KPI指标

备综合效率,设备完全有效生产率,设备故障率,平均故障间隔期,平均修理时间,设备备件库存周转率,备件资金率,维修费用率,检修质量一次合格率,返修率等等。不同的指标用于度量不同的管理方向。 设备管理的指标评价 一、设备的完好率在这些指标里用得最多,但其对管理的促进作用有限。所谓的完好率,是在检查期间,完好设备与设备总台数的比例(设备完好率=完好设备数/设备总数)很多工厂的指标可以达到95%以上。理由很简单,在检查的那一刻,如果设备是运转的,没出故障,就算是完好的,于是这个指标就很好看。很好看就意味着没有多少可提升的空间了,就意味着没有什么可改善的了,也就意味着很难进步了。为此,不少企业提出对此指标的定义进行改造,例如提出每月8日,18日,28日检查三次,取其完好率的平均值作为本月的完好率。这当然比检查一次要好,但仍然是点状反映出的完好率。后来有人提出以完好的台时数比上日历工作台时数,完好台时数等于日历工作台时减去故障及其修理的总台时数。这个指标要真实多。当然又遇到统计的工作量增加和统计的真实性,遇到预防性维修台时是否扣除的争论。完好率这一指标是否有效反映设备管理状况,这要看如何应用,仁者见仁,智者见智。 二、设备的故障率这个指标容易混淆,存在两种定义:1.如果是故障频率则是故障次数与设备实际开动台时的比值(故障频率=故障停机次数/设备实际开动台数);2.如果是故障停机率,则是故障停机台时与设备实际开动台时加上故障停机台时的比值(故障停机率=故障停机台时/(设备实际开动台时+故障停机台时))显然,故障停机率比较能够真实的反映设备状态。 三、设备的可用率在西方国家采用较多,而在我国有计划时间利用率(计划时间利用率=实际工作时间/计划工作时间)和日历时间利用率(日历时间利用率=实际工作时间/日历时间)两个不同提法。按照定义,西方定义的可用率实际上是日历时间利用率。日历时间利用率反映了设备的完全利用状况,也就是说即使是单班运行的设备,我们也按照24小时计算日历时间。因为无论工厂是否使用这台设备,都以折旧形式消耗着企业的资产。计划时间利用率反映了设备的计划利用状况,如果是单班运行,其计划时间就是8小时。

农残回收率计算

回收率的计算方法 有机磷类 国标: 假设取5PPM某农药0.5毫升加入到10克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其10克蔬菜样品中农药浓度为X=(5×0.5)/10=0.25PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)和V2(分取体积)应该一样均为100毫升二氯甲烷,因为有机磷农药前处理未进行分取,是100%浓缩的。注ρ=5PPM。 所以,ρ×100×2×1×A1 ρ×A1 W(含量)= = 10×100×1×A 5A W(含量)ρA1 回收率= ×100% = X X×5A 农业部行标: 假设取5PPM某农药0.5毫升加入到25克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其25克蔬菜样品中农药浓度为X=(5×0.5)/25=0.1PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) ρ×50×5×1×A1 ρ×A1 W(含量)= = 25×10×1×A A W(含量)ρA1 回收率= ×100% = X X×A

菊酯类 国标: 假设取5PPM某农药0.5毫升加入到20克蔬菜样品中,则其每克蔬菜样品中农药无损失,100%回收的话,其20克蔬菜样品中农药浓度为X=(5×0.5)/20=0.125PPM 当将上述蔬菜样品经过前处理后,进行进样分析,其浓度结果按照公式: ρ(标样质量浓度)×V1(提取液体积)×V3(定容体积)×V4(标样进样体积)×A1(样品峰面积)W(含量)= m(样品质量)×V2(分取体积)×V5(样品进样体积)×A(标准样品峰面积) 因此,通过假设可知,V1(提取液体积)为30毫升正己烷加30毫升丙酮,总计为60毫升。V2(分取体积)为3毫升过柱体积。注ρ=5PPM。 所以,ρ×60×1×1×A1 ρ×A1 W(含量)= = 20×3×1×A A W(含量)ρA1 回收率= ×100% = X X×A 农业部行标: 同有机磷计算方法。 注:以上W(含量)即为准确测量的蔬菜样品农药残留浓度,单位为PPM或mg/kg ,若换算成μg/kg 则需要乘以1000。

加标回收率计算方法

加标回收率 有空白加标回收和样品加标回收两种 空白加标回收:在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步骤分析,得到的结果与理论值的比值即为空白加标回收率。 样品加标回收:相同的样品取两份,其中一份加入定量的待测成分标准物质;两份同时按相同的分析步骤分析,加标的一份所得的结果减去未加标一份所得的结果,其差值同加入标准物质的理论值之比即为样品加标回收率。 加标回收率的测定,是实验室内经常用以自控的一种质量控制技术.对 于它的计算方法,给定了一个理论公式: 加标回收率=(加标试样测定值—试样测定值)加标量X 100%. 理论公式使用的约束条件 加标量不能过大,一般为待测物含量的0.5?2.0倍,且加标后的总含量不应超过方法的测定上限;加标物的浓度宜较高,加标物的体积应很小,一般以不超过原始试样体积的1%为好。加标后引起的浓度增量在方法测定上 限浓度C的0.4~0.6(C)之间为宜。对分光光度计来说,吸光度A在0.7以下,读数较为准确。 回收率计算结果不受加标体积影响的几种情况 F列情况下,均可以采用公式(2)计算加标回收率 (1) 样品分析过程中有蒸发或消解等可使溶液体积缩小的操作技术时,尽

管因加标而增大了试样体积,但样品经处理后重新定容并不会对分析结果产生影响?比如采用酚二磺酸分光光度法分析水中的硝酸盐氮(GB7480287),样品及加标样品经水浴蒸干后,需要重新定容到50 mL再行测定。 ⑵样品分析过程中可以预先留出加标体积的项目,比如采用离子选择电 极法分析水中的氟化物(GB7484287),当样品取样量为35 mL、加标样取 5.0mL以内时,仍可定容在50 mL ,对分析结果没有影响。 (3)当加标体积远小于试样体积时,可不考虑加标体积的影响?比如采用4- 氨基安替比林萃取光度法分析水中的挥发酚(GB7490287),加标体积若为 1.0 mL ,而取样体积为250 mL时,加标体积引起的误差可以忽略不计。 理论公式约束条件的含义 加标物的浓度宜较高,加标物的体积应很小”的含义便更加清晰:在计算加标试样浓度C2时,应尽可能减小标准溶液的取样体积V 0.只有这样,分别采用公式(3)和(4)的计算结果才会相等.由此可见,采用浓度值法计算加标回收率时,任意加大加标试样的体积,将会导致回收率测定结果偏低。 对加标量的规定: 1. 加标量应尽量与样品中待测物质含量相等或相近,并注意对样品容积的 影响 2. 当样品中待测物质含量接近方法检出限时,加标量应控制在校准曲线的 低浓度范围;当样品中待测物含量小于方法检出限时,以检出限的量作 为待测物质的含量加标

降低设备故障率--缩短停时(百)

降低设备故障率缩短停车时间 一、概况 **成立于*年1月,机电车间是属于**厂的一个维修车间,共分为机修一班、机修二班和电气班三个班组。其中机修一班负责选煤厂主洗及浮选系统设备机械部分的维护检修;机修二班负责选煤厂动筛原煤系统设备机械部分的维护检修;电气班负责以上系统设备电气部分的维护检修。 小组概况 二、名称解释 1、设备故障一般是指设备失去或降低其规定功能的事件或现象,表现为设备的某些零件失去原有的精度或性能,使设备不能正常运行、技术性能降低,致使设备中断生产或效率降低而影响生产。简单地说是一台装置(或其零部件)丧失了它应达到的功能。 2、设备故障率是指事故(故障)停机时间与设备应开

动时间的百分比,是考核设备技术状态、故障强度、维修质量和效率一个指标。 3、停车时间是指在计划生产的时间内因设备发生故障而造成的被迫停车所消耗的时间。 三、选择课题 1、理由一 根据专业人士对设备故障的研究及**加压过滤机实际运行情况的分析,发现大部分机械设备故障率曲线如图1所示。这种故障曲线常被叫做浴盆曲线。按照这种故障曲线,设备故障率随时间的变化大致分早期故障期、偶发故障期和耗损故障期。 早期故障期对于机械产品又叫磨合期。在此期间,开始的故障率很高,但随时间的推移,故障率迅速下降。此期间发生的故障主要是设计、制造上的缺陷所致,或使用不当所造成的。进入偶发故障期,设备故障率大致处于稳定状态。在此期间,故障发生是随机的,其故障率最低,而且稳定,这是设备的正常工作期或最佳状态期。在此间发生的故障多因为设计、使用不当及维修不力产生的,可以通过提高设计质量、改进管理和维护保养使故障率降到最低。在设备使用后期,由于设备零部件的磨损、疲劳、老化、腐蚀等,故障率不断上升。因此认为如果在耗损故障期开始时进行大修,可经济而有效地降低故障率。

回收率

准备两份:一份待测样品A,一份加入一定量标准B,然后用加标测的结果减去理论值,回收率等于B-A/B*100% 4.6. 5. 回收率 4.6. 5.1. 在检测的样品中添加一定量的标准物质,测试添加进去的标准物质的回收率,可以衡量前处理或测试过程中的基体干扰、样品的交叉污染、样品损失、仪器性能等,故回收率试验一直是化学实验室质量控制中重要的手段之一。 4.6. 5.2. 进行回收率测试时,应选择具有代表性的样品,样品应均匀性良好,目标测试物质具有一定的含量。 4.6. 5.3. 回收率测试时,称取上述选择的经预处理的样品两份,其中一份中加入目标测试物质,加入量是样品中目标测试物质量的50%-150%。两份样品同时经过前处理后,同时上机测试,计算回收率。 4.6. 5.4. 回收率=(V2c2-V1c1)×100%/V0c0 其中:c2:加标样品测试值,ug/mL V2:加标样品体积,mL c1:未加标样品测试值,ug/mL V1:未加标样品体积,mL c0:加入标准溶液的浓度,ug/mL V0:加入标准溶液体积,mL 本计算公式是基于加标样品和未加标样品的质量一致的前提,如两者不一致,则应折算为一致的质量。 4.6. 5.5. 回收率的范围一般控制为80%-120%,根据项目的不同,由实验室技术指导进行适当调整。回收率的测定结果记录在《回收率测定记录表》中。 4.6. 5. 6. 回收率测试的另外一种形式是,如果怀疑样品溶液基体对测试结果有影响,则可以直接在样品溶液中加入一定体积的标准溶液,测试此加标液的浓度,计算加标回收率,此时可以衡量溶液基体对测试有无影响。 以上摘自我们公司的程序文件中关于结果质量保证中关于加标回收率测定, 回收率试验它也叫加标回收,即在测定样品的同时,于同一样品的子样品中加入一定量的标准物质进行测定,将其测定结果扣除样品的测定值,除以加入量,计算回收率。它可以反映测试结果的准确度。 目的就是控制实验的准确度。加标回收衡量准确度,做平行样是用来衡量精密度的.这两个手段是实验室质量保证上经常用到的措施. 测量方法确认技术分成以下几类。 (1)准确度试验(标准物质分析试验、回收率试验、不同方法的比对试验)。 (2)精密度试验(室内重复性、中间精密度、协同试验、极差试验)。 (3)检出限的确定。 (4)测量范围试验。 (5)影响结果因素的系统评价。

设备故障率计算方法

设备运行参数管理办法 为规范设备管理程序,提高设备利用率和使用寿命,监控设备运行情况特制定以下设备运行参数管理办法。设备运行参数的定义方式不同表示的含义不同,我们采用以下方式定义,能同时反映出关键设备与一般设备故障对设备运行率的影响以及整体平均设备故障率和设备故障对生产的影响程度大小: 一 . 运行参数注解 1.日单生产线运行率α: %1008?=小时计) 生产线计划开机(按生产线实际运行时间i α 备注:运行率反应单线整体设备利用率及运行情况 当α>1时表示设备运行时间超过8小时; 当α<1时包含设备闲置,设备故障,无计划停机,模具更换调试等情况; 当α=1时表示符合正常计划生产,各设备运行正常,利用率高; 2.日单生产线故障率β: %1008?=小时计) 和(一般按各单台设备计划时间之和各单台设备故障时间之β 备注:此故障率利用平均值方式按故障发生时间仅反应单线平均设备故障情况;与日单 生产线运行率结合能一定程度反映出关键设备与一般设备对生产的影响程度。 3.设备日总运行率Α1: Α=n i ∑? (即当天所运行的各线运行率的平均值) 备注:能反映整体设备平均利用率情况。 4.设备日总故障率Β1: Β=∑i β (即当天各线故障率之和) 备注:利用求和方式能反映各设备故障对生产的影响程度大小 5.设备年或月运行率A=日运行率平均值;设备年或月故障率B=日故障率平均值; 月故障率采用单线平均值,各线求和的方式即反映出整体平均设备故障率又反映出设备 故障对生产的影响程度大小:其值高低能从一定程度反映一段时间内设备故障的控制情况。 月运行率高低仅能从一定程度上反映一段时间内开线的生产线的利用率(影响因素包括 一般和关键设备停机的影响,细小停机及生产准备等)不能反映全厂整体设备产能的发挥程度,产能发挥由产量总值反映; 6.非计划停机时间:分为设备故障停机时间、模具故障停机时间、细小停机时间、物料短缺 及其他突发情况时间总和。 7.保养计划完成率:时间完成保养项数/计划保养项数 (一定程度反映保养计划的完成情况) 8.维修频次:日平均维修频次 (结合故障率和非计划停机时间反映出设备故障的种类和次数,值越大一定程度反映小修次数越多) 按以上定义举例: 假如月平均故障率2.56% ;对应日维修时间约3.4小时;月故障时间约3.4*25=85 小时;非计划停机时间110-125小时; 维修频次3.5次相当于每次维修1小时; 运行率87%对于单线平均有效工作时间8h*87*=6.96小时

OEE设备综合效率计算方法案例讲解

OEE设备综合效率计算方法案例 影响设备综合效率的主要原因是停机损失、速度损失和废品损失。它们分别由时间开动率、性能开动率和合格品率反映出来,故得到下面设备综合效率公式: 设备综合效率=时间开动率×性能开动率×合格品率 这里,负荷时间为规定的作业时间除去每天的停机时间,即负荷时间=总工作时间-计划停机时间 工作时间则是负荷时间除去那些非计划停机时间,如故障停机、设备调整和更换刀具、工夹具停机等。 【例1】若总工作时间为8h,班前计划停机时间是20min,而故障停机为20min,安装工夹具时间为20min,调整设备时间为20min。于是 负荷时间=480-20=460min 开动时间=460-20-20=400min 时间开动率=速度开动率×净开动率 这里,理论加工周期是按照标准的加工进给速度计算得到的,而实际的加工周期一般要比理论加工周期长。开动时间即是设备实际用于加工的时间,也就是工作时间减去计划停机和非计划停机所得时间,或是负荷时间减去非计划停机所得时间。 实际上 从计算上看,用简化了的公式也可以得到同样的结果。之所以用速度开动率和净开动率共同表示性能开动率,是因为从计算过程更容易看出性能开动率的损失原因。 【例2】有400件零件加工,理论加工周期为0.5min,实际加工周期为0.8min。则净开动率=0.8×400/400=80%速度开动率=0.5/0.8=62.5% 性能开动率=80%×62.5%=50%

【例3】如果仍延用上面的例子,假如设备合格品率为98%,则 设备综合效率(全效率)=87%×50%×98%=42. 6%我们把上面的公式和例子总结成以下的序列,得到(A)每天工作时间=60×8=480min。(B)每天计划停机时间(生产、维修计划、早晨会议等)=20min。(C)每天负荷时间=A-B=460min。(D)每天停机损失=60min(其中故障停机=20min,安装准备=20min,调整=20min)。(E)每天开动时间=C-D=400min。(F)每天生产数量=400件。(G)合格品率=98%。(H)理论加工周期=0. 5min/件。(I)实际加工周期= 0. 8min/件。(J)实际加工时间=I×F=0. 8×400=320min。(K)时间开动率=(E/C ×100%=(400/460)×100%=87%。(L)速度开动率=(H/I)×100%= (0. 5/0.8×100%=62.5%。(M)净开动率=(J/E× 100%=(320/400×100%=80%。(N)性能开动率=L×M×100%=0. 625×0. 80 ×100%=50%。最后得设备综合效率(全效率)=K×N×G×100%=0.87×0.50×0.98×100%=42.6% 日本全员生产维修体制中,要求企业的设备时间开动率不低于90%,性能开动率不低于95%,合格品率不低于99%,这样设备综合效率才不低于85%。这也是TPM所要求达到的目标。 如前所述,提高设备综合效率主要靠减少六大损失。图1-1就把全效率的计算和减少六大损失联系起来。

可靠性计算公式大全

计算机系统的可靠性是制从它开始运行(t=0)到某时刻t这段时间内能正常运行的概率,用R(t)表示. 所谓失效率是指单位时间内失效的元件数与元件总数的比例,以λ表示,当λ为常数时,可靠性与 失效率的关系为: R(λ)=e-λu(λu为次方) 两次故障之间系统能够正常工作的时间的平均值称为平均为故障时间(MTBF) 如:同一型号的1000台计算机,在规定的条件下工作1000小时,其中有10台出现故障 ,计算机失效率:λ=10/(1000*1000)=1*10-5(5为次方) 千小时的可靠性:R(t)=e-λt=e(-10-5*10^3(3次方)=0.99 平均故障间隔时间MTBF=1/λ=1/10-5=10-5小时. 1)表决系统可靠性 表决系统可靠性:表决系统是组成系统的n个单元中,不失效的单元不少于k(k介于1和n之间),系统就不会失效的系统,又称为k/n系统。图12.8-1为表决系统的可靠性框图。通常n个单元的可靠度相同,均为R,则可靠性数学模形为: 这是一个更一般的可靠性模型,如果k=1,即为n个相同单元的并联系统,如果k=n,即为n个相同单元的串联系统。 2)冷储备系统可靠性 冷储备系统可靠性(相同部件情况):n个完全相同部件的冷贮备系统,(待机贮备系统),转换开关s为理想开关Rs=1,只要一个部件正常,则系统正常。所以系统的可靠度: 图12.8.2 待机贮备系统

3)串联系统可靠性 串联系统可靠性:串联系统是组成系统的所有单元中任一单元失效就会导致整流器个系统失效的系统。下图为串联系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中,Ra——系统可靠度;Ri——第i单元可靠度 多数机械系统都是串联系统。串联系统的可靠度随着单元可靠度的减小及单元数的增多而迅速下降。图12.8.4表示各单元可靠度相同时Ri和nRs的关系。显然,Rs≤min(Ri),因此为提高串联系统的可靠性,单元数宜少,而且应重视串联系统的可靠性,单元数宜少,而且应重视改善最薄弱的单元的可靠性。 4)并联系统可靠性 并联系统可靠性:并联系统是组成系统的所有单元都失效时才失效的失效的系统。图12.8.5为并联轴系统的可靠性框图。假定各单元是统计独立的,则其可靠性数学模型为 式中 Ra——系统可靠度 Fi——第i单元不可靠度

加样回收试验

现在一般都用第二种方法,又分两种添加方法: 1 添加样品中含量一半的80%、100%和120%,每个两份 2 添加样品中含量一半的50%、100%和150%,每个两份。这两种都可以的 计算时添加后测得的含量与原来样品的含量一半之差作分子,添加的含量做分母,并计算这6个结果的RSD,小于3%即可。 关于加样回收率的讨论已有报道[1-3],虽对加样回收率的两种计算方法均从不同侧面做了较透彻的讨论与选择,但均忽略了原样品(实际样品)中待测组分含量确定的方法及其误差性质对回收率结果可靠性的影响,有必要做进一步的探讨作为补充。设原样品中待测组分的真实量为Xo,待测组分纯品标准加入的真实量为Yo,为统一讨论,我们把Yo的获得及加入过程也看为一种测量,那么,Xo、Yo及其总量的测得量分别为X、Y和Z,它们的测量误差分别为EX、EY和EZ,则目前回收率R有如下两种计算方法依据测得Xo的方法不同分以下两种情况讨论。 1成熟方法包括药典法及可靠的文献法。 由于选用的方法成熟可靠,测量误差小,则EX可忽略,而且Yo的获得及加入过程一般是可靠的,Ey亦可忽略,则(1)、(2)式可分别简化为(3)、(4)式:两式中,R唯一地与测量误差EZ相关,理论上讲,可以用来检验拟订方法的准确度。2拟订方法同上讨论,Ey可以忽略,但由于X0是按拟订方法测得的,故EX不可盲目忽略,则(1)、(2)式可分别简化为(5)、(6)式:R并不唯一地与EZ相关,还与测定原样品中Xo的误差EX有关,是否可以用来检验拟订方法的准确度需要做进一步的讨论。测量误差按其性质分为两类:偶然误差和系统误差,系统误差又包括恒定误差和比例误差。偶然误差可以通过增加试验次数来消除,本文不做更深讨论,而系统误差却会给测定带来固定方向的偏差。 2.1系统误差为恒定误差:此时EX=EZ,所以(5)、(6)式可写为(7)、(8)式:即在该情况下,无论拟订方法的误差多大,回收率均为100%。结果显然是不可靠的。 2.2系统误差为比例误差:设比例误差的比例系数为E,则EX=E·Xo,EZ=E·(Xo+Yo),则(5)、(6)式可分别写成(9)、(10)式:回收率的实质是单位真实量的测得量,而E是单位真实量的测量误差,所以R应等于1+E,此时,用(9)式计算回收率是可靠的,而用(10)式计算,R随Xo/(Xo+Yo)的值变化而变化,当且仅当Xo/(Xo+Yo)=0,即Xo=0或Yo为无穷大时,R=1+E。但前者回收率试验实质上已是模拟样品回收率,而后者已变为纯品回收率试验,均不在本文讨论范围之内。上面讨论的是两种极端情况,而在实际工作中,测量误差既包括恒定误差,又包括比例误差,文献认为:“仪器由于灵敏度等原因,测量一般为恒定误差,而方法误差也不全为比例误差,”另外,由于操作者造成的误差也往往表现为恒定误差,如对滴定终点指示剂变色的判断等。这说明目前定量研究的误差多属恒定误差,所以用拟订方法测定原样品中待测组分的含量后计算回收率的方法并不可靠。因此,虽然目前绝大多数药物分析工作者在做加样回收率计算时均使用(1)式,认为测得总量减去原样品测得量后即可消除原样品中待测组分含量及其测量误差的影响,但却未考虑到并非所有情况下均适用,反而会因此获得一个不真实的回收率,错误判断拟订方法的准确度。例:我们把某一测定方法假设为一根容量足够大的刻度吸量管,首先我们假设它有恒定误差,它的Oml刻度处实为10ml,其余部分准确,即本吸量管有一10ml的恒定误差,下面结合上述讨论对该吸量管(即某一测定方法)的准确度做一个检验。设X0=20ml,Y0=10ml,则EZ=-10ml。如用(3)、(4)式计算:(3)R=1+(-10)/10=0%(4)R=1+(-10)/(20+10)=67%如用(5)、(6)两式计算:(5)R=[10+(-10)-(-10)]/10=100%(6)R=(20+10)+(-10)/20+10+10=100%由上可见,对于一个设定的明显有很大误差的测定方法,用拟订方法测定X0后计算却得出了“理想”的回收率数据,可见如此计算在测定存在恒定误差的情况下是不可靠的;而用成熟方法测定X0后,均得出方法不准确的结论,但用两式计算,结果明显不同,我们认为造成这一现象的原因是对于每次测定来说,由于误差恒定,(3)式把本应该由整

硫磺回收率计算公式

硫回收率的计算方法 1、硫磺回收装置硫回收率的计算方法(采用氮平衡法) 根据回收尾气组成分析数据可以计算得到硫磺回收装置硫回收率数据。 硫磺回收装置硫回收率计算公式如下: ηs =()%1002)09.78(1''''''22222?????????????+++++-S COS CS SO S H N S H S N C C C C C C C Q Q R 式中: ηs —— 硫磺回收装置硫回收率 %,取小数点后两位 R —— 总空气/总酸气(流量比,干基/干基) C H2S —— 酸气中H 2S 含量 %(V ),(干基) C 'N2、C 'H2S 、C 'SO2、C 'CS2、C 'S 、C 'COS —— 分别为回收尾气中相应组份的含 量 %,(干基) (1)用酸气流量和空气流量计算R : R= 式中: Q K ——总空气流量,m 3/h ,(湿基) Q S —— 酸气流量,m 3/h ,(湿基) Q N —— 保护氮气流量,m 3/h ,(干基) H K —— 空气中含水量,mol 分率 H S —— 酸气中含水量,mol 分率 H S = O W P P P + 式中: P W —— 酸气分离器温度下,酸气中水的分压 kPa P —— 酸气分离器的压力 kPa(g)

P O —— 大气压力 kPa H K =o d P P Φ? Φ=()d w d o w P t t P P -??--41067.6 式中: Φ—— 空气相对湿度,mol 分率 t d 、t w —— 空气的干球、湿球温度℃ P d 、P w —— 在空气干球、湿球温度下水的饱和蒸汽压力,kPa (2)用气体组成计算R : 式中: C —— 酸气组成 C ’—— 尾气组成(干基) 下标分子式表示该组分,均以%(V )表示 41.96=2×(20.95+0.03) 干空气组成为N 2:78.09%,Ar :0.93%,O 2:20.95%,CO 2:0.03% 2、总硫回收率的计算方法(采用硫平衡法) 根据硫磺回收装置硫收率数据和烟囱尾气组成分析数据可计算得到总硫回收率数据。 总硫回收率计算公式如下: S H SO S H s s s S H s s s t W W C H Q C H Q 222294.05.0)1(349.1)1(349.1s ++--=ηηη 式中: ηs 、Q S 、H S 、C H2S ——同硫磺回收装置硫回收率计算 W SO2——烟囱尾气中SO 2排放量,kg/h W H2S ——烟囱尾气中H 2S 排放量, kg/h

故障率及计算方法

故障率的计算方法 系统发生故障的频率和时间的关系可以用浴盆曲线来表达,如图1-1所示。。 1浴盆曲线原理 图 1-1浴盆曲线 从该曲线可以看出,系统故障率在系统早期投用和晚期老化后的故障率较高,而在使用中间段时随机故障率相对恒定。 2故障率计算公式 C=在考虑的时间范围Δt 内,发生故障的部件数 N=整个使用的部件数 Δt=考虑的时间范围 3平均无故障时间MTBF MTBF=1/λ 4可靠性计算公式 A S =MTBF/(MTBF+MDT) MDT=平均故障时间(或 MTTR=平均修复时间) 举例: ● MTBF=100h ,MDT=0.5h-A=99.5%! ● MTBF=1year ,MDT=24h-A=99.7% λ ≈ c N . ? t 早期故障 磨损故障 随机故障 λ 常数 t 故障频率 λ

因此,考虑系统的可靠性需同时考虑MTBF和MDT。

5如何增加系统的可靠性 从可靠性公式中可以看出,增加系统的可靠性可以从提高MTBF和MDT降低两个方面进行。 5.1增加系统的稳定性 增加稳定性,可从如下环节考虑: ●设备生产商 ●使用高质量部件 ●使用具有更高标准的部件 ●预烧 ●抗过载保护 ●质量控制 ●冗余 ●工厂设计人员 ●网络结构 ●冗余安装 ●符合安装条件需要 ●在合适的环境条件下使用 ●工厂操作人员 ●维护 ●快速故障诊断 ●自动故障诊断和定位(自测试) ●具有诊断功能 ●诊断工具的稳定性 ●训练有素的维护人员 ●快速修复 ●系统不停机情况下修复(在线修复) ●修复工程容易 ●快速备件发送 ●训练有素的专业人员 5.2整个系统的MTBF 对于串行系统而言,系统故障发生率是各部件故障发生率之和,如图1-2所示。举例: MTBF1 MTBF2 MTBF3

产品可回收利用率计算方法导则(征求意见稿s

国家标准 《产品可回收利用率计算方法导则》 (征求意见稿) 编制说明 标准起草组 二〇〇六年四月

一、标准工作简况 1.前言 我国的基本国情是人口众多,资源相对匮乏,生态环境脆弱,特别是伴随着我国工业化、城市化进程的加快和人口的不断增长,资源和环境问题日益突出。我国现有的资源、能源供给和环境承载力几乎不可能继续满足传统“三高”(高消耗、高能耗、高污染)粗放型模式下的未来10年经济的高速发展。如果继续走传统经济发展之路,沿用“三高(高消耗、高能耗、高污染)”粗放型模式,以末端处理为环境保护的主要手段,那么只能继续削弱我国社会经济发展的可持续性和阻碍我国进入真正现代化的速度。近年来我国对发展循环经济给予前所未有的高度重视。2005年7月5日,国务院发出《关于加快发展循环经济的若干意见》(国发〔2005〕22号),《意见》明确了我国发展循环经济的目标:即力争到2010年建立比较完善的发展循环经济法律法规体系、政策支持体系、体制与技术创新体系和激励约束机制;资源利用效率大幅度提高,废物最终处置量明显减少,建成大批符合循环经济发展要求的典型企业;推进绿色消费,完善再生资源回收利用体系;建设一批符合循环经济发展要求的工业(农业)园区和资源节约型、环境友好型城市;提出要制定和完善促进循环经济的标准体系。最近召开的中共中央十六届五中全会通过了《中共中央关于制定国民经济和社会发展第十一个五年规划的建议》,《建议》提出要把节约资源作为基本国策,发展循环经济,保护生态环境,加快建设资源节约型、环境友好型社会,促进经济发展与人口、资源、环境相协调。 为了建立起我国循环经济的法律体系和技术政策体系(例如标准体系),一方面要加强循环经济的法律体系的研究,另一方面,也应该同时加强技术政策体系的研究,以达到相互促进共同发展的目的。 本项目的研究是提高资源综合利用率、保护环境的需要,是规范废弃资源和废旧材料回收市场的需要。提高资源利用率、保护环境是我们全人类共同追求的目标。如何提高废弃资源和废旧材料利用率,妥善处理其中的有害物质,是提高资源综合利用率、保护环境的重要举措。据统计,我国废弃资源和废旧材料回收加工业在39个工业行业中,资产占全行业的比重最低,仅为2.6%,这既反映了该行业的发展比较滞后,同时也说明有较大的发展空间。随着我国相关法律法规

选矿回收率怎么计算

选矿回收率怎么计算 添加时间:2010-04-11 一、名词解释 重力选矿法(简称重选法):是在运动介质(水)中,按粒度比重和粒度的差异进行分选的分法。 浮选法:是选金生产中,应用最广泛的一种选矿法。是利用矿物表面物理化学性质的差异来选分矿石的一种方法。 混汞法:是一种古老而又简易的选金方法。在矿浆中,金粒被汞(水银)选择性地润湿并形成金汞齐,使它和别的矿物及脉石互相分离,这种方法称为混汞法。 品位:就是矿石或选矿产物中该金属或选矿产物重量之比值,通常用百分数来表示。 产率:选矿产物的重量与原矿重量之比值,通常用百分数来表示。 选矿比:原矿重量与精矿重量的比值,它表示获得1吨精矿需要处理的原矿的吨位。 富矿比:精矿中有用成分的品位和原矿中有用成分的品位之比值。它表示精矿中有用成分的品位和原矿中有用成分的品位高出的倍数。 回收率:选矿的目的就是要把原矿中所含的金属,最大限度地选入到品位更高的精矿中。这个选分过程的完全程度,可以用金属回收率来评定。所谓金属回收率,就是精矿中所含的金属重量与原矿中该金属重量的比值,常用百分数来表示。 二、选矿指标 处理原矿品位(克/吨)=处理原矿含金量(克) / 处理原矿量(吨) 精矿品位: 是指平均每吨精矿中的含金量,它是反映精矿质量的指标,计算公式为: 精矿品位(克/吨)=精矿含金量(克) / 精矿数量(吨) 精矿产率: 是指产出的精矿量占原矿量的百分比,它是反映选矿厂质量的指标。计算公式为: 精矿产率(%)=精矿数量(吨) /原矿数量(吨) ×100% 尾矿品位: 是指选矿厂排弃的尾矿中,平均每吨尾矿中的含金量。它是反映在选矿过程中金属损失程度的指标。计算公式为: 尾矿品位(克/吨)=尾矿含金量(克)/尾矿数量(吨) 尾矿量(吨)=处理原矿量(吨)-精矿量(吨) 选矿回收率: 是指采用各种选矿方法获得的最终产品含金量占处理原矿含金 量的百分比。按理论和实际回收率两种方法计算。 选矿理论回收率(%)=精矿品位×(原矿品位-尾矿品位)/(原矿品位×(精矿品位-尾矿品位) ×100%=理论回收的金属量(克) /处理原矿金属量(克)×100% 选矿实际回收率(%)=金精矿含金量(克)/原矿含金量(克)×100% (浮选回收率) 浸出率: 是指经浸出作业已溶解金的金属量占氰原矿金属量的百分比。计算公式为: 浸出率=已溶解金的金属量(克)/氰原矿金属量(克)×100%=( 氰原矿金属量(克)-浸渣金属量(克) )/氰原矿金属量(克)×100% 洗涤率: 是指贵液中含金量占浸出溶解金的金属量的百分比。计算公式为:

回收率计算

1.1 理论公式使用的前提条件 文献[1 ]中对加标回收率的解释是:“在测定样品的同时, 于同一样品的子样中加入一定量的标准物质进行测定, 将其测定结果扣除样品的测定值, 以计算回收率. ”因此,使用理论公式时应当满足以下2 个条件:①同一样品的子样取样体积必须相等; ②各类子样的测定过程必须按相同的操作步骤进行。 1.2 理论公式使用的约束条件 文献[2 ]中强调指出: 加标量不能过大,一般为待测物含量的0.5~2.0 倍, 且加标后的总含量不应超过方法的测定上限; 加标物的浓度宜较高, 加标物的体积应很小,一般以不超过原始试样体积的1%为好。 1.3 理论公式的不足之处 ( 1) 各文献对公式中“加标量”一词的定义, 均未准确给定, 使其含义不是十分明确. 从公式的分子上分析, 加标量应为浓度单位; 从公式的分母上理解, 应为加入一定体积的标准溶液中所含标准物质的量值, 为质量单位。 (2) 若公式中的加标量为浓度单位, 此时的加标量并不是指标准溶液的浓度, 而应该是加标体积所含标准物质的量值除以试样体积(或除以试样体积与加标体积之和)所得的浓度值. 这里存在着浓度换算, 而在理论公式中并没有明确予以表现出来。

2.1 以浓度值计算加标回收率理论公式可以表示为 : P =(c2-c1)/c3× 100%. (1) 式中: P 为加标回收率;c1 为试样浓度, 即试样测定值, c1 =m 1/V 1;c2 为加标试样浓度,即加标试样测定值, c2 =m 2/V 2;c3 为加标量, c3 =c0 ×V 0/V 2:m =c0 ×V 0;m 1为试样中的物质含量; m 2 为加标试样中的物质含量; m 为加标体积中的物质含量; V 1 为试样体积; V 2 为加标试样体积, V 2 = V 1 + V 0; V 0 为加标体积; c0 为加标用标准溶液浓度。 上述符号意义在下文中均相同。 (1) 在加标体积不影响分析结果的情况下, 即V 2= V 1, 当c3 =c0 ×V 0/V 1时, P =[(c2 - c1) ×V 1]/(c0 ×V 0)× 100% (2) (2) 在加标体积影响分析结果的情况下, 即V 2= V 1+ V 0, 当c3 =(c0 ×V 0)/(V 1 + V 0) 时, P =[(c2 - c1) ×(V 1 + V 0)]/(c0 ×V 0)× 100% (3) 2.2 以样品中所含物质的量值计算加标回收率 将理论公式中各项均理解为量值时, 则可以避开加标体积带来的麻烦, 简明易懂, 计算方便, 实用性强. 即 P =(m 2 - m 1)/m×100%,或

设备完好率、设备利用率、设备故障率、设备开动率、OEE、MTTR,MTTF,MTBF

定义:设备完好率,指的是完好的生产设备在全部生产设备中的比重,它是反映企业设备技术状况和评价设备管理工作水平的一个重要指标。 计算公式:设备完好率=完好设备总台数/生产设备总台数× 100% 标准:所谓完好设备一般标准是: ①设备性能良好,如机械加工设备的精度达到工艺要求; ②设备运转正常,如零部件磨损、腐蚀程度不超过技术规定标准,润滑 系统正常、设备运转无超温、超压现象; ③原料、燃料、油料等消耗正常,没有油、水、汽、电的泄漏现象。对于各 种不同类型的设备,还要规定具体标准。例如传动系统的变速要齐全、滑动部分要灵敏、油路系统要畅通等。 公式中的设备总台数包括在用、停用、封存的设备。在计算设备完好率时,除按全部设备计算外,还应分别计算各类设备的完好率。 2、设备利用率 定义:设备利用率是指每年度设备实际使用时间占计划用时的百分比。是指设备的使用效率。是反映设备工作状态及生产效率的技术经济指标。 在一般的企业当中,设备投资常常在总投资中占较大的比例。因此,设备能否充分利用,直接关系到投资效益,提高设备的利用率,等于相对降低了产品成本。所以,作为企业的管理者,在进行生产决策的时候,一定要充分认识到这一点。 一般包括:设备数量利用指标―实有设备安装率,已安装设备利用率;设备时间利用指标―设备制度台时利用率,设备计划台时利用率;设备能力利用指标―设备负荷率;设备综合利用指标―设备综合利用率。过去,设备利用率一般仅指设备制度台时利用率。 计算公式: 公式一: 设备利用率=每小时实际产量/ 每小时理论产量×100% 公式二: 设备利用率=每班次(天)实际开机时数/ 每班次(天)应开机时数×100% 公式三: 设备利用率=某抽样时刻的开机台数/ 设备总台数×100%

相关文档
最新文档