带传动-刚性转子动平衡实验报告

带传动-刚性转子动平衡实验报告
带传动-刚性转子动平衡实验报告

带传动、刚性转子动平衡实验报告

2012年

带传动实验报告

专业及班级: 姓名: 第次实验

实验成绩

同组人姓名: 日期:

一、实验目的

(1)、了解带传动实验台的基本结构与设计原理; (2)、观察带传动的弹性滑动与打滑现象;

(3)、了解带传动在不同皮带在不同间距、不同转速下的负载与滑差率、负载与传动效率之间的关系;绘制滑动率曲线及效率曲线; (4)、掌握应用计算机测试分析软件。 二、实验原理

当预紧力一定时,主动电机的皮带轮和从动电机的皮带轮与皮带的摩擦力足够可以使主动皮带轮与从动皮带轮的速度保持一致。这时,从主V V =。这时,皮带的滑差率0%1001

2

1=?-=

V V V ε。当主动轮与皮带轮直径相等时0%1001

2

1=?-=

n n n ε。当我们让发电机负载即让灯泡消耗电能时,发电机因消耗了电能故其主轴开始变慢,而主动轮还是初始的速度运转,故皮带开始打滑。当我们的负载越大发电机主轴转速就越慢,皮带打滑就越大。皮带相对发电机作绝对打滑的过程中,因为皮带据有弹性,且主电动机是可以活动的,故皮带相对电动机皮带轮就开始弹性打滑。实事上皮带在打滑过程中始终都保持了弹性打

滑,皮带在打滑的过程中,功率将在传动中损耗:功率n M N ?=π

30

,故效率

%1002

21

1???=

N M n M η,而111L F M ?=(1F 为压力传感器传感力读数,1L 这里等于

100),222L F M ?=(2F 为压力传感器传感力读数,2L 这里等于100),故效率

%1002

221

11?????=

ωωηL F L F 。

实验主要技术参数

(1) 直流电机功率:2台×375W

(2) 主动电机调速范围: 0~1500转/分 (3) 带轮直径:D 1=D 2=120mm

(4) 负载变动范围:0-375W (有级)

(5) 实验台尺寸:长×宽×高=640×650×420 (6) 电源:220V 交流 三、实验数据 计算依据:%100112

211221

2???=??==

n M n M M M P P ωωη,%100121?-=n n n ε

参数

序号

n 1(r/min)

n 2(r/min)

ε(%)

M 1(Nm)

M 2(Nm)

η(%)

1 1011

1011

2.5

2 1007 829 17.7 5.8 0.8 11.35

3 1005 672 33.1 9.1 2.5 18.36

4 1003 314 68.7 13.3 4.1 9.6

5 5 1003 200 80.1 17.5 5.8 6.61

6 1003 148 85.2 21.6 7.5 5.12

7 1003 133 86.7 25.

8 9.1 4.68 8 1004 122 87.8 28.3 10.0 4.2

9 9 1003 114 88.6 30.8 10.8 3.99 10 1004 100 90.0 36.6 13.3 3.62 11 1003 96 90.4 41.6 15 3.45 12

1003

87

91.3

50.8

19.1

3.26

四、实验数据分析及曲线(理论曲线与实验曲线)

横坐标为有效拉力e F ,2

2

2D M F e =

..1202mm D =如图1所示,带传动的滑动(曲线1)随着带的有效拉力F 的增大而增大,表示这种关系的曲线称为滑动曲线。当有效拉力F 小于临界点F '点时,滑动率与有效拉力F 成线性关系,带处于弹性滑动工作状态;当有效拉力F 超过临界点F '点以后,滑动率急剧上升,带处于弹性滑动与打滑同时存在的工作状态。当有效拉力等于F max 时,滑动率近于直线上

升,带处于完全打滑的工作状态。图中曲线2为带传动的效率曲线,即表示带传动效率η与有效拉力F 之间关系的曲线。当有效拉力增加时,传动效率逐渐提高,当有效拉力F 超过临界点F '点以后,传动效率急剧下降。带传动最合理的状态,应使有效拉力F 等于或稍小于临界点F ',这时带传动的效率最高,滑动率ε =1% ~ 2%,并且还有余力负担短时间(如启动时)的过载。

实际曲线:

实验数据:

图2 效率实验曲线

0510150

100

200

300

400

效率曲线

有效拉力Fe/N

效率/%

图3 滑移率实验曲线

(%)η

0 11.35 18.36 9.65 6.61 5.12 4.68 4.29 3.99 3.62 3.45 3.26

(%)ε

0 17.7 33.1 68.7 80.1 85.2 86.7 87.8 88.6 90 90.4 91.3 Fe (N ) 0 13.33

41.67

68.3 96.7

125

151.67 166.67

180

222

250

318.33

1-滑动理论曲线 2-效率理论曲线 图1带传动的滑动理论曲线和效率理论曲线

204060801000

100

200

300

400

滑移率曲线

有效拉力Fe/N

滑移率/%

实验数据分析:

对比理论曲线与实际曲线,在临界有效拉力的范围内,随着有效拉力的增加滑移率线性增加(此时是弹性滑动),效率也增加,超过临界有效拉力在最大有效拉力范围内时,滑移率急剧上升(此时也是弹性滑动),但效率有所下降,超过最大允许的有效拉力时,皮带就会打滑,滑移率进一步上升,效率也进一步下降,但有效拉力到一定的值时,滑移率和效率的变化就不大了。

五、思考并回答下列题目

1. 带传动产生弹性滑动和打滑现象的原因是什么?在实验中,你怎样观察到这两种现象的出现?如何判断和区分它们?

答:带传动产生的弹性滑动现象

传动带是弹性体,受拉后会产生弹性变形,由于紧边和松边拉力不同,因而弹性 变形也不同。带的弹性滑动是由于带的拉力差和带的弹性变形引起的,弹性滑动是带传 动正常工作时固有的特性,不能完全消除是不可避免的。 传送带的打滑现象

随着载荷的增加带传动的有效拉力达到最大(临界)值。如果工作载荷继续增大, 则带与带轮间就将发生显著的相对滑动,即产生打滑。

2. 当21D D ≠时,打滑先发生在哪个带轮上,为什么?

答:当21D D ≠时 ,因为传送带在大轮上的包角总是大于小轮上的包角 ,所以打滑总是 首先在小带轮上发生。

3. 影响带的传动能力的因素有哪些? 影响带传动能力的因素有:

带的传动比 传动比过大,接触角减小,传动能力损失大.[滑动损失] 带与轮之间的摩擦 摩擦接触面越大,传动能力越好[双皮带比单皮带好]

传动过程中的张紧力 合适的张紧力可达到最佳的传动能力,过紧时因摩擦压力大,皮带发热,导致损耗增加,甚至损坏轴承:皮带过松时则滑动损失大,降低传动效率。

刚性转子动平衡实验报告

专业及班级:姓名:第一次试验

实验成绩同组人姓名:日期:

一、实验目的

(1)、掌握刚性转子动平衡的基本原理和步骤;

(2)、掌握虚拟基频检测仪和相关测试仪器的使用;

(3)、了解动静法的工程应用。

二、实验设备

序号名称数量

主要技术指

参考型

生产厂家

1 转子系统 1 转速:0~4000r/min

临界转速≥

5000r/min

R4A

清华大学振

动实验室

2 调速器 1 调速:

500~4100r/min

定制

清华大学振

动实验室

3 光电变换器 1 转速:0.1~5000

r/min

通用型

清华大学振

动实验室

4 电涡流位移计 2 频率:0~1000Hz

位移:2mm峰峰值

85811

清华桑拓研

究所

5 电子天平 1 200±0.01g ES-200A 长沙湘平公司

6 微型计算机 1 通用型

测试系统如图一所示。部分设备的原理和功用说明如下:

(1)转子系统

转子轴上固定有四个圆盘,两端用含油轴承支承。电动机通过连轴结拖动转轴,用调速器设置转速。最高工作转速为2000r/min,远低于转子一轴承系统的固有频率。

(2)光电变换器、电涡流位移计及计算机虚拟动平衡仪

图一测试系统示意图图二测试虚拟设备连线图与计算机虚拟动平衡仪相连接的光电探头,给出入射光和反射光。在转子的

测速圆盘贴上一定宽度的黑纸。调整探头方位使入射光束准确指向圆盘中心。当圆盘转动时,由于反射光的强弱变化,光电变换器产生对应黑带的电脉冲,馈入计算机虚拟动平衡仪(图二)作为转速测量和相位测量的基准信号。

电涡流位移计包括探头和前置器。探头前端有一扁形线圈,由前置器提供高频(2MHz)电流。当它靠近金属导体测量对象时,后者表面产生感应电涡流。间隙变化,电涡流的强弱随之变化,线圈的供电电流也发生变化,从而在串联于线圈的电容上产生被调制的电压信号,此信号经过前置器的解调、检波、放大后,成为在一定范围内与间隙大小成比例的电压信号。本实验使用两个电涡流位移计,分别检测两个轴承座的水平振动位移。两路位移信号通过切换开关依次馈入计算机虚拟动平衡仪,以光电变换器给出的电脉冲为参考,进行同频检测(滤除谐波干扰)和相位比较后,在计算机虚拟动平衡仪面板上显示出振动位移的幅值、相位及转速数据。

同频检测前后的振动位移波形,通过计算机虚拟电子示波器随时观察。(3)动平衡计算软件

两平面影响系数法的核心是通过求解矢量方程(5)或方程(6)计算平衡校正量,求解方程涉及复数的矩阵运算。本实验采用专用动平衡计算软件。实验者也可用MATLAB等语言自行编制解算程序。

(4)电子天平

用以量测平衡加重的质量。

三、实验原理

工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。

根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性

力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个力偶M (等于力系对质心C 的主矩C i Μ)(==∑S m M C ),见图一。如果转子的质心在转轴上且转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。

图三 转子系统与力系简化

刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离1r 、2r (称校正半径),与转子上某一参考标记成夹角1θ、2θ处,分别附加一块质量为1m 、2m 的重块(称校正质量)。如能使两质量1m 和2m 的离心惯性力(其大小分别为211ωr m 和222ωr m ,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。

四、 实验数据与矢量关系图

(1) 实验数据

平衡转速b n = 1500 r/min

A 轴承 I 平面

B 轴承 II 平面 幅

相位 幅值 相位

原始振动A0V ,

B0V

6.3μm

26 deg

10μm

335 deg

I 平面试重1Q

8.04克 26deg

A1V ,B1V

2.4μm

105deg

8.4μm

330deg

II 平面试重2Q

9.35克 335 deg A2V ,B2V

5.9μm

35 deg 6.2μm 354 deg 计算校正量21,p p 6.40克 65.3 deg 19.19克 353.3 deg 实际加重质量

21,m m

6.50克

68 deg

19.17克

356deg

平衡后振动A V ,

B V

0.3μm

110 deg

1.1μm

150deg

*平衡率B

A ηη, 95.24% 89 %

(2)实测数据的矢量关系图

图四 (a ) b

五、 实验方法和实验结果的分析和讨论 1.实验方法:两平面影响系数法

两平面影响系数法的过程如下;

(1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量A A V ψ∠=0A0V 和B B B V ψ∠=00V ,其中0A V 和0B V 是振动

位移(也可以是速度或加速度)的幅值,A ψ和B ψ是振动信号对于转子上参考标记有关的参考脉冲的相位角。

(2)根据转子的结构,选定两个校正面I 、II 并确定校正半径1r 、2r 。先在平面I 上加一“试重”(试质量)111β∠=t m Q ,其中11Q m t =为试重质量,1β为试重相对参考标记的方位角,以顺转向为正。在相同转速下测量轴承A 、B 的振动量1V A 和1V B 。

矢量关系见图四(a),(b)。显然,矢量A0A1V V -及B0B1V V -为平面I 上加试重1

Q 所引起的轴承振动的变化,称为试重1Q 的效果矢量。方位角为零度的单位试重的效果矢量称为影响系数。因而,我们可由下式求得影响系数。

1

11Q V V A A A -=

α (1)

1

11Q V V B B B -=

α (2)

图五 矢量关系图

(3)取走1Q ,在平面II 上加试重222β∠=t m Q ,22Q m t =为试重质量,2β为试重方位角。同样测得轴承A 、B 的振动量A2V 和B2V ,从而求得效果矢量A0A2V V -和B0B2V V -及影响系数

2

A0

A2A2Q V V α-=

(3)

2

B0

B2B2Q V V α-=

(4)

(4)校正平面I 、II 上所需的校正质量111θ∠=m p 和222θ∠=m p ,可通过解下列矢量方程组求得:

??

?-=+-=+B02

B21B1A0

2A21A1V p αp αV p αp α (5)

?

?????B2B1A2A1αααα?

?????-=???

???B0A021V V p p (6)

11p m =,22p m =为校正质量,1θ,2θ为校正质量的方位角。

求解矢量方程最好能使用计算机。本试验采用专用的动平衡计算程序。

(5)根据计算结果,在转子上安装校正质量,重新起动转子,如振动已减小到满意程度,则平衡结束,否则可重复上面步骤,再进行一次修正平衡。

2.实验结果分析:

根据平衡率的结果看,两者相差偏大, 出现的原因可能是

1).在实验过程中,平衡块没有固定好,在轴高速转动时,平衡块有偏移,造成平衡率相差比较大;

2).B 平面上的平衡块的质量是A 平面上的3倍,在安装平衡块时安装角度会有误差,但B 平面上的角度误差要比A 平面上的角度误差对平衡率的影响要大,故B 平面上的平衡率较A 平面要小。

刚性转子动平衡

实验二刚性转子动平衡实验 2011010292 水利水电工程系 水工13班 翟桐 同组成员:李嘉荣、成一凡、陈钟望、闫封任 实验日期:2012.11.15 一、 实验目的: 1. 掌握刚性转子动平衡的基本原理和步骤; 2. 掌握虚拟基频检测仪和相关测试仪器的使用; 3. 了解动静法的工程应用。 二、 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、 实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个 力偶M (等于力系对质心C 的主矩()∑== c i c m S m M )。如果转子的质心在转轴上且 转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平

转子现场动平衡实验

实验一 转子现场动平衡实验 实验目的 通过本实验了解动平衡实验的基本方法 1. 实验原理 在实际工作过程中人们通常用单面加重三元作图法进行叶轮、转子等设备的现场动平衡,以消除过大的振动超差。这一方法的优点是设备简单——只需一块测振表。但缺点是作图分析的过程复杂,不易被掌握,而且容易出现错误。为此,我们在这里提出了一种简单易行的方法——单面现场动平衡的三点加重法。 假设在假设转子上有一不平衡量m ,所处角度为α,用分量m x 、m y 表示不平衡量。 m x =mcos α m y =msin α 为了确定不平衡量m 的大小和位置α,启动转子在工作转速下旋转,用测振设备在一固定点测试振动振速,设振速为V 0,则存在下列关系 式中K为比例系数 图42.1 三点加重法示意图 在P 1(α=0 )点加试重M ,启动转子到工作转速,测得振动振速V 1,有如下关系: 用同样的方式分别在P 2(α=120o )和P 3(α=240 o )点加试重M ,并测得振动值V 2 ,V 3, 有如下关系: 2 2V m m K y x =+ x ) (3P 1 2 2)(V m M m K y x =++222)2 3 ()21(V M m M m K y x =++- 322)2 3()21(V M m M m K y x =-+-

从以上三式推导可得: 从而可以进一步推得: 即由m x ,m y 计算不平衡质量m 和位置α。 2. 实验仪器和设备 1. 计算机 n 台 2. DRVI 快速可重组虚拟仪器平台 1套 3. 速度传感器(CD-21) 1套 4. 蓝津数据采集仪(DRDAQ-EPP2) 1台 5. 开关电源(DRDY-A ) 1套 6. 5芯-BNC 转接线 1条 7. 转子实验台(DRZZS-A ) 1 套 3. 实验步骤及内容 1. 转子动平衡实验结构如图4 2.2所示,将速度传感器通过配套的磁座吸附在转子实 验台底座上,然后通过一根带五芯航空插头-BNC 转接电缆和对应通道连接。图42.5是本实验的信号处理流程框图。 图42.2 转子动平衡实验结构示意图 2. 启动服务器,运行DRVI 主程序,点击DRVI 快捷工具条上的“联机注册”图标, 选择其中的“DRVI 采集仪主卡检测”进行服务器和数据采集仪之间的注册。在实验目录中选择“转子现场动平衡”实验。将参考的实验脚本文件读入DRVI 软件平台,如图42.3所示 3. 在转子实验台的配重盘上选取一个位置(比如贴反光纸的位置)作为初始位置(即 P 1点),然后用转子实验台附件中的螺钉,任意选取一个位置加上,作为不平衡重。 4. 启动转子/振动实验台到稳定转速,点击“数据采集开始”按钮,再点击“获取初 始振动数据”按钮,获取初始振动数据,然后停止运行转子实验台。 ) (3212 12/)(3/)3(23222 220212202322212V V MK m M MK V V m M V V V V K y x -= --=-++=) /(12 2x y y x m m tg a m m m -=+ =

刚性转子动平衡实验报告

刚性转子动平衡实验报 告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

图1 转子系统与力系简 刚性转子动平衡实验 浙江大学,令狐烈 一、实验目的 (1) 掌握刚性转子动平衡的基本原理和步骤; (2) 掌握虚拟基频检测仪和相关测试仪器的使用; 二、实验内容和实验原理 1.实验内容 采用虚拟仪器技术对一多圆盘刚性转子进行动平衡。转子系统如图1所示,转子存在原始不平衡质量,左右两个圆盘为平衡平面。拟测试原始不平衡量及相位,并在两个平衡平面上配重,便残余不平衡量控制在一定范围。 2.实验原理 一个动不平衡的刚性回转体绕其回转轴线转动时,该构件上所有的不平衡重量所产生的离心惯力总可以转化为任选的两个垂直于回转轴线的平面内的两个当量不平衡质量m1和m2 (它们的质心位置分别为r1和r2)所产生的离心力m1r1w 2和m2r2w 2,动平衡的任务就是在这两个任选的平面(称为平衡基面)内的适当位置(r3平和r4平)加上两个适当大小的平 衡重G3平和G4,使它们产生的平衡力与不平衡重量产生的不平衡力大小相等,而方向相反。此时,ΣP=0且ΣM=0,使该回转体达到动平衡。 三、实验装置 序号 名 称 数量 1 多盘转子系统 1 2 调速器 1 3 调速电机 1 4 相位传感器 1 5 双悬臂梁水平位移传感器 1 6 电子天平 1 7 微型计算机(安装清华大学的dynamic balance 软件) 1

四、实验步骤 1. 虚拟仪器接线 进入“刚性转子动平衡”程序,点击“设备模拟连接”图标,按图3示用鼠标左键连接虚拟测试仪器,如连线错误,用鼠标左键单击“重新连接”按钮。确认无误后,用鼠标左键单击“连接完毕”按钮,如果出现“连接错误”的提示,则连接有错,需要按“确定”,再按“重新连接”。如果出现“连接正确”的提示,按“确定”后,可获得与图4相同的虚拟动平衡仪应用程序界面。 2. 原始不平衡量测试 (1) 将转速控制器转速b n 设定为1200r/min ,启动转子2至3分钟使转速保持稳定。 (2) 点击“基频检测”图标,进入图4的状态下,用鼠标左键按下左上角按钮“开始”启动虚拟动平衡仪,点击“A 通道”、“B 通道”进行通道切换。待读数基本稳定后,记录转子原始不平衡引起左(A )、(B )轴承座振动位移基频成份的幅值和相位角 A A ψ∠,V 0、 B B ψ∠,V 0。 3. 平衡处理 (1) 点击“动平衡计算”图标,调用专用的动平衡计算程序(图5),输入测出的初始不平衡量。 (2) 转速回零。在I 平面(1号圆盘)上任选方位加一试重1t m ,记录1t m 的值(用天平测量,可取其在6~12克之间)及固定的相位角1β(见1号圆盘相位标记)。 (3) 启动转子,重新调到平衡转速b n ,测出I 平面加重后,两个轴承座振动位移的幅值和相位角(1V A 和1V B )。同样将值输入到动平衡计算程序中。 (4) 转速回零。拆除1t m ,在II 平面(4号圆盘)上任选方位加一试重2t m 。测量记录2t m 的值及其固定方位角2β。 图3 计算机虚拟动平衡仪显示界面 图2 测试虚拟设备连线图

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

《转子动平衡——原理、方法和标准》.pdf

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、 动不平衡),而且还要知道转子的宽径比及转速决定了采 用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首 先在低于它的70%第一监界转速下,在它的两端平 面内加配重平衡好后,这两个加好的配重将补偿掉 分布在整个转子上的不平衡质量,如果把这个转子 的转速提高到它的第一临界转速的70%以上,这个 转子由于位于转子中心处的不平衡质量所产生的离 心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而 产生新的不平衡问题,此时在新的转速下又有必要 在转子两端的平衡面内重新进行动平衡工作,而以 后当转子转速降下来后转子又会进入到不平衡状 态。为了能在一定的转速范围内,确保转子都能处 在平衡的工作状态下,唯一的解决办法是采用多平 面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

刚性转子动平衡实验

刚性转子动平衡实验 一、实验目的 1.掌握刚性转子动平衡的基本原理和步骤。 2.掌握虚拟基频检测仪和相关测试仪器的使用。 3.熟悉动静法的工程应用。 二、实验性质 设计性实验 三、实验装置(图5-1) 1.动平衡机 2.电涡流传感器 3.前置器 4.接线盒 5.调速器 6.电子天平 7.配重 8.微型计算机 四、实验背景与基本原理 工程中许多高速转动的机器:气轮机、发电机、电动机、陀螺马达等其转子都不是理想的对称刚体,在轴承上安装时也存在着误差(既有偏心又有偏角)。所以工作时会产生不平衡的惯性力系,引起很大的轴承动约束力。这种交变的动约束力可引起轴承支座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。消除动约束力的方法是对转子进行动平衡,即通过在转子上适当的地方附加(或除去)小块质量,用其产生的惯性力去平衡原来不平衡的惯性力系,使转轴成为有一定精度的中心惯性主轴。 本实验采用两平面影响系数法对一多圆盘刚性转子进行动平衡。这是刚性转子动平衡操作的一种常用方法,其目标是使惯性力系的主矢和主矩同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),见图3-2。在离轴一定距离1r 、2r (称校正半径),与转子上某一参考标记成夹角1θ、2θ处,分别附加一块质量为1m 、2m 的重块(称校正质量)。如能使两质量1m 和2m 的惯性力(其大小分别为211ωr m 和2 22ωr m ,ω为转动角速度)正好与原不平衡转子的惯性力系相平衡,那么就实现了刚性转子的动平衡。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行动平衡作业。 本实验装置中,动平衡机的转子是工作转速低于最低阶临界转速的转子,称为刚性转子,反之称为柔性转子。转子由调速器设定转速,由涡流传感器测量轴承的水平振动,经前置器、接线盒送给计算机,由专用程序进行处理。 图 5-1

全息动平衡实验报告

柔性转子全息现场动平衡实验报告 一、实验目的 ◆巩固转子动平衡知识,加深转子动平衡概念的理解; ◆掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备及工具 柔性转子现场动平衡实验台,其中包括PC机及其相关采集分析软件,数据采集箱,试重 块若干,传感器信号连接线等 三、实验原理步骤与方法 本实验应用西安交通大学智能仪器与监测诊断研究所自行研制的对称转子全息动平衡系统对平衡转子实验台进行现场数据采集的基础上,进行试重的添加,测试和计算得出不平衡位置所要求添加的不平衡质量和加重位置,然后通过添加配重完成转子动平衡的实验过程。实验步骤如下: 1.在平衡转速下测量原始失衡状态的转子振动,获取振动的原始数据及信息; 2.停车后在转子左右加重盘上添加试重质量,启动转子到平衡转速,测量并获取添加试重后转子的振动数据及信息; 3.停车后除去添加的试重; 4.根据前两步测量的振动数据和添加试重大小、方位等信息,计算转子实际平衡配重的大小和方位; 5.按照计算结果分别在左右平衡盘上添加平衡配重; 6.启动转子到平衡转速,验证平衡效果。 注:试验截图便于叙述的情况下,请酌情加入截图在本报告后面给出! 结果简要分析及结论: 本实验将影响系数法和全息动平衡法相结合,在原始平衡转速下,由不平衡质量产生的离心力引起较强烈的强迫振动响应,基于原始振动数据和初次添加的振动质量,进行影响系数法计算后,再次配重结果如下图所示: 1测量面X、Y振动峰峰值配重前后比分别为1.90:1,1.99:1; 2测量面X、Y振动峰峰值配重前后比分别为3.91:1,2.12:1。

说明合理配重后,转子不平衡振动情况得到了明显改善。同时,采用影响系数法进行计算分析,可以以较少的试重起车次数获得较好的配重结果。 另外,采用全息动平衡法,消除了信号中的噪音,轴心轨迹较为清晰。同时,我们观察到轨迹上有许多突变的尖点,说明有可能存在动静碰面。 实验注意事项: 1)检验传感器安装和数据线是否正确,以及所有电源是否已经打开。 2)检验加重块是否安置正确,加重用的螺丝刀是否放置完好。 3)启车时,首先启动右侧的启车按钮,然后再选择升速,注意,右侧有三个档位依次: 盘车、启车和停车。 4)升速和减速时,速率不能过小,以便与快速冲过临界转速; 5)本转子的临界转速为2000r/min,实验转速不宜选择太接近; 6)停车时,先减速至盘车转速,再停车,不能直接停车。 7)加重时,必须带上手套,并在转子平衡后添加,注意加重块的角度和质量; 8)实验完成后,检验加重块是否取下,放置好加重块。清洁好实验台,盖好台布。 三、试验记录及结果 试验记录及分析结果: 1

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

刚性转动零件的静平衡与动平衡试验的概述

刚性转动零件的静平衡与动平衡试验的概述1. 基本概念: 1.1不平衡离心力基本公式: 具有一定转速的刚性转动件(或称转子),由于材料组织不均匀、加工外形的误差、装配误差以及结构形状局部不对称(如键槽)等原因,使通过转子重心的主惯性轴与旋转轴线不相重合,因而旋转时,转子产生不平衡离心力,其值由下式计算: 式中:G------转子的重量(公斤) e-------转子的重心对旋转轴线的偏心量(毫米) n-------转子的转速(转/分) ω------转子的角速度(弧度/秒) g-------重力加速度9800(毫米/秒2) 由上式可知,当重型或高转速的转子,即使具有很小的偏心量,也会引起非常大的不平衡的离心力,成为轴或轴承的磨损、机器或基础振动的主要原由之一.所以零件在加工和装配时,转子必须进行平衡. 1.2转子不平衡类别: 1.2.1转子的惯性轴与旋转轴线不相重合,但相互平行,即转子重心不在旋转轴 线上,如图1a所示.当转子旋转时,将产生不平衡的离心力. 1.2.2转子的主惯性轴与旋转轴线主交错将产生不平衡的离心力,且相交于转 子的重心上,即转子重心在旋转轴线上,如图1b所示.这时转子虽处于平衡状态,但转子旋转时将产生一不平衡力矩. 1.2.3大多数情况下,转子既存在静不平衡,又存在动不平衡,这种情况称静 动不平衡.即转子的主惯性轴与旋转轴线既不重合,又不平行,而相交于转子旋转轴线中非重心的任何一点,如图1c所示.当转子旋转时,将产生一个不平衡的离心力和一个力矩. 1.2.4 转子静不平衡只须在一个平面上(即校正平面)安放一个平衡重量,就可以使转子达 到平衡,故又称单面平衡.平面的重量的数值和位置,在转子静力状态下确定,即将转 子的轴颈放置在水平刀刃支承上,加以观察,就可以看出其不平衡状态,较重部份会 向下转动,这种方法叫静平衡.

动平衡测量原理

动平衡测量原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

刚性转子的平衡条件及平衡校正 回转体的不平衡---回转体的惯性主轴与回转轴不相一致; 刚性转子的不平衡振动,是由于质量分布的不均衡,使转子上受到的所有离心惯性力的合力及所有惯性力偶矩之和不等于零引起的。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正或叫做动平衡试验。 动平衡试验机的组成及其工作原理 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备。一般由机座部套,左右支承架,圈带驱动装置,计算机显示系统,传感器限位支架,光电头等部套组成。 当刚性转子转动时,若转子存在不平衡质量,将产生惯性力,其水平分量将在左右两个支撑上分别产生振动,只要拾取左右两个支撑上的水平振动信号,经过一定的转换,就可以获得转子左右两个校正平面上应增加或减少的质量大小与相位。 在动平衡以前,必须首先解决两校正平面不平衡的相互影响是通过两个校正平面间距b,校正平面到左,右支承间距a, c,而a, b, c 几何参数可以很方便地由被平衡转子确定。 F1, F2: 左右支承上的动压力;P1, P2 : 左右校正平面上不平衡质量的离心力。m1, m2 : 左右校正平面上的不平衡量;a, c : 左右校正平面至支承间的距离 b : 左右校正平面之间距离;R1 R2: 左右校正平面的校正半径 ω:旋转角速度 单缸曲柄连杆机构惯性力测量方法 活塞的速度为 活塞的加速度为 我的论文中的对应表达式与以上两个式子不同: 测量系统机械结构 惯性力测量机的机械系统主要包括驱动机构、摆架。驱动机构通过联轴节带动曲轴达到额定测量转速。摆架支承测量曲柄连杆机构,使之在惯性力作用下产生振动。

刚性转子动平衡实验实验报告

实验刚性转子动平衡实验任务书 一、 实验目的: 1. 掌握刚性转子动平衡的基本原理和步骤; 2. 掌握虚拟基频检测仪和相关测试仪器的使用; 3. 了解动静法的工程应用。 二、 实验内容 采用两平面影响系数法对一多圆盘刚性转子进行动平衡 三、 实验原理 工作转速低于最低阶临界转速的转子称为刚性转子,反之称为柔性转子。本实验采取一种刚性转子动平衡常用的方法—两平面影响系数法。该方法可以不使用专用平衡机,只要求一般的振动测量,适合在转子工作现场进行平衡作业。 根据理论力学的动静法原理,一匀速旋转的长转子,其连续分布的离心惯性力系,可向质心C 简化为过质心的一个力R (大小和方向同力系的主向量∑=i S R )和一个 力偶M (等于力系对质心C 的主矩()∑== c i c m S m M )。如果转子的质心在转轴上且 转轴恰好是转子的惯性主轴,即转轴是转子的中心惯性主轴,则力R 和力偶矩M 的值均为零。这种情况称转子是平衡的;反之,不满足上述条件的转子是不平衡的。不平衡转子的轴与轴承之间产生交变的作用力和反作用力,可引起轴承座和转轴本身的强烈振动,从而影响机器的工作性能和工作寿命。 刚性转子动平衡的目标是使离心惯性力系的主向量和主矩的值同时趋近于零。为此,先在转子上任意选定两个截面I 、II (称校正平面),在离轴线一定距离r 1、r 2(称校正半径),与转子上某一参考标记成夹角θ1、θ2处,分别附加一块质量为m 1、m 2的重块(称校正质量)。如能使两质量m 1和m 2的离心惯性力(其大小分别为m 1r 1ω2和m 2r 2ω2,ω为转动角速度)正好与原不平衡转子的离心惯性力系相平衡,那么就实现了刚性转子的动平衡。 两平面影响系数法的过程如下: (1)在额定的工作转速或任选的平衡转速下,检测原始不平衡引起的轴承或轴颈A 、B 在某方位的振动量11010V ψ∠=V 和22020V ψ∠=V ,其中V 10和V 20是振动位移(也可以是

动平衡试验思考题参考答案

自己看个一遍再抄,挑着抄,之前都预习过,只要把数据整理下,然后思考题写上,再把实验遇到的困难与总结写下就可以了,4/4晚上我来收! 第一题: 1、当试件作旋转运动的零部件时,例如各种传动轴、主轴、风机、水泵叶轮、刀具、电动机和汽轮机的转子等,统称为回转体。在理想的情况下回转体旋转与不旋转时,对轴承产生的压力是一样的,这样的回转体是平衡的回转体。但工程中的各种回转体,由于材质不均匀或毛坯缺陷、加工及装配中产生的误差,甚至设计时就具有非对称的几何形状等多种因素,使得回转体在旋转时,其上每个微小质点产生的离心惯性力不能相互抵消,离心惯性力通过轴承作用到机械及其基础上,引起振动,产生了噪音,加速轴承磨损,缩短了机械寿命,严重时能造成破坏性事故。为此,必须对转子进行平衡,使其达到允许的平衡精度等级,或使因此产生的机械振动幅度降在允许的范围内。 2、转子动平衡和静平衡的区别: 1)静平衡:在转子一个校正面上进行校正平衡,校正后的剩余不平衡量,以保证转子在静态时是在许用不平衡量的规定范围内,为静平衡又称单面平衡。 2)动平衡:在转子两个及以上校正面上同时进行校正平衡,校正后的剩余不平衡量,以保证转子动态时是在许用不平衡量的规定范围内,为动平衡又称双 面平衡。 3、转子平衡的选择与确定 1)如何选择转子的平衡方式,是一个关键问题。通常以试件的直径D与两校正面的距离b,即当D/b≥5时,试件只需做静平衡,相反,就必需做动平衡。 2)然而据使用要求,只要满足于转子平衡后用途需要的前提下,能做静平衡的,就不要做动平衡,能做动平衡的,则不要做静动平衡。原因很简单,静 平衡比动平衡容易做,省功、省力、省费用。 第二题: 主要原因是因为偏重太大会产生强大的离心惯性力..将在构件运动副中引起附加动压力,使机械效率,工作精度和可靠性下降,加速零件的损坏.当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音.因此,特别是在高速,重载,精密机械中,,必须对转子进行平衡以尽可能减少偏重... 第三题: 造成转子不平衡的因素很多,例如:转子材质的不均匀性,联轴器的不平衡、键槽不对称,转子加工误差,转子在运动过程中产生的腐蚀、磨损及热变形等。

回转体的动平衡实验

回转体的动平衡实验 一、实验目的 1、掌握刚性转子动平衡的试验方法。 2、初步了解动平衡试验机的工作原理及操作特点。 3、了解动平衡精度的基本概念。 二、实验设备及工具 1、CYYQ —50TNC 型电脑显示硬支承动平衡机 2、转子试件 3、橡皮泥,M6螺钉若干 4、电子天平(精度0.01g ),游标卡尺,钢直尺 三、CYYQ —50TNC 型硬支承动平衡机的结构与工作原理 1、硬支承动平衡机的结构 该试验机是硬支承动平衡机,实物如图1所示。 动平衡试验机是用来测量转子不平衡量的大小和相角位置的精密设备,一般由机座6、左右支承架4、圈带驱动装置2、计算机检测显示系统、传感器5、限位支架3和光电头1等部件组成,如图2所示。 图2 硬支承动平衡机结构示意图 1、光电头 2、圈带驱动装置 3、限位支架 4、支承架 5、传感器 6、机座 左右支承架是动平衡机的重要部件,中间装有压电传感器,此传感器在出厂前已严格调整好,切不可自行打开或转动有关螺丝(否则会严重影响检测质量)。左右移动只需松开支承架下面与机座连接的两个紧固螺钉,把左右支承架移到适当位置后再拧紧即可。支承架下面有一导向键,保证两支架在移动后能互相平行,支承架中部有升降调节螺丝,可调节转子的左右高度,使之达到水平。外侧有限位支架,可防止转子在旋转时向左右窜动。 图1 硬支承动平衡机实物照片

转子的平衡转速必须根据转子的外径及质量,并考虑电机拖动功率及摆架动态承载能力来进行选择。本动平衡机采用变频器对电动机调频变速,使工作速度控制自如。 2、转子动平衡的力学条件 由于转子材料的不均匀、制造的误差、结构的不对称等诸因素导致转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力,它们组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件 ???? ?==∑ ∑00 M F 或 ?? ? ??==∑∑0 0B A M M (1) 即作用在转子上所有离心惯性力以及惯性力偶矩之和都等于零,这就是转子动平衡的力学条件。 如果设法修正转子的质量分布,保证转子旋转时的惯性主轴和旋转轴相一致,转子重心偏移重新回到转轴中心上来,消除由于质量偏心而产生的离心惯性力和惯性力偶矩,使转子的惯性力系达到平衡校正就叫做动平衡试验。 3、刚性转子的平衡校正 转子的平衡校正工艺过程,包括两个方面的操作工艺: (1)平衡测量:借助一定的平衡试验装置(如动平衡试验机等)测量平衡机支承架由于试验转子上离心力系不平衡引起的振动(或支反力),从而相对地测量出转子上存在着的不平衡重量的大小和方位,测量工作要求精确。 (2)平衡校正:根据平衡测量提供的不平衡量的大小和方位,选择合理的校正平面,根据平衡条件进行加重(或去重)修正,达到质量分布均衡的目的。 A 、去重修正是运用钻削或其它方法在重心位置去除不平衡重量。 B 、加重修正是运用螺纹联接、焊接或其它平衡块方法在轻点位置加进重块平衡。 选择哪种校正办法,要根据转子结构的具体条件择定。在本实验里采用适量的橡皮泥作加重修正。采用橡皮泥作试验的平衡试重,是工业上行之有效的常用方法之一。 4、刚性转子动平衡的精度 即使经过平衡的回转体也总会有残存的不平衡,故需对回转体规定出相应的平衡精度。各种回转体的平衡精度可根据平衡等级的要求,在有关的技术手册中查阅。 5、动平衡机的工作原理 转子的动平衡实验一般需在专用的动平衡机上进行。动平衡机有各种不同的型式,各种动平衡机的构造及工作原理也不尽相同,有通用平衡机、专用平衡机(如陀螺平衡机、曲轴平衡机、涡轮转子平衡机、传动轴平衡机等),但其作用都是用来测定需加于两个校正平面中的平衡质量的大小及方位,并进行校正。当前工业上使用较多的动平衡机是根据振动原理设计的,测振传感器将因转子转动所引起的振动转换成电信号,通过电子线路加以处理和放大,最后显示出被试转子的不平衡质径积的大小和方位。 图3所示是动平衡机的工作原理示意图。被试验转子6放在两弹性支承上,由电动机1通过圈带传动2驱动。实验时,转子上的偏心质量使支承块的水平方向受到离心力的周期作用,通过支承块传递到支承架上,支承架的立柱发生周期性摆动,此摆动通过压电传感器4与5转变为电信号,通过A/D 转换器,传送到计算机的实验数据采集及处理软件系统,直接在屏幕上显示出来,或由打印机打印输出实验结果。 根据刚性转子的动平衡原理,一个动不平衡的刚性转子总可以在与旋转轴线垂直的两个校正平面上减去或加上适当的质量来达到动平衡目的。

机械动平衡

机械动平衡 一、实验目的 1.了解转子不平衡的危害。 2.巩固转子动平衡的理论知识。 3.掌握动平衡机的基本工作原理及动平衡机进行刚性转子动平衡的方法。 二、实验设备 实验设备为DPH-I型智能动平衡机,如图6-1所示,测试系统由计算机、数据采集器、高灵敏度有源压电力传感器和光电相位传感器等组成。当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。 图 6-1 DPH-I型智能动平衡机结构简图 计算机通过采集器采集此三路信号,由虚拟仪器进行前置处理,跟踪滤波,幅度调整,相关处理,FFT变换,校正面之间的分离解算,最小二乘加权处理等。最终算出左右两面的不平衡量(g),校正角(°),以及实测转速(r/min)。 DPH-I型智能动平衡机有关内容简介见附录Ⅲ。 三、实验原理 由于转子结构不对称、材质不均匀或制造和安装不准确等原因,有可能会造成转子的质心偏离回转轴线。当其转动时,会产生离心惯性力。惯性力将在构件运动副中引起附加动压力,使机械效率、工作精度和可靠性下降,加速零件的损坏。当惯性力的大小和方向呈周期性变化时,机械将产生振动和噪音。因此,在高速、重载、精密机械中,为了消除或减少惯性力的不良影响,必须对转子进行平衡。 转子平衡问题可分为静平衡和动平衡两类。 对于轴向尺寸b 与径向尺寸D 的比值b/D ≤ 0.2,即轴向尺寸相对很小的回转构件(如砂轮、叶轮、飞轮等),常常可以认为不平衡质量近似的分布在同一回转平面内。因此只要在这个一回转面内加上或减去一定的质量,便可使转子达到静平衡。 当转子的b/D≥0.2(如电机转子、机床主轴等),或工作转速超过1000 r/min时,应考虑

刚性转子动平衡实验1

刚性转子动平衡实验 一. 实验目的 1. 理解掌握刚性转子的动平衡原理; 2.掌握刚性转子动平衡实验机的测试及数据处理方法; 二. 实验设备与组成 DPH-I型智能动平衡机由机械转子部分与测试系统组成。测试系统包括了计算机、数据采集器、高灵敏度有源压力传感器和光电相位传感器等。图1是实验台结构组成。 1、光电传感器 2、被试转子 3、硬支承摆架组件 4、压力传感器 5、减振底座 6、传动带 7、电动机 8、零位标志 图1 实验台结构组成图 三、实验的基本原理 转子动平衡检测是一般用于轴向宽度B与直径D的比值大于的转子(小于的转子适用于静平衡)。转子动平衡检测时,必须同时考虑其惯性力和惯性力偶的平衡,即Pi=0,Mi=0。如图2-9-1所示,设一回转构件的偏心重Q1及Q2分别位于平面1和平面2内,r1及r2为其回转半径。当回转体以等角速度回转时,它们将产生离心惯性力P1及P2,形成一空间力系。

图2 由理论力学可知,一个力可以分解为与它平行的两个分力。因此可以根据该回转体的结构,选定两个平衡基面I和II作为安装配重的平面。将上述离心惯性力分别分解到平面I和II内,即将力P1及P2分解为P1I及P2I(在平面I内)及P1II及P2II (在平面II内)。这样就可以把空间力系的平衡问题转化为两个平面汇交力系的平衡问题了。显然,只要在平面I和II内各加入一个合适的配重QI和QII,使两平面内的惯性力之和均等于零,构件也就平衡了。 当被测转子在部件上被拖动旋转后,由于转子的中心惯性主轴与其旋转轴线存在偏移而产生不平衡离心力,迫使支承做强迫震动,安装在左右两个硬支撑机架上的两个有源压电力传感器感受此力而发生机电换能,产生两路包含有不平衡信息的电信号输出到数据采集装置的两个信号输入端;与此同时,安装在转子上方的光电相位传感器产生与转子旋转同频同相的参考信号,通过数据采集器输入到计算机。根据计算的结果在相应的位置施加一定质量的配重块,进而使转子达到平衡条件。实验中使用的转子,自身不平衡量很小,为了得到不平衡状态需要配置一定量的模拟偏重,在偏重存在的情况下,进行平衡的操作。 四、操作指导 动平衡实验台采集的数据通过USB端口传输给计算机,利用处理软件实时显示和处理,根据计算机输出地结果进行相应的操作。点击启动图标即可进入系统主界面,界面功能分布介绍如图3,图4,图5。

转子动平衡技术实验报告

广州大学学生实验报告 开课学院及实验室:526室2015年12月26日 学院 机械与电气 工程 年级、专 业、班 机械121姓名吴海明学号1207200014 实验课程名称机械故障诊断技术成绩 实验项目名称转子动平衡技术 指导 老师 郑文 一、实验目的 1、掌握振动幅值及相位测量方法,熟悉相关测量仪器; 2、掌握旋转机械动平衡的基本步骤及方法。 通过运用振动监测手段,完成转子不平衡特征的测量,从而提高学生进行数据采集、 转子振动分析及状态评估、动平衡校正等方面的能力。 二、实验设备 1、列出所用振动分析仪器、软件、传感器的名称、型号、用途等; 加速度传感器 光电式传感器,用于测量振动的相位 数据采集器 质量块、天平 2、振动试验台 实验台配有两个质量盘(如图所示),可以在轴的任意位置固定安装。本实验 要求完成单面动平衡试验,把两个质量盘分开安装,并且在某个质量盘上加上一个 M5的螺钉作为质量块,使得转子不平衡。 1、质量盘 2、夹紧法兰 3、转轴备用螺纹孔(16个)5、夹紧法兰螺钉孔

图质量盘结构示意图 三、实验要求 1.熟悉实验的整个过程 2.实验过程要注意安全,防止转子高速时质量块脱落伤人。 3.正确布置质量块位置,并要记下各个具体位置。 4.实验后分析各频谱图以及参数与转子动平衡的关系。 5、绘出振动试验台的结构简图,列出主要结构参数,如电机参数、传动比、转速等。 6、画出测试系统的连接框图。 7、绘出振动试验台测点布置图,说明测量的位置、方向及传感器安装方法等。 8、描述不平衡质量的施加方法。 四、实验操作过程 1、仪器连接,传感器安装; 2、贴反光带,启动试验台; 3、开始动平衡测量及校正过程,完成转子台初始振动测量、试重、校正重量计算及施 加等工作; 4、评价动平衡后的效果; 5、填写附表。 要求学生绘出测量对象的结构简图,列出主要结构参数;计算不平衡的特征频率;选择测试参数;测量各测点的时域波形、频谱等数据;参照有关标准,判断各点的测量值是否在正常范围内;分析频谱图中的主要频率成分,解释频谱峰值的来源及其与转子不平衡的对应关系;综合判断机器的运行状态及存在的不平衡问题; 完成转子现场动平衡测量与校正。五、实验结果及分析 下表是实验过程中测出的实验数据 动平衡数据表 振动值 Vibration μm(p-p) 相位 Phase 度(°) 重量 Weight 克g 角度 Angel 度(°)初始振动测量值 Initial Vibration 17 80 动平衡试重 Trial Weight 8 45 加试重后的振动值 Trail Running Vibration 15 60 第一次动平衡配重 1st Correcting Weight 8 135 第一次加配重后的振动值 1st Residual Vibration 7 50 第二次动平衡配重 2nd Correcting Weight 7 135 第二次加配重后的振动值 2nd Residual Vibration 2 200 转子转速n=800r/min 以下是实验结果频谱图 初始振动测量值频谱图 (a)在转盘外圆贴有一反光带作为起始原点,并在外缘随意安装一质量块(相对原点逆时针旋转45°的位置加上8克重物),使转盘存在偏心量,并记录频谱图

相关文档
最新文档