无线通信中的分集技术

无线通信中的分集技术
无线通信中的分集技术

无线通信中的分集技术

——浅谈空间发射分集和接收分集摘要:本文首先从无线信道的衰落特性引出分集技术,简要介绍了分集技术的分类和常用的合并方式,并在此基础上专门讨论了空间接收分集和发射分集,最后结合分集技术的应用进行了小结。

关键词:无线通信分集技术发射分集接收分集

一、无线信道的衰落和分集接收技术

无线衰落信道由于遭受多径衰落、时变性等的影响而使信道的传输性能变得很差。要把误码率从10-2降到10-3在AWGN 信道中信噪比可能仅需增加1 到2 个dB就可以了,无线衰落信道中则要付出大约10 dB的代价[1]。同时这种信噪比的提高不能通过提高发射功率或额外增加信号带宽来获得,因此对于无线衰落信道,需要寻找其它方法来对抗衰落。

分集接收就是为了克服各种衰落, 提高无线传输系统性能而发展起来的一项重要技术。其基本思路是: 将接收到的多径信号分离成不相关的(独立的)多路信号,然后将这些信号的能量按一定规则合并起来,使接收的有用信号能量最大,对数字系统而言,使接收端的误码率最小,对模拟系统而言, 提高接收端的信噪比。

分集技术包括2个方面:一是分散传输,使接收机能够获得多个统计独立的、携带同一信息的衰落信号;二是集中处理,即把接收机收到的多个统计独立的衰落信号进行合并以降低衰落的影响。因此,要获得分集效果最重要的条件是各个信号之间应该是“不相关”的。

二、分集技术的分类及合并方式

1.分集技术的分类

在移动通信系统中,分集广义上分为“宏分集”和“微分集”。“宏分集”主要用于蜂窝通信系统中,也称为“多基站”分集。这是一种减小慢衰落影响的分集技术。一般用于合并两个或多个长时限对数正态信号,是基站级的分集;而“微分集”是一种减小快衰落影响的分集技术,在各种无线通信系统中都有广泛应用。具体的微分集又可分为:

(1)空间(天线)分集(Space Diversity)。它是利用多副距离足够大的接收天线来接收和合并多路不相关性的信号。

(2)频率分集(Frequency Diversity)。它是将待发送的信息分别调制到不同的载波频率上发送,只要载波频率大于信道相干带宽,则接收端接收到信号的衰落

就相互独立;

(3)时间分集(Time Diversity)。利用时间间隔大于相干时间的两个样点互不相关的原理,用大于相干时间的间隔重复发送信号,在接收端独立地分集这多路信号。时间分集的性能基本由移动台的运动速度决定,若移动台是静止的,时间分集就失效了,因为相干时间是和移动台的运动速度成反比的;

(4)极化分集。利用不同电波极化的不相关性和它们呈现的不相关衰落特性产生多路分集信号的技术,它可认为是空间分集的特例;

(5)角度分集。利用不同方向到达的信号的不相关性产生多路分集信号的技术。(6)场分量分集。利用电波(E波)和磁波(H波)之间的非相干性来形成独立分集支路,由电磁场理论知,空间中一定方向的E波和H波之间存在着非相干性。这种分集方法主要用于一些低频系统中。

2.分集技术的合并技术

在分集中,接收端取得多个不相关信号后要进行合并处理,合并又有分解调前或后之分,常见的线性合并技术有:

(1)选择式合并(SC)。选择式合并结构最简单,它根据某种准则,从N个分集支路信号中选出一个作为下级处理的输入。

(2)等增益合并(EGC)。它是把各支路信号进行同相后再迭加,各路的加权权重相等,其性能只比最大比合并稍差一些,但比选择合并要好很多,是一种次最优的合并方案。

(3)最大比合并(MRC)。它对多路信号进行同相加权合并,权重是由各支路信号所对应的信号功率与噪声功率的比值所决定的,最大比合并的输出SNR等于各路SNR之和。由于它采用了信道估计,可以根据信道的具体情况对各支路的信号进行处理,因此它是其中性能最好的一种,但它的实现也最复杂。

三、空间分集接收

空间分集技术是在不牺牲信号频率带宽和保证数据传输速率的同时获得分集增益, 并且可以和其他信号处理方式相结合, 因此得到了广泛的关注。

其中空间分集接收是在空间不同的垂直高度上设置几副天线,同时接收一个发射天线的微波信号,然后合成或选择其中一个强信号,这种方式称为空间分集接收。接收端天线之间的距离应大于波长的一半,以保证接收天线输出信号的衰落特性是相互独立的,也就是说,当某一副接收天线的输出信号很低时,其他接收天线的输出则不一定在这同一时刻也出现幅度低的现象,经相应的合并电路从中选出信号幅度较大、信噪比最佳的一路,得到一个总的接收天线输出信号。这样就降低了信道衰落的影响,改善了传输的可靠性。

空间分集接收的优点是分集增益高,缺点是还需另外单独的接收天线。

四、空间发射分集

尽管接收分集可以很好地对抗衰落, 但是在下行链路中由于要受移动终端的成本、规模和功率等的限制, 显然在移动终端内使用多天线接收是不可能的。于是,人们又开始研究发送分集,希望能有所发现。所谓发送分集就是在发送端采用多副天线发送信号,每副天线平均分配信号的发射功率,而在接收端只采用一副天线来接收。

发射分集有:反馈过程的发射分集、前向或有训练序列的发射分集和盲发射分集三类。第一类使用从接收端到发射端的隐含或明显的反馈序列来配置发射机。如时分双工系统,天线既作为发射使用又作为接收使用,因此反馈过是隐含的二类在发射端使用线性过程将信息通过天线发射出去,在接收端利用一个最优的接收机来恢复信号,前向序列用来估计信道,在接收端对信道进行补偿。第三类既不需要前向序列也不需要后向序列,它利用多发射天线和信道编码的连接来产生分集。同前两类发射分集相比,第三类的带宽利用率降低,这是因为使用了信道编码的缘故。若按接收机到发射机是否需要反馈电路,发送分集技术可分为开环和闭环两种类型,前者发射机不需要任何信道的知识,实现方式有:空时发送分集(STTD)、正交发送分集(OTD)、时间切换发送分集(TSTD)、延迟发送分集(DTD)以及分层的空时处理和空时栅格编码;闭环发送分集方式有选择发送分集(STD)。

五、分集技术的应用实例

主机:

*4通道接收机

*工作频率:550-980MHz

*32/64频道自由选择,液晶数字显示

*信噪比:&105dB

*T.H.D 失真:<0.5%

*杂讯锁定静噪控制+音码导航锁定静噪

控制

*动态音频压缩及自动电平控制电路

通道真分集红外对频无线会议麦克风

采用的是空间分集接收技术,利用多副距离足够大的接收天线来接收和合并多路不相关性的信号。当某一副接收天线的输出信号很低时,其他接收天线的输出则不一定在这同一时刻也出现幅度低的现象,将这些信号的能量按一定规则合并起来,使接收的有用信号能量最大,从而得到较高的信噪比和较好的音质。

六、小结

综上所述, 在无线衰落信道中,分集技术是抵抗衰落的一种有效手段。本文在简要介绍常见的分集技术,由于空间分集可以不用牺牲信号频率带宽,在保证数据速率的同时获得极大的分集增益,因而是减小多径衰落的有效方法。所以本文主要讨论了空间接收分集和发射分集技术。最后结合应用实例,对分集技术的应用有了更多的了解。

七、参考文献

[1] S. M. Alamouti. A simple transmit diversity technique forwireless communications [ J] . IEEE Journal on selected areas in communications, 1998, 16( 8) : 1451~ 1458.

[2] 百度百科https://www.360docs.net/doc/e15763226.html,/view/2667013.htm

[3]《移动通信(第四版)》李建东,郭梯云编著西安电子科技大学出版社

无线通信技术应用及发展

龙源期刊网 https://www.360docs.net/doc/e15763226.html, 无线通信技术应用及发展 作者:郭永刚路彬 来源:《电子技术与软件工程》2018年第19期 摘要 无线通信技术作为推动我国经济不断向前发展的重要力量,不仅促使我国生产力水平不断得到提升,而且还有效改善了人民的日常生活质量,并在电力系统之中得到了广泛的应用与发展,特别是在电力通信方面起着关键的作用,为我国电网建设提供了全面的技术保障。安全有效的电力系统可以在各个方面合理地分配电能,遇到电力系统事故可以予以及时的解决。电力通信系统作为电力系统的重要组成成分,能够促使电网调度工作达到自动化以及现代化的目的,并且从根本上保证电网的安全性以及经济性。 【关键词】无线通信技术应用发展 随着我国经济发展水平的不断提升,科学技术的不断进步,促使现代通信技术变得更加科学化以及数字化。由于当前信息知识更新速度较快,而且经济发展速度呈现高度上升趋势,使得人们在信息获取方面提出了更高的要求。为有效解决无线通信技术在使用过程中出现的问题与矛盾,必须要全面秉持创新理念,综合运用与之相关的技术手段来予以解决,从而在最大程度上满足人们在信息获取方面所提出的各项需求,并为其不断提供多方面的信息资源,为科学规划工作的顺利开展奠定良好基础,推动无线通信技术蓬勃发展。 1 无线通信技术的发展 1.1 无线通信技术的联合化与集成化 全面结合我国当前资金状况、技术水平以及市场需求等相关方面的内容,将会采用融合方式来对目前的无线网络开展异构网络的联合工作,从而促使通信网络的形成,并成为无线通信技术发展内容之一。现阶段,我国网络融合形式包括:接入网、核心网融合以及业务融合等,对于选择不同的网络来实现接入工作时,需要先对其开展协同工作,从而促使无线网络的使用者达到无线漫游的目的。在构建未来通信终端时,需要为其添加配置能力,并不断提升该项能力,便于计算机与通信技术进行全面的融合,而且在该种技术下通信终端便不会接收到用户的干预内容,同时还可以为用户提供丰富多样的网络接入方式,便于其随时展开网络监控工作,及时更新升级与之相关的软件。除此之外,由于时代不断进步,人们需求水平不断提升,因此未来无线通信技术的构建要全面符合时代发展特征以及全方位满足用户提出的各项需求,而且无线通信技术要保证能够实现多种功能集成的目的,例如语音、数据以及图像业务的综合、无线传输模块的综合等。 1.2 无线网络通信技术的有效融合

无线通信基础知识-复习总结.doc

无线通信基础知识 1、什么是无线通信 利用电磁波的辐射和传播,经过空间传送信息的通信方式称为无线电通信(radio communication),简称无线通信。 2、简述无线通信的特征(特点) 1)、电波传播条件复杂。电波会随传播距离的增加而发生弥散损耗,会受到地形、地物的遮蔽而发生阴影效应,会因多径产生电平衰落和吋延扩展;通信中的快速移动引起多普勒频移。2)、噪声和干扰严重。除外部干扰,如天电干扰、工业干扰和信道噪声外,系统本身和不同系统之间,还会产生各种干扰,如邻道干扰、互调干扰、共道干扰、多址干扰以及远近效应等。3)、要求频带利用率高。无线通信可以利用的频谱资源非常有限,而通信业务量的需求却与日俱增。解决方法:要开辟和启用新的频段;要研究各种新技术和新措施,以压缩信号所占的频带宽度和提高频谱利用率。 4)、系统和网络结构复杂。根据通信地区的不同需要,网络可以组成带状、面状或立体状,可单网运行,也可多网并行并互连互通。为此,通信网络必须具备很强的管理和控制功能。5)、可同吋向多个接收端传送信号。 6)、抗灾害能力强。 7)、保密性差。 3、无线通信的分类 4、按使用对象分为:军用和民用 5、按使用环境分为:陆地、海上和空中 6、按多址方式分为:频分多址、时分多址和码分多址、空分多址等 7、按覆盖范围分为:城域网、局域网和个域网 8、按业务类型分为:话务网、数据网和综合业务网 9、按服务对象分为:专用网和公用网 10、按工作方式分为:单工、双工和半双工 11、按信号形式分为:模拟网和数字网 无线通信的传播特性 1、通信系统的信道按信道特性参数随外界因素影响而变化的快慢可以分为儿种?无线通信的 信道属于哪种? 信道分类1、恒参信道;2、随参(变参)信道:无线通信信道 2、地形可以分为几种?地物呢? 1)、为了计算移动信道中信号电场强度中值(或传播损耗中值),可将地形分为两大类,即中等起伏地形和不规则地形。 1、所谓中等起伏地形是指在传播路径的地形剖面图上,地面起伏高度不超过20m,且起伏 缓慢,峰点与谷点之间的水平距离大于起伏高度。以中等起伏地形作传播基准。 2、其它地形如丘陵、孤立山岳、斜坡和水陆混合地形等统称为不规则地形。 2)、不同地物环境其传播条件不同,按照地物的密集程度不同可分为三类地区: 1、开阔地。在电波传播的路径上无高大树木、建筑物等障碍物,呈开阔状地面,如农田、 荒野、广场、沙漠和戈壁滩等; 2、郊区。在靠近移动台近处有些障碍物但不稠密,例如,有少量的低层房屋或小树林等;

铁路通信的发展趋势

铁路通信的发展趋势 铁路通信网发展至今,发生了天翻地覆的变化,从模拟到数字,从电缆到光缆,从PDH到SDH,从STM到ATM,从ATM到IP/DWDM……。一代又一代新技术、新系统层出不穷。然而,绝大多数新技术、新系统都是应用于骨干网中,用户接入网仍为模拟双绞线技术所主宰。由于社会经济和通信技术的发展,单纯的语音业务已难以满足用户和发展的需求,特别是光纤技术的出现,以及用户对新业务,尤其是对数据业务的需求增加,给整个网络的结构带来了影响,同时也为用户接入网的改造和更新带来了转机。所谓接入网是指骨干网络到用户终端之间的所有设备。其长度一般为几百米到几公里,因而被形象地称为"最后一公里"。由于骨干网一般采用光纤结构,传输速度快,因此,接入网便成为了整个网络系统的瓶颈 2 铁路无线通信接入网的发展过程 20世纪50年代,中国铁路车站值班员和编组场内线路值班员开始使用列车无线调度电话和站内无线电话,采用工作频率为2MHz和40MHz的电子管设备。70年代初,全部改用150MHz和450MHz频段的晶体管设备。80年代初,在编组场上推广应用携带小型的150MHz、450MHz的站内无线电话。铁路沿线维护作业人员的无线电话也相继推广使用。养路、施工的报警无线装置也得到迅速的发展和应用,并进行了山区隧道区段的列车无线调度电话试验。形成了铁路无线通信的覆盖范围为铁路沿线的狭长地带和站场、车站所在地的区域。由于铁路沿线地形复杂、无线电传播环境恶劣,加之列车的快速移动,决定了铁路无线通信网与公用移动通信网和区域性的专业移动通信网的差别,它是一种属于线面结合、以线为主的链状网。 3 铁路无线通信接入网的应用现状 由于铁路列车具有高速运动的特点,因而无线接入网在铁路通信网中占有相当大的比重。随着铁路现代化改造进程的迅速推进,从前单一的无线列调系统已经远远不能满足铁路无线通信的需要,这样就迫切需要建设一套适合于铁路现代化运营指挥需要的先进的无线通信系统。系统必须可以实现调度中心与车站值班员之间、车站值班员与列车司机之间、列车司机与调度中心之间的通话功能,必须可以实现线路管理区间的公务移动通信功能,同时还必须能够实现调度中心与列车司机室之间实时的双向数据通信功能。这样,专门为铁路通信设计的综合专用数字移动通信系统GSM-R(GSMforRailways)就应运而生了。GSM-Railway属于专用移动通信的一种,专用于铁路的日常运营管理,是非常有效的调度指挥通信工具。GSM-R是基于分组数据的通信方式。它在GSMPhase2+的规范协议的高级语音呼叫功能,如组呼、广播呼叫、多优先级抢占和强拆业务的基础上,加入了基于位置寻址和功能寻址等功能,适用于铁路通信特别是铁路专用调度通信的需要。主要提供无线列调、编组调车通信、区段养护维修作业通信、应急通信、隧道通信等语音通信功能,可为列车自动控制与检测信息提供数据传输通道,并可提供列车自动寻址和旅客服务。 4 铁路无线通信接入网的发展趋势 随着铁路安全、重载、信息化及运营管理等方面对无线通信业务需求日益增多,铁路客票、机务、工务、车辆、电务等多个部门均需提供车地之间无线数据传输通道。铁路车地之间的无线数据传输需求包括:工务轨道动态监测信息无线传输;工务线路环境监测信息无线传输;客车运行安全监控信息(TCDS)无线传

《无线网络技术与应用》课程标准(完整版)

《无线网络技术与应用》课程标准 课程代码:CB010301 课程类型:理论+实践 课程属性:专业拓展课适用专业:计算机网络技术专业 学分:4.5 学时:80 课程负责人: 一、课程定位 (一)课程性质 本课程为计算机网络技术专业的专业拓展课,是以应用为主的网络工程技术类的专业课程。本课程教学的主要任务是使学生掌握无线网络的基础知识,应用及标准,了解无线网络的基础理论和应用工具的使用,为将来开发出可实际应用的技术来加强无线网络打下基础。 (二)课程作用 通过该门课程的学习,使学生能够掌握计算机无线网络的基础知识,了解当前计算机无线网络技术面临的挑战和现状,了解无线网络策略以及无线网络体系的架构,了解常见的网络攻击手段并掌握入侵检测的技术和手段,掌握设计和维护安全的网络及其应用系统的基本手段和常用方法。 (三)前导、后续课程 前导课程:《计算机网络基础》,《网络互联技术》; 后续课程:《网络规划与设计》,《网络工程》 二、课程理念及设计思路 随着计算机技术的发展,计算机网络日新月异,网络设备和网络协议不断升级,教师应对教材的选取及时更新。关注企业先进、实用的安全技术,以满足企业实际需求为基础。将企业技术知识划分成项目,进而细化成任务带进课堂。 以企业无线网络实际应用为主线,将课程知识贯穿课堂。结合先进的无线网络实验室,图文并茂介绍设备组成、工作原理的同时,给学生提供动手实践的机会。利用实验的后台管理功能,及时了解学生的知识掌握情况。每个项目配合一个拓展实训,为学生提供真机实操的锻炼机会。 课程内容由理论教学、实训(仿真实训、拓展实训)两大部分组成,建议课程总学时为 80 学时,其中理论教学 20 学时,实训 60 学时,理论和实践教学

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

无线通信基础知识

序 无线通信之所以成为既富挑战性又能引起研究人员兴趣的课题,主要原因有两个,这两个原因对于有线通信而言基本没有什么影响。首先是衰落(fading)现象;其次是无线用户是在空中进行通信,因此彼此间存在严重的干扰(interference),下面分别做一简要介绍。 1)衰落 首先介绍一些无线衰落信道的特性,与其他通信信道相比,移动信道是最为复杂的一种。电波传播的主要方式是空间波,即直射波、折射波、散射波以及它们的合成波。再加之移动台本身的运动,使得移动台与基站之间的无线信道多变并且难以控制。信号通过无线信道时,会遭受各种衰落的影响,一般来说接收信号的功率可以表达为: P(d)=|d|-n S(d)R(d) 其中d表示移动台与基站的距离向量,|d|表示移动台与基站的距离。根据上式,无线信道对信号的影响可以分为三种: (1) 大尺度衰落:电波在自由空间内的传播损耗|d|-n,其中n一般为3~4,与频率无关; (2) 阴影衰落:S(d)表示,由于传播环境的地形起伏、建筑物和其他障碍物对地波的阻塞或遮蔽而引发的衰落,被称作中等尺度衰落; (3) 小尺度衰落:R(d)表示,它是由发射机和接收机之间的多条信号路径的相长干扰和相消干扰造成的,当空间尺度与载波波长相当时,会出现小尺度衰落,因此小尺度衰落与频率有关。 大尺度衰落与诸如基站规划之类的问题关系更为密切,小尺度衰落是本文的

重点。 2)干扰 干扰可以是与同一台接收机通信的发射机之间的干扰(如蜂窝系统的上行链路),也可以是不同发射机——接收机对之间的干扰(例如不同小区中用户之间的干扰)。

无线信道的多径衰落 无线移动信道的主要特征就是多径传播,即接收机所接收到的信号是通过不同的直射、反射、折射等路径到达接收机,参见图1。由于电波通过各个路径的距离不同,因而各条路径中发射波的到达时间、相位都不相同。不同相位的多个信号在接收端叠加,如果同相叠加则会使信号幅度增强,而反相叠加则会削弱信号幅度。这样,接收信号的幅度将会发生急剧变化,就会产生衰落。 图1 例如发射端发送一个窄脉冲信号,则在接收端可以收到多个窄脉冲,每一个窄脉冲的衰落和时延以及窄脉冲的个数都是不同的。对应一个发送脉冲信号,图2给出接收端所接收到的信号情况。这样就造成了信道的时间弥散性(time dispersion ),其中τmax被定义为最大时延扩展。 在传输过程中,由于时延扩展, 接收信号中的一个符号的波形会扩 展到其他符号当中,造成符号间干 扰( Inter Symbol interference, ISI )。为了避免产生ISI,应该令图2 符号宽度要远远大于无线信道的最大时延扩展,或者符号速率要小于最大时延扩展的倒数。由于移动环境十分复杂,不同地理位置,不同时间所测量到的时延扩

计算机网络技术课程标准完整版

计算机网络技术课程标 准 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《计算机网络技术》课程标准 一、概述 (一)课程性质 1、授课对象 三年制中等职业教育层次学生。 2. 参考课时 68课时,理论教学课46时,实践教学22课时。 3、课程性质 “计算机网络技术基础”是一门专业技术基础课,它的任务是介绍现行的、较成熟的计算机网络技术的基本理论、基础知识、基本技能和基本方法,为学生进一步学习“TCP/IP协议”、“JSP网络程序设计”、“网站设计与网页制作”、“网络多媒体技术”、“网络安全”等后续课程,培养自己成为网络管理员、网络工程师打下扎实的基础。 (二)课程基本理念 我们的课程理念应从学生、知识、社会三维维持适度张力入手,以学生的社会化自觉的职场需求为价值了取向,以职业素质与实践能力的动态发展为基本特征,以社会、政府、企业、学校、学生、教师等多重主体性为运行机制,以多样性、开放性、互动性为开发向度,最终实践高职教育成为营造终身教育中心的历史使命。 (三)课程设计思路 本课程的设计思路是以就业为导向。从计算机网络的实际案例出发,以岗位技能要求为中心,组成十九个教学项目;每个以项目、任务为中心的教学单元都结合实际,目的明确。教学过程的实施采用“理实一体”的模式。理论知识遵循“够用为度”的原则,将考证和职业能力所必需的理论知识点有机地融入各教学单元中。边讲边学、边学边做,做中学、学中做,使学生提高了学习兴趣,加深了对知识的理解,同时也加强了可持续发展能力的培养。 二、课程目标 1、总目标 通过本课程的学习,可以使学生掌握的网络基础知识,有利于学生将来更深入的学习。本课程培养学生吃苦耐劳,爱岗敬业,团队协作的职业精神和诚实,守信,善于沟通与合作的良好品质,为发展职业能力奠定良好的基础。 2、具体目标 了解计算机网络的一些基本术语、概念。

浅谈无线通信技术的发展趋势

浅谈无线通信技术的发展趋势 【摘要】随着科技的进步,通信技术也在不断的发展,无线通信技术也可以实现更加快速的信息传递,为社会的现代化发展提供更加有力的保障,本文以现代无线通信技术的发展为基本研究对象,对无线通信技术的现状进行分析,并研究了未来的无线通信发展。 【关键词】无线通信技术现状发展前景 现代通信技术正朝着高效和绿色的方向不断发展,非传统的通信技术相比也有很大的进步,随着科学技术的不断改变,人们不断提升着无线通信技术的更新和速度,我国无线通信技术也日益完善和成熟,实现了更加高速的通信事业的发展。 一、无线通信的发展特点 无线通信技术具有两个基本的特点,首先,我国移动通信的使用量不断的增加,人们对无线网络的需求也越来越高,通信技术正在不断的更新和发展,无线通信技术也在不断的提高。近年来,更加科学的无线通信技术不断的投入使用,使我国的无线通信技术不断的向前发展,其次,无线通信不受空间和时间的约束,为无线通信事业的发展提供了更好的条件。无线通信技术另一个特点就是移动通信的公众使

用数量正在急剧上升,同时移动通信无线网络的速度和普及率都在不断的增加,为人们提供了更多的便利,也给运营商带来更多的财富。 二、无线通信技术的发展状况 无线通信技术是当前通信事业发展的,核心,无线通信技术正在不断的进步,在这个过程中,无线通信技术的发展呈现以下特点: 2.1宽带固定无线接入技术快速发展 宽带固定无线接入技术具有其优点,因为他网络速度快,且具有一定的灵活性,因此被人们广泛的使用和推广,也为无线接入技术的发展奠定了基本的基础,但宽带固定无线接入技术也存在一定的缺点,比如其技术到目前为止还不太成熟,也容易受到天气的影响而导致网络不佳的情况。为了更加突出地反映宽带固定无线技术的优点,在使用的过程中应注意扬长避短。 2.2蓝牙技术的不断发展 蓝牙技术的使用主要解决了无线通信技术短距离内的通信问题,另一方面蓝牙技术的使用也可以实现数据信息的短距离传送,通过蓝牙设备进行连接,这是无线通信技术未来发展的重要方向。 2.3 Wimax技术的发展 Wimax技术能够提高无线覆盖率,因此是目前无线通信

无线通信技术基础知识

无线通信技术 1.传输介质 传输介质是连接通信设备,为通信设备之间提供信息传输的物理通道;是信息传输的实际载体。有线通信与无线通信中的信号传输,都是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即是可供使用的频谱宽度,高带宽传输介

质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。 无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机和发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值和传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展是对信道色散效应的描述; (4)多普勒扩展:是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 无线信道模型 无线信道模型一般可分为室内传播模型和室外传播模型,后者又可以分为宏蜂窝模型和微蜂窝模型。

数字技术与应用课程标准

数字技术与应用课程标准 课程名称:数字技术与应用 适用专业:机电、通信 1 课程定位和设计思路 1-1课程定位 《数字技术与应用》是一门专业基础课程。通过本课程的学习使学生掌握常用集成逻辑器件的功能、组成特点及典型应用;能够根据要求设计简单的数字电路;能对设计的系统进行实际工件的制作和调试、并对电路制作过程中存在的问题进行分析和排除,从而提高学生的实践能力及综合素质,同时为学习后继课程打好基础。 1-2设计思路 《数字技术与应用》是机电专业一门必修的专业基础实践课程,该课程采用学做一体,以“多功能数字钟”为载体设计了四个项目:项目一、时钟脉冲产生模块(三个工作任务);项目二、计时模块(两个工作任务);项目三、译码显示模块(两个工作任务);项目四、功能控制模块(两个工作任务)来进行教学,该课程原则上在第二学年的第三学期每周4学时,共16周/学期,共64学时/学期,4个学分/学期。 2 工作任务和课程目标 2-1 工作任务

2-2 课程目标 经过64学时的教学,让学生在知识目标,能力目标,和思想教育目标达到相应的要求,并为今后进一步学习后面的课程打下基础。 1.知识目标: (1)掌握数字技术基础知识; (2)熟练掌握基本门电路的结构及工作原理、识别、检测和选用方法; (3)掌握常用组合逻辑电路的基本工作原理和使用方法; (4)熟练掌握各类触发器的外特性; (5)掌握时序逻辑电路的基本工作原理、分析方法; (6)掌握常用脉冲信号的产生、变换及整形; (7)掌握VHDL基本描述方法 (8)了解数字技术的发展方向。 2.能力目标: (1)具有基本门电路的识别、检测和选用方法的能力。 (2)能按要求设计简单的组合逻辑电路; (3)能用VHDL对简单数字电路进行描述; (4)具有对一般数字电路进行分析的能力; (5)具有查阅手册、产品说明书、产品目录等资料的能力; 3.思想教育目标:

铁路通信技术的应用及发展趋势

铁路通信技术的应用及发展趋势 发表时间:2017-10-13T11:16:27.137Z 来源:《基层建设》2017年第16期作者:商宝山 [导读] 不仅能够方便了人们的出行,更对高速铁路的发展有着非常关键的技术支撑作用。基于此,文章就铁路通信技术的应用及发展趋势进行简要的分析,希望可以提供一个有效的借鉴。 天津南环铁路电务有限责任公司天津 300381 摘要:铁路交通运输产业不仅是我国经济结构中的支柱型产业,与社会经济发展、人们生活更是存在着非常紧密联系。通信技术在我国铁路干线中有着非常广泛应用,加强了我国铁路运输的管理力度,将现代通信技术运用到高速铁路中,不仅能够方便了人们的出行,更对高速铁路的发展有着非常关键的技术支撑作用。基于此,文章就铁路通信技术的应用及发展趋势进行简要的分析,希望可以提供一个有效的借鉴。 关键词:铁路通信技术;应用;发展趋势 1.铁路中加强通信技术运用的重要意义 铁路通信技术就是通信手段在铁路运输中的应用。从铁路诞生以来,通信技术经历了由简单的通话调度技术以及报文传输技术发展到了如今的现代化通信技术,大大提高了铁路运行的安全性和可靠性。在铁路系统中通信技术主要是传输和监控铁路系统中的各个环节,将实时的数据传输给指挥中心,通过“人机对话”模式对数据进行分析、管理和控制,以制定相应的应对策略。铁路通信技术的应用包括对行车安全和可靠的控制、行车调度自动化控制、路况的实时监控、设备状况的检测、故障报警和分析等方面。 目前,我国铁路交通运输线路覆盖区域越来越为广泛,铁路交通运输领域发展也得到了国家众多部门的高度重视。铁路通信技术与客运专线的融合,使得我国铁路与客运领域迎来了新的发展机遇。铁路通信技术在客运专线中的应用虽然取得了非常可观成就,但是与西方发达国家相比较还存在一定的差距,技术应用还存在着众多方面进行进一步改善。但是不可否认的是,铁路通信技术在客运专线中的应用具有良好的发展前景。 2.通信技术在铁路系统中的应用 2.1有线通信技术 铁路工程中应用有线通信技术,主要是对基站之间的连接和固定方式以及设施之间的通讯方式进行重要应用,从而达到安全效率高、质量优化和成本低的效果。目前,有线通信技术主要是基于SDH(Synchronous Digital Hierarchy,同步数字体系)进行综合性建设,这是一种非常成熟,应用十分广泛的技术,实现了光纤通信技术的进一步发展。在传输过程中,这项技术在对数据和图像处理上,实现了数据相互融合和交换,在速度上实现了提升,可以达到80Gbit/s,从而可以提高这项技术对数据和图像的传送速度。近年来,通信技术创新较多,随着ATM交换技术、IP通信技术、PTN分组化技术(PTN=分组技术+SDH体验+G/EPON)、OTN(Optical Transport Network,光传送网)等技术的不断更新,创建了接入网和骨干网等连接方式,保证了通信传输技术的安全和效率。 2.2无线通信技术 在铁路工程运输过程中,保证列车高速运行是最直接的目标,因此,为了保证列车的运行安全,需要通过技术应用来实现。传统的铁路工程项目的通信技术,只是在列车即将行驶或即将进站的环节进行应用,而在列车运行过程中一般不进行无线通信,使这项技术在应用环节上受到了限制,也限制了铁路工程的现代化发展。因而应建设先进、发展速度快的系统,在全线区间实现指挥中心和列车运行期间的通信功能。无线通信技术可以为铁路运输提供语音通信、调度通信、列车控制数据传输、调度命令和无线车次号校核信息传送等业务。 2.3集群通信技术 集群通信系统是一种专业化的移动通信系统,其功能性相对比较强大,能够实现通信和程序控制以及计算机网络技术等方面的相互结合,并且实现集中控制和通信一体化发展。在应用过程中,通过对信道进行分配,并利用无线拨号方式将技术进行系统化分配,能对系统资源和效率进行充分利用,提升通信资源的利用率,保证服务质量,降低系统损耗。但是系统在发展中还存在很多问题,例如对公用网络的选择和分配的问题,网络信息不完善或网络容易受到干扰等情况。 3.以光纤通信在铁路信号系统中的应用为例进行分析 3.1铁路通信系统中的光纤通信 铁路通信系统处理提供信息收集与传输平台以外,还连接很多传输系统,其中包括通信专业接入系统,数据通信系统,调度通信系统、专用移动通信系统,应急通信系统;信号专业调度集中系统、微机监测系统、列控监测系统;PASCA-DA系统;信息专业旅客服务系统、票务系统、经营管理信息系统、防灾安全监控系统等,并提供包括64Kb/s、2Mb/s、155Mb/s、622Mb/s、2.5Gb/s、10M/100M及光纤传输通道。在铁路通信的整个传输系统中,中继层和接入层的光纤传输结构不同,中继层的作用是保护光信号不丢失,并且能将信息正确的传输到正确的路线上,因此需要采用高于SDH2.5Gb/s的速率等级,接入层的要求相对较低,主要是建立自愈网路,其速率等级高于SDH622Mb/s即可。此外环境也是影响信息传播的重要因素,铁路运输过程中经过山区和隧道,这些复杂的环境会阻断或影响GSM-R信号传递,车辆脱离控制会造成重大的损失。因此现在光纤技术运用到铁路通信中,在铁路周边建立光纤直放站,辅助天线传播方式,使整个传输系统包括近端机、远端机、光纤、耦合器、天馈线或漏缆等部件,在平坦的地区只需要使用光缆传递信息即可,即可以加快信息传递速度,亦可以节约成本。光缆纤芯数量应满足相关业务需要。 3.2铁路信号系统中的光纤网络 在列车通信系统中,地面设备会不断收集列车运行控制所需的信息,将这些信息以电信号的形式经过轨道电路和点式环线传递给列车头部的信息接收器,列车操控员在接收信息以后对其进行处理,然后通过钢轨(或无线等方式)将信息传递给计算机,计算机经过计算测绘出最佳的速度变化曲线,将绘制的速度曲线与实际运行速度进行对比,如果差别不大就能够保证列车安全运行,如果差距太大,其影响因素多,其中包括雾气等影响因素,则需要列车员作出紧急处理。CTC系统采用光纤将各个串行接口与计算机联锁,车站列控中心系统设备相连;采用光电隔离串行接口通信方式与无线车次号校核、调度命令无线传送、无线调车机车信号和监控装置、微机监测等系统设备相连。将这个系统信息传递方式有电缆传播转变成光纤传播,可以在雷雨天气不受雷电的影响,保证信息传播过程畅通无阻。 综上所述,随着技术的不断更新和改革,铁路通信技术未来的发展中,需要更高的要求和网络保障。相信通过众多科研人员的努力,

王芬《LTE移动通信技术》课程标准

《LTE移动通信技术》课程标准 一、课程基本信息 二、课程性质、定位与任务 1.课程性质与定位 本课程是高职高专通信技术、通信网络与设备、电子信息工程等专业的专业主干课程,从学科性质上看,它是一门专业性很强的课程。当前社会对移动通信市场4G人才的需求量巨大并且十分急迫,开设LTE移动通信技术课程、培养4G 技术人才是未来一段时间高职院校人才培养的重点之一。本门课程侧重于现在发展迅速的移动通信领域的4G技术、设备和开通等方面的知识,更贴近企业,更符合岗位需求,能够做到“理论够用、突出岗位技能、重视实践操作”,较好地体现了面向应用型人才培养的高职高专教育特色。 2.课程任务 本课程任务是使学生在识记、领会、分析应用三个能力层次上,掌握知识的深度和应用知识的能力。应能识记第四代移动通信技术的基础概念、基本原理的涵义,并能表述和判断其是与非;在识记的基础上,能较全面地掌握4G移动通信技术中的OFDM基本原理、MIMO基本原理、协议及移动性管理等内容,能表述相关知识点,分析相关问题的区别与联系;在领会的基础上,能应用4G移动通信原理与技术的基本概念、基本原理和组网技术,理解学会LTE基站的相关设备,分析有关的技术过程和方法,分析有关的系统模型与结构,并能应用有关原理与技术完成LTE基站的开通与维护。 三、课程目标 1.知识目标 (1)认识第四代移动通信技术,了解LTE移动通信的发展历史和前景; (2)理解和掌握LTE移动通信技术的基本技术、工作原理及其应用领域;

(3)知晓LTE基站设备、LTE基站开通与维护的方法; (4)培养学生对移动通信行业的兴趣,为学生全面理解和认识移动通信行业的系统工作原理与技能打下基础。 2.能力目标 (1)具备理解工作任务、制定工作计划、解决实际问题、组织协调的能力;(2)具备数据分析与处理、自主学习新技术、总结工作结果、开拓创新的能力;(3)具备思维严谨、工作踏实、勤奋努力,有应变和经受挫折的能力; (4)有强烈的事业心、高度的责任感和正直的品质,遵守职业道德与法规;(5)有团队合作精神、良好的沟通协调能力、较好的语言表达能力; (6)有较好的安全意识、服务意识。 四、课程建设与教法设计 1.课程建设思路 该课程系统地讲解了LTE移动通信技术、LTE基站设备和开通等方面的相关知识,共有六个模块,系统地论述了LTE基本概念、OFDM基本原理、LTE协议及移动性管理、MIMO基本原理、LTE基站设备、LTE基站开通与维护,每个模块均有相应的习题,并且还安排了LTE基站开通的实训部分。该课程坚持“以就业为导向,以能力培养为本位”的高职高专改革方向,打破传统教学模式,基于工作过程,根据岗位任务需要合理划分工作任务,培养学生在全面认识LTE移动通信技术与系统原理的基础上,建立对LTE移动通信网络的初步分析与系统建设能力,为学生全面理解和认识LTE移动通信行业的工作原理与技能打下基础。 2.教法整体设计 本课程采用课堂实践和课外研究两种形式,其中课堂实践包括教学讲授、课堂讨论、小组互查等形式,以培养学生逻辑思维和学术语言表达的严密性;课外研究包括作业练习、教学观摩、行业调研等形式,目的在于使学生通过实践研究性教学,学会运用所学理论分析LTE移动通信技术中的一些问题,以培养学生的科学研究能力、分析问题和解决问题的能力以及创新能力。 五、课程内容与教学设计(表格可根据课程内容加行)

国内铁路信号技术发展及趋势

国内铁路信号技术发展及趋势 铁路运输与其他各种现代化运输方式相比较,具有受自然条件影响小、运输能力大,能够负担大量客货运输的显著特点。迫于运输市场愈演愈烈的竞争,各国铁路部门都在积极采取铁路新科技来提升铁路的运输能力。而在实现高速、重载运输的同时,要保证列车的行车的安全,就不能不提到铁路信号。铁路信号设备是保证列车行车安全的重要基础设备,其技术水平发展直接影响到了行车安全水平和铁路运输效率。 1.铁路信号的定义 铁路信号是用特定的物体(包括灯)的颜色、形状、位置,或用仪表和音响设备等向铁路行车人员传达有关机车车辆运行条件、行车设备状态以及行车的指示和命令等信息。铁路信号是铁路运输系统中,保证铁路行车安全、提高区间和车站通过能力以及编解能力的手动控制及远程控制的技术和设备的总称;是在行车、调车工作中,用于向行车人员指示行车条件而规定的符号;是显示、联锁、闭塞设备的总称。 2.铁路信号作用及发展历程 铁路信号的最主要的功能就是保证铁路行车安全。 随着列车运行速度的不断提升,从最初的人持信号旗、骑马前行、引导列车前进;到逐渐发展的球形固定信号装置、电报信号、连锁机、轨道接触器、自动停车装置;到后来出现的车内信号、调度集中控制、行车指挥自动化等设备。 每一次铁路速度的提升就会要求一种新型铁路信号的出现;每次铁路信号的革新,就会给铁路运输带来一次质的飞跃。随着铁路信號技术的发展和铁路信号的广泛应用,铁路信号的发展也成为提高铁路区间和车站通过能力、增加铁路运输经济效益的一种现代化技术手段。 3.铁路信号的组成

3.1信号控制设备 信号控制设备是指信号联锁系统,是保障铁路运输安全的核心,是铁路信号中最重要的组成部分。信号控制设备通过信号传输设备接收和发送不同的信息,经由联锁关系来控制信号设备及各种信号的显示。 3.2信号显示设备 信号显示设备指接收来自于信号控制设备的信息,通过信号机,机车信号,控制台、显示器,音响等设备,采用声、光等信息,来实时反应列车和相关信号设备状态的铁路信号设备。 3.3信号传输设备 指服务于信号控制系统与信号显示系统之间,进行各种信息互通的传输设备及媒介。 3.4信号防干扰措施及设备 指为防止信号被其他因素干扰而产生错误的信号显示而设立的防干扰设备及措施。 4.国内铁路信号技术及发展趋势 4.1信号控制设备的技术发展 信号控制设备中的核心是联锁系统。 国内联锁系统发展主要历经了早期的继电器联锁,90年代时期的计算机联锁加安全型继电器执行形式的控制系统,以及目前在广泛推广的计算机联锁系统。 计算机联锁除了自身的联锁系统管理之外,还可以向旅客服务系统、列车运行监督系统以及列车指挥系统等提供信息,加快铁路运输管理的一体化的实现。随着计算机技术的迅速发展,尤其是对于可靠性技术和容错技术的深入研究,计算机联锁技术日趋成熟,我国的计算机联锁也逐步开始由计算机联锁加安全型继电器控制型向全电子计算机联锁转变。 全电子计算联锁系统是基于未来铁路及城市轨道交通联锁设备集成度高、安装速度快、维护方便的使用需求而研制;具有模块化程

城市轨道交通通信与信课程标准 (1)

《城市轨道交通通信与信号》课程标准 1.课程定位与设计思路 1.1课程定位 《城市轨道交通通信与信号》课程是城市轨道交通控制专业一门专业核心课程。本课程与前修课程《城市轨道交通概论》相衔接,使学生进一步对城市轨道交通通信信号系统基础设备基础知识了解与掌握,与后续课程《车站信号计算机连锁》、《区间信号自动控制》等相衔接,为后续课程的学习奠定坚实的基础。 1.2设计思路 本课程所面向的职业岗位为城市轨道交通通信信号设备操作员、施工工艺员、检修员、维护员等,主要从事城轨交通通信信号施工、设备检修、维护、实验调试等工作。根据职业岗位分析,确定本课程的建设思路是:遵循系统化原则,将教学内容分为城轨信号系统与城轨通信系统两大部分。通过本课程的学习,使学生掌握城轨通信信号系统基础设备的组成和作用,并具有一定的操作检修能力,为学生走向工作岗位打下坚实的基础。 2.课程目标 2.1能力目标 (1)能够熟练观察城轨通信信号设备正常工作状态及正常工作指标。 (2)能使用常见电工、电子仪表对进行城轨通信信号设备的特性测试。 (3)能够熟练完成信号机、轨道电路、转辙机的日常维护检修。

(4)能够熟练完成列车自动控制ATC设备的运行维护。 (5)能了解无限集中调度系统的应用。 (6)能够完成城轨电话系统、闭路电视系统的日常维护。 (7)能够完成时钟系统的调整维护。 2.2知识目标 (1)了解城轨交通通信信号设备的概况及特点。 (2)掌握城轨交通信号基础设备相关知识。 (3)掌握车辆段及正线连锁设备基本结构与操作方式相关知识。 (4)掌握列车自动控制ATC设备的构成、功能和维护等相关知识。 (5)掌握城轨交通通信系统的组成及功能相关知识。 (6)掌握城轨交通电话系统、无线调度系统、闭路电视系统、广播系统及时钟系统相关知识。 (7)掌握城轨交通通信信号设备的技术指标和正常工作参数,使学生具有城轨通信信号设备使用、检测和维护等基本技能。 2.3素质目标 (1)培养学生共享知识的能力,即团队合作能力。 (2)培养学生发现知识的能力,即创新能力和创造能力。

通信工程制图课程标准

《绘图与CAD》课程标准 一、课程概况 (一)制定依据 本标准依据《通信网络与设备专业人才培养方案》中对《通信工程制图》课 程培养目标的要求制定。 (二)课程的性质和作用 课程的性质:《通信工程制图》课程是通信网络与设备专业必修的专业优质 课程,是校企合作开发的基于工作过程系统化的学习领域课程。 课程的作用:《通信工程制图》课程使工程施工技术人员通过阅读图纸就能 够了解工程规模、工程内容,统计出工程量及编制工程概预算。只有绘制出准确 的通信工程图纸,才能对通信工程施工具有正确的指导性意义。因此,通信工程 技术人员必须要掌握通信制图的方法。通过本课程的学习使学生对通信工程制 图与设计有一个比较全面清晰的认识具体要体现:课程要符合高技能人才培养目 标和专业相关技术领域职业岗位(群)的任职要求;本课程对学生职业能力培养 和职业素养养成要起主要支撑或明显的促进作用,要反映本课程与前、后续课程 的衔接关系。 本门课程的先修课程包括:《计算机应用基础》、《数模电子技术》、后续课程有:《移动通信设备安装及配置》。通过学习,学生应达绘制工程制图的要求。 2、课程标准设计思路 《通信工程制图》根据“实验化教学、工学相结合”原则,要求根据订单班 学生数周的顶岗学习,有针对性的完成与通信工程制图有关的移动通信技术知 识,了解实际应用软件中的关键知识在课程中的定位,达到学生学以致用的基本 要求。强调以“以本专业够用”为度,同时要扩宽学生的相关知识面,适当增加 移动通信领域中新技术的介绍与讲解。 以职业能力和职业素质培养为主线组织教学内容;加强实践教学环节,增加 实训学时,少讲多练,以提高学生的绘图及识图能力。 《通信工程制图》课程是体现以学生为主体的、以行动为导向,基于工作过 程系统化的学习领域课程,在学习过程中,学生首先要获得的是关于职业内容和 工作环境的感性认识,进而获得与职业相关的专业知识和技能。强调以学生直接

无线通信技术基础知识

无线通信技术 1、传输介质 传输介质就是连接通信设备,为通信设备之间提供信息传输的物理通道;就是信息传输的实际载体。有线通信与无线通信中的信号传输,都就是电磁波在不同介质中的传播过程,在这一过程中对电磁波频谱的使用从根本上决定了通信过程的信息传输能力。 传输介质可以分为三大类:①有线通信,②无线通信,③光纤通信。 对于不同的传输介质,适宜使用不同的频率。具体情况可见下表。 不同传输媒介可提供不同的通信的带宽。带宽即就是可供使用的频谱宽度,高带宽传输介质可以承载较高的比特率。 2无线信道简介 信道又指“通路”,两点之间用于收发的单向或双向通路。可分为有线、无线两大类。 无线信道相对于有线信道通信质量差很多。有限信道典型的信噪比约为46dB,(信号电平比噪声电平高4万倍)。无限信道信噪比波动通常不超过2dB,同时有多重因素会导致信号衰落(骤然降低)。引起衰落的因素有环境有关。

2、1无线信道的传播机制 无线信道基本传播机制如下: ①直射:即无线信号在自由空间中的传播; ②反射:当电磁波遇到比波长大得多的物体时,发生反射,反射一般在地球表面,建筑物、墙壁表面发生; ③绕射:当接收机与发射机之间的无线路径被尖锐的物体边缘阻挡时发生绕射; ④散射:当无线路径中存在小于波长的物体并且单位体积内这种障碍物体的数量较多的时候发生散射。散射发生在粗糙表面、小物体或其它不规则物体上,一般树叶、灯柱等会引起散射。 2、2无线信道的指标 (1)传播损耗:包括以下三类。 ①路径损耗:电波弥散特性造成,反映在公里量级空间距离内,接收信号电平的衰减(也称为大尺度衰落); ②阴影衰落:即慢衰落,就是接收信号的场强在长时间内的缓慢变化,一般由于电波在传播路径上遇到由于障碍物的电磁场阴影区所引起的; ③多径衰落:即快衰落,就是接收信号场强在整个波长内迅速的随机变化,一般主要由于多径效应引起的。 (2)传播时延:包括传播时延的平均值、传播时延的最大值与传播时延的统计特性等; (3)时延扩展:信号通过不同的路径沿不同的方向到达接收端会引起时延扩展,时延扩展就是对信道色散效应的描述; (4)多普勒扩展:就是一种由于多普勒频移现象引起的衰落过程的频率扩散,又称时间选择性衰落,就是对信道时变效应的描述; (5)干扰:包括干扰的性质以及干扰的强度。 2、3无线信道模型 无线信道模型一般可分为室内传播模型与室外传播模型,后者又可以分为宏蜂窝模型与微蜂窝模型。 (1)室内传播模型:室内传播模型的主要特点就是覆盖范围小、环境变动较大、不受气候影响,但受建筑材料影响大。典型模型包括:对数距离路径损耗模型、Ericsson多重断点模型等; (2)室外宏蜂窝模型:当基站天线架设较高、覆盖范围较大时所使用的一类模型。实际使用中一般就是几种宏蜂窝模型结合使用来完成网络规划; (3)室外微蜂窝模型:当基站天线的架设高度在3~6m时,多使用室外微蜂窝模型;其描述的损耗可分为视距损耗与非视距损耗。

相关文档
最新文档