单变量多项式加法完整实验报告.doc

单变量多项式加法完整实验报告.doc
单变量多项式加法完整实验报告.doc

单变量多项式加法完整实验报告

一元多项式加法实验报告一元多项式的加法实验内容应用于解决一个具体的实际问题——两个多项式的加法和需求分析1根据线性结构(线性表)的逻辑和物理特征以及所学数据结构中的相关算法,掌握线性结构的逻辑和物理特征。建立一元多项式。3输入一元多项式并将它们存储在存储器中,并按指数降序排列输出多项式。4可以完成两个多项式的加减运算并输出结果。本程序中使用的三个概要设计1抽象数据类型:

typedef OrderedLinkList多项式;//由带标题节点的有序链表表示的多项式节点的数据元素类型定义为:typedef结构{//项的表示浮点系数;//系数int expn//索引项,ElemTypeV oid AddPolyn(polynomailPa,PolynomailpB)Position GetHead()Position NextPoS(链表L,链表p) Elem GetCurElem(链表p) int cmp(术语a术语b) Status SetCurElem(链表p,链表e) Status DelFirst(链表h,链表q)statuslisystempty(链表L,链表)statusappend(链表L,链表)freenode)2存储结构的一元多项式的表示在计算机中通过链表实现。同时,为了节省存储空间,只存储非零项,链表中的每个节点存储多项式系数的非零项。它由三个字段组成,存储系数、索引和指向多项式下一项的指针。序数coef下的索引exp指针字段创建一元多项式列表,分析操作中可能出现的各种情况,并实现一元多项式的加法和减法。这3个模块分为a)主程序;

2)初始化单个链表;

数据结构实验报告,一元多项式资料

数据结构课程设计报告

目录 一、任务目标,,,,,,,,,,,, 3 二、概要设计,,,,,,,,,,,, 4 三、详细设计,,,,,,,,,,,, 6 四、调试分析,,,,,,,,,,,, 8 五、源程序代码,,,,,,,,,, 8 六、程序运行效果图与说明,,,,, 15 七、本次实验小结,,,,,,,,, 16 八、参考文献,,,,,,,,,,, 16

任务目标 分析(1) a. 能够按照指数降序排列建立并输出多项式 b.能够完成两个多项式的相加,相减,并将结果输入要求:程序所能达到的功能: a.实现一元多项式的输入; b.实现一元多项式的输出; c.计算两个一元多项式的和并输出结果; d.计算两个一元多项式的差并输出结果;除任务要求外新增乘法: 计算两个一元多项式的乘积并输出结果 (2)输入的形式和输入值的范围:输入要求:分行输入,每行输入一项,先输入多项式的指数,再输入多项式的系数,以0 0 为结束标志,结束一个多项式的输入。 输入形式: 2 3 -1 2 3 0 1 2 0 0 输入值的范围:系数为int 型,指数为float 型 3)输出的形式: 第一行输出多项式1; 第二行输出多项式2; 第三行输出多项式 1 与多项式 2 相加的结果多项式; 第四行输出多项式 1 与多项式 2 相减的结果多项式;第五行输出多项式 1 与多项式 2 相乘的结果多项式 二、概要设计 程序实现 a. 功能:将要进行运算的二项式输入输出;

b. 数据流入:要输入的二项式的系数与指数; c.数据流出:合并同类项后的二项式; d.程序流程图:二项式输入流程图; e.测试要点:输入的二项式是否正确,若输入错误则重新输入

三次样条插值、拉格朗日插值、herminte插值

三次样条插值: function s=spline(x0,y0,y2l,y2n,x) n=length(x0); km=length(x); a(1)=-0.5; b(1)=3*(y0(2)-y0(1))/(2*(x0(2)-x0(1))); for j=1:n-1 h(j)=x0(j+1)-x0(j); end for j=2:n-1 alpha(j)=h(j-1)/(h(j-1)+h(j)); beta(j)=3*((1-alpha(j))*y0(j)-y(j-1)/h(j-1)+alpha(j)*(y0(j+1)-y0(j))/h(j)); a(j)=-alpha(j)/(2+(1-alpha(j))*a(j-1)); b(j)=(beta(j)-(1-alpha(j))*b(j-1))/(2+(1-alpha(j))*a(j-1)); end m(n)=(3*(y0(n)-y0(n-1))/h(n-1)+y2n*h(n-1)/2-b(n-1))/(2+a(n-1)); for j=(n-1):-1:1 m(j)=a(j)*m(j+1)+b(j); end for k=1:km for j=1:(n-1) if ((x(k)>x0(j))&(x(k)

C++一元多项式合并实验报告

实验二一元多项式相加问题本实验的目的是进一步熟练掌握应用链表处理实际问题的能力。 一、问题描述 一元多项式相加是通过键盘输入两个形如P 0+P 1 X1+P 2 X2+···+PnX n的多项式,经过程序运算后在屏幕上输出它 们的相加和。 二、数据结构设计 分析任意一元多项式的描述方法可知,一个一元多项式的每一个子项都由“系数—指数”两部分组成,所以可将它抽象成一个由“系数—指数对”构成线性表,由于对多项式中系数为0的子项可以不记录他的数值,对于这样的情况就不再付出存储空间来存放它了。基于这样的分析,可以采取一个带有头结点的单链表来表示一个一元多项式。具体数据结构定义为: typedef struct node { float ce; //系数域 float ex; //指数域 struct node *next; //指针域 }lnode,*linklist; 三功能(函数)设计 1、输入并建立多项式的功能模块 此模块要求按照指数递增的顺序和一定的输入格式输入各个系数不为0的子项的“系数—指数对”,输入一个子项建立一个相关的节点,当遇到输入结束标志时结束输入,而转去执行程序下面的部分。 屏幕提示: input ce & ex and end with 0: ce=1 ex=2 ce=0 ex=0 //输入结束标志 input ce & ex and end with 0: ce=2 ex=2 ce=0 ex=0 //输入结束标志 输入后程序将分别建立两个链表来描述两个一元多项式: A=X^2 B=2X^2 这两个多项式的相加的结果应该为: C=3X^2 2、多项式相加的功能模块 此模块根据在1中建立的两个多项式进行相加运算,并存放在以C为头指针的一个新建表中。可以采用以下方法进行设计: 开始时a,b分别指向A,B的开头,如果ab不为空,进行判断:如果a所指的结点的指数和b所指的结点的指数相同,将它们的系数相加做成C式中的一项,如果不一样则将小的一项加到C中。 if(a->ex==b->ex) //判断指数是否相等 {s->ce=a->ce+b->ce; if(s->ce!=0) s->ex=a->ex; else delete s; a=a->next; b=b->next; }

数据结构-多项式相加

数据结构课程设计 2012年12月 班级:XXX 学号:XXX 姓名: XXX 指导教师:XXX

一元稀疏多项式计算器 【问题描述】 设计一个一元稀疏多项式简单计算器 【基本要求】 一元多项式简单计算器的基本功能是: 1,输入并建立多项式; 2,输出多项式,输出形式为整数序列:n,c1,e1,c2,c2,...,cn,en,其中n是多项式的项数,ci和ei分别是第i项的系数和指数,序列按指数降序排列; 3,多项式a和b相加,建立多项式a+b; 4,多项式a和b相减,建立多项式a-b. 【算法设计思想】 ①一般情况下的一元n次多项式可写成pn(x)=p1xe1+p2xe2+……+pmxem 其中,p1是指数为ei的项的非零系数,且满足0≦e1

【实现提示】 用带表头结点的单链表存储多项式。 【程序代码】 #include #include typedef struct node { float coef; int expn; struct node *next; }Lnode, *polynmial; void create(polynmial &L); //输入并建立多项式L void display(polynmial L); //显示,输出多项式L void sort(polynmial &L); //多项式L按指数排序 void reverse(polynmial &L); //逆置 void select(); //用户选择加减操作 void add(polynmial La, polynmial Lb, polynmial &Lc); //多项式La,Lb相加void subtract(polynmial La, polynmial Lb, polynmial &Ld); //多项式La减去Lb,结果给Ld void create(polynmial &L) //输入并建立多项式L { int i, n; static struct node *p; scanf("%d", &n); L = (struct node *)malloc (sizeof(struct node)); L->next = NULL; for(i = 0; i < n; i++) { p = (struct node *)malloc(sizeof(struct node)); scanf("%f %d", &p->coef, &p->expn); p->next = L->next; L->next = p; } } void display(polynmial L)//显示,输出多项式L { struct node *p, *q; int flag = 0; int k = 0; q = L->next; while(q)

链表实现多项式相加实验报告

实验报告 课程名称:数据结构 题目:链表实现多项式相加 班级: 学号: 姓名: 完成时间:2012年10月17日

1、实验目的和要求 1)掌握链表的运用方法; 2)学习链表的初始化并建立一个新的链表; 3)知道如何实现链表的插入结点与删除结点操作; 4)了解链表的基本操作并灵活运用 2、实验内容 1)建立两个链表存储一元多项式; 2)实现两个一元多项式的相加; 3)输出两个多项式相加后得到的一元多项式。 3、算法基本思想 数降序存入两个链表中,将大小较大的链表作为相加后的链表寄存处。定义两个临时链表节点指针p,q,分别指向两个链表头结点。然后将另一个链表中从头结点开始依次与第一个链表比较,如果其指数比第一个小,则p向后移动一个单位,如相等,则将两节点的系数相加作为第一个链表当前节点的系数,如果为0,则将此节点栓掉。若果较大,则在p前插入q,q向后移动一个,直到两个链表做完为止。 4、算法描述 用链表实现多项式相加的程序如下: #include #include #include struct node{ int exp; float coef; struct node*next; };

void add_node(struct node*h1,struct node*h2); void print_node(struct node*h); struct node*init_node() { struct node*h=(struct node*)malloc(sizeof(struct node)),*p,*q; int exp; float coef=1.0; h->next=NULL; printf("请依次输入多项式的系数和指数(如:\"2 3\";输入\"0 0\"时结束):\n"); p=(struct node*)malloc(sizeof(struct node)); q=(struct node*)malloc(sizeof(struct node)); for(;fabs(coef-0.0)>1.0e-6;) { scanf("%f %d",&coef,&exp); if(fabs(coef-0.0)>1.0e-6) { q->next=p; p->coef=coef; p->exp=exp; p->next=NULL; add_node(h,q); } } free(p); free(q); return(h); } void add_node(struct node*h1,struct node*h2) { struct node*y1=h1,*y2=h2; struct node*p,*q; y1=y1->next; y2=y2->next; for(;y1||y2;) if(y1) { if(y2) { if(y1->expexp) y1=y1->next; else if(y1->exp==y2->exp) { y1->coef+=y2->coef; if(y1->coef==0)

数值分析实验报告-插值、三次样条Word版

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数21()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i); end

syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0 202e-14*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

插值法实验报告

实验二插值法 1、实验目的: 1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。 2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。 2、实验要求: 1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法; 2)编写上机实验程序,作好上机前的准备工作; 3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果); 4)分析和解释计算结果; 5)按照要求书写实验报告; 3、实验内容: 1) 用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。 已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。 2) 求满足插值条件的插值多项式及余项 1) 4、题目:插值法 5、原理: 拉格郎日插值原理: n次拉格朗日插值多项式为:L n (x)=y l (x)+y 1 l 1 (x)+y 2 l 2 (x)+…+y n l n (x)

n=1时,称为线性插值, L 1(x)=y (x-x 1 )/(x -x 1 )+y 1 (x-x )/(x 1 -x )=y +(y 1 -x )(x-x )/(x 1 -x ) n=2时,称为二次插值或抛物线插值, L 2(x)=y (x-x 1 )(x-x 2 )/(x -x 1 )/(x -x 2 )+y 1 (x-x )(x-x 2 )/(x 1 -x )/(x 1 -x 2 )+y 2 (x -x 0)(x-x 1 )/(x 2 -x )/(x 2 -x 1 ) n=i时, Li= (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) (X-X0)……(X-X i-1)(x-x i+1) ……(x-x n) 6、设计思想: 拉格朗日插值法是根据n + 1个点x0, x1, ... x n(x0 < x1 < ... x n)的函数值f (x0), f (x1) , ... , f (x n)推出n次多項式p(x),然后n次多項式p (x)求出任意的点x对应的函数值f (x)的算法。 7、对应程序: 1 ) 三次拉格朗日插值多项式求x=0.5635时函数近似值 #include"stdio.h" #define n 5 void main() { int i,j; float x[n],y[n]; float x1; float a=1; float b=1; float lx=0; printf("\n请输入想要求解的X:\n x="); scanf("%f",&x1); printf("请输入所有点的横纵坐标:\n"); for(i=1;i

一元多项式相加完整实验报告

一元多项式相加实验报告 一元多项式的相加

一实验内容 根据所学的数据结构中线性结构(线性表)的逻辑特性和物理特性及相关算法,应用于求解一个具体的实际问题----------两个多项式相加 二需求分析 1掌握线性结构的逻辑特性和物理特性。 2建立一元多项式。 3将一元多项式输入,并存储在内存中,并按照指数降序排列输出多项式。 4能够完成两个多项式的加减运算,并输出结果。 三概要设计 1 本程序所用到的抽象数据类型: typedef OrderedLinkList polynomial; // 用带表头结点的有序链表表示多项式 结点的数据元素类型定义为: typedef struct { // 项的表示 float coef; // 系数 int expn; // 指数 term, ElemType; V oid AddPolyn(polynomail&Pa,polynomail&Pb) Position GetHead() Position NextPos(LinkList L,Link p) Elem GetCurElem(Link p) int cmp(term a term b) Status SetCurElem(Link&p, ElemType e) Status DelFirst(Link h, Link &q) Status ListEmpty(LinkList L) Status Append(LinkList&L, Link S) FreeNode() 2 存储结构

一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。 创建一元多项式链表,对运算中可能出现的各种情况进行分析,实现一元多项式的相加相减操作。 3 模块划分 a) 主程序;2)初始化单链表;3)建立单链表; 4)相加多项式 4 主程序流程图 四详细设计 根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应系数相加,若其和不为零,则构成“和多项式”中的一项,对

数据结构 多项式 实验报告

数据结构实验报告 实验名称:实验一——多项式的实现 学生姓名: 班级: 班内序号: 学号: 日期:2011年10月29日 1.实验要求 实验目的: 1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法 2.学习指针、模板类、异常处理的使用 3.掌握线性表的操作的实现方法 4.学习使用线性表解决实际问题的能力 实验内容: 利用线性表实现一个一元多项式Polynomial f(x) = a0 + a1x + a2x2 + a3x3+ … + a n x n 要求: 1.能够实现一元多项式的输入和输出 2.能够进行一元多项式相加 3.能够进行一元多项式相减 4.能够计算一元多项式在x处的值 5.能够计算一元多项式的导数(选作) 6.能够进行一元多项式相乘(选作) 7.编写测试main()函数测试线性表的正确性 2. 程序分析 由于多项式是线性结构,故选择线性表来实现,在这个程序中我采用的是单链表结构,每个结点代表一个项,多项式的每一项可以用其系数和指数唯一的表示。如果采用顺序存储,那么对于结点的插入和删除的操作会比较麻烦,而且顺序表的结点个数固定,对于可能发生的情况无法很好的处理,而采用链表就会简单许多,还能自由控制链表的长度。 两个多项式要进行多次的计算,为了保护原始的数据,方便进行以后的计算,故选择把结果存储在一个新建的链表里。 本程序完成的主要功能: 1.输入和输出:需要输入的信息有多项式的项数,用来向系统动态申请内存;多项式

各项的系数和指数,用来构造每个结点,形成链表。输出即是将多项式的内容 向屏幕输出。 2.多项式相加与相减:多项式的加减要指数相同即是同类项才能实现,所以在运算时 要注意判断指数出现的各种不同的情况,分别写出计算方法。将每项运算得到 的结果都插入到新的链表中,形成结果多项式。 3.多项式的求导运算:多项式的求导根据数学知识,就是将每项的系数乘以指数,将 指数减1即可,将每项得到的结果插入到结果多项式的链表中。 4.多项式在某点的值:由用户输入x的值,然后求出每项的值相加即可。 2.1 存储结构 本程序采用的存储结构是单链表结构,其定义的结点包括三部分:系数、指数以及下一个结点的地址。示意图如下: 1.输入多项式 ·自然语言描述: 1.设置多项式的项数n; 2.按照多项式的项数申请动态数组coef[]和expn[]存储多项式的系数和指数; 3.按照指数递增的次序输入各项的系数以及指数,分别存入coef和expn; 4.再将输入的系数以及指数赋给每一个结点的coef和expn域; 5.利用头插法将每个结点加入链表。 ·伪代码: 1.输入项数n; 2.float* coef1=new float[n1]; int* expn1=new int[n1]; 3.运用for循环,循环n次 3.1 term* s=new term; 3.2 s->coef=coef[i]; 3.3 s->expn=expn[i]; 3.4 r->next=s; 3.5 r=s; 4. 运用头插法将结点插入链表。 时间复杂度: 空间复杂度: 2.输出多项式 ·自然语言描述: 1.获取头结点; 2.循环n-1次(n为多项式的项数) 2.1将指针的指向后移; 2.2依照多项式的各种情况,设置输出方式 2.2.1 系数为1且指数不为1和0,输出x^expn+; 2.2.2 系数不为0且指数为0,输出(coef)+; 2.2.3 系数不为0且指数为1,输出(coef)x+;

多项式求和

数据结构课程设计 题目:多项式运算 学生姓名:熊奉标 学号:10115011046 专业:计算机科学与技术 班级:10级(1)班 指导教师姓名及职称:陈正铭讲师 起止时间:2012 年2 月——2012 年4 月 1 需求分析

1.1 课题背景及意义 本课程设计主要解决一元多项式的运算问题,通过链表的使用,实现对一元多项式的构建、录入、存储、打印、以及之间的运算。在本课程设计中,程序设计语言为C++语言,程序运行平台为Windows/98/2000/XP,程序采用了链表存储方法以及结构化和模块化的设计方法,通过调试运行,可以进行多项式的加、减、乘运算,勉强实现了设计目标,并且经过适当完善后,将可应用到实际中解决某些问题。 一元多项式的运算,虽然无法直接在除数学外的其他领域作出贡献,但是在数学上,它可以为人们解决一些自己动笔动手很难解决的问题,比如说那些很长很长的多项式,用笔算可能要算半天,但是用该程序,只需短短的几秒钟,所以它给人们带来了不少方便,同时相信它也能间接地为其他领域做出贡献。 1.2 课题要求 (1)掌握线性表的创建、插入、删除等基本运算。 (2)掌握线性表的顺序存储结构和链式存储结构 (3)掌握线性表的典型应用—多项式运算(加、减、乘)。 该程序的主要任务是将用户输入的多项式用线性表存储,然后通过对线性表的基本操作,而实现多项式之间的三则运算,把正确结果输出给用户。 1.3 软件格式规定 输入格式:有两类编辑框可供输入,系数编辑框、指数编辑框,在系数编辑框中允许输入浮点型数据,在指数编辑框中只允许输入整型数据。 正确的输入: f(x)=8X^6+4X^5-2X^4-12X^3-1X^1+10X^0 g(x)=2X^3-5X^2+1X^1 正确的输出结果: f(x)+g(x):结果= 8.00X^6 +4.00X^5 -2.00X^4 -121.00X^3 -5.00X^2 +10.00 f(x)-g(x):结果= 8.00X^6 +4.00X^5 -2.00X^4 -125.00X^3 +5.00X^2 -2.00X

两个一元多项式相加-c++版

《数据结构》实验报告 ——两个一元多项式相加 一、实验题目:两个一元多项式相加 二、实验内容: 根据所学的数据结构中线性结构(线性表)的逻辑特性和物理特性及相关算法,应用于求解一个具体的实际问题----------两个多项式相加 三、设计思想: (1)建立两个顺序列表,分别用来表示两个一元多项式;顺序列表奇数位,存储该多项式的系数;顺序列表的偶数位,存储该相应多项式的指数。 (2)用成员函数merg(qList&l2)实现两多项式的相加。实现的大致方法为:比较第二个多项式列表与第一个多项式列表的偶数位的数值大小(指数),如果 相同,则将他们的前一位数(系数)相加;如果不同,就将他的前一位数(系 数)及它自己(指数)插入第一个多项式列表的后面。 (3)建立函数shu(double a[],int j)实现多项式的输入。 四、源程序代码 #include "stdafx.h" #include using namespace std; template class List { private: Telem * elem; int curlen; int maxlen; public: List(int maxsz=100):maxlen(maxsz) { curlen=0; elem=new Telem{maxlen}; }; List(Telem a[],int n,int maxsz=100):maxlen(maxsz) { curlen=n; elem=new Telem[maxlen]; for(int i=0;i

一元多项式的运算

数据结构课程设计实验报告 专业班级: 学号: 姓名: 2011年1月1日

题目:一元多项式的运算 1、题目描述 一元多项式的运算在此题中实现加、减法的运算,而多项式的减法可以通过加法来实现(只需在减法运算时系数前加负号)。 在数学上,一个一元n次多项式P n(X)可按降序写成: P n(X)= P n X^n+ P(n-1)X^(n-1)+......+ P1X+P0 它由n+1个系数惟一确定,因此,在计算机里它可以用一个线性表P来表示: P=(P n,P(n-1),......,P1,P0) 每一项的指数i隐含在其系数P i的序号里。 假设Q m(X)是一元m次多项式,同样可以用一个线性表Q来表示: Q=(q m,q(m-1),.....,q1,q0) 不是一般性,假设吗吗m

数据结构(C语言)用单链表存储一元多项式,并实现两个多项式的相加运算

#include #include #include typedef int ElemType; /*单项链表的声明*/ typedef struct PolynNode{ int coef; // 系数 int expn; // 指数 struct PolynNode *next; }PolynNode,*PolynList; /*正位序(插在表尾)输入n个元素的值,建立带表头结构的单链线性表*/ /*指数系数一对一对输入*/ void CreatePolyn(PolynList &L,int n) { int i; PolynList p,q; L=(PolynList)malloc(sizeof(PolynNode)); // 生成头结点 L->next=NULL; q=L; printf("成对输入%d个数据\n",n); for(i=1;i<=n;i++) {

p=(PolynList)malloc(sizeof(PolynNode)); scanf("%d%d",&p->coef,&p->expn); //指数和系数成对输入 q->next=p; q=q->next; } p->next=NULL; } // 初始条件:单链表L已存在 // 操作结果: 依次对L的每个数据元素调用函数vi()。一旦vi()失败,则操作失败void PolynTraverse(PolynList L,void(*vi)(ElemType, ElemType)) { PolynList p=L->next; while(p) { vi(p->coef, p->expn); if(p->next) { printf(" + "); //“+”号的输出,最后一项后面没有“+” } p=p->next; } printf("\n");

实验四 数据分析与多项式计算(含实验报告)

实验四 数据分析与多项式计算 一、实验目的 1.掌握数据统计和分析的方法。 2.掌握数据插值与曲线拟合的方法及其应用。 3.掌握多项式的常用运算。 二、实验的设备及条件 计算机一台(带有MATLAB7.0以上的软件环境)。 设计提示 1.参考本节主要内容,学习并理解相关函数的含义及调用方法。 三、实验内容 1.请完成教材P134中实验指导环节的实验内容的第1题; 2. 请完成教材P134中实验指导环节的实验内容的第2题(此题含两个小题, 任选其一完成); 3. 请完成教材135中实验指导环节的实验内容第4题; 4. 请完成教材135中实验指导环节的实验内容的第5题。 5. 已知某压力传感器的测试数据如下表 p 0.0 1.1 2.1 2.8 4.2 5.0 6.1 6.9 8.1 9.0 9.9 u 10 11 13 14 17 18 22 24 29 34 39 p 为压力值,u 为电压值,试用多项式 d cp bp ap p u +++=23)(来拟合其特性函数,求出a,b,c,d ,并把拟合曲线和各个测试数据点画在同一幅图上。 四、实验报告要求(包含预习报告要求和最终报告要求) 1.实验名称 2.实验目的 3.实验设备及条件 4.实验内容及要求 5.实验程序设计 指程序代码。 预习报告 要求 最终报告要求

6.实验结果及结果分析 实验结果要求必须客观,有数据的可以记录数据,没有数据的简单描述实验现象。结果分析是对实验结果的理论评判。 7.实验中出现的问题及解决方法 8. 思考题的回答 一、实验报告的提交方式 Word文档,命名方式:实验号_你的学号_姓名!!! 例如本次实验:实验一_000000001_张三.doc (信息101提交报告邮箱):E_mail: matlab_xx01@https://www.360docs.net/doc/e18765665.html, (网络工程101提交作业邮箱):E_mail: Matlab_wg01@https://www.360docs.net/doc/e18765665.html,(注意网络班的M是大写的) 下一次课前提交,过期不收! 二、参考文献 参考教材和Matlab帮助文件。 1.实验名称 数据分析与多项式计算 2.实验目的 1.掌握数据统计和分析的方法。 2.掌握数据插值与曲线拟合的方法及其应用。 3.掌握多项式的常用运算。 3.实验设备及条件 计算机一台(带有MATLAB7.0以上的软件环境) 4.实验内容及要求 完成所给实验题以及思考题,题与题之间用相应注释分割。注意对实验中出现的相关函数或变量,请使用help或doc查询相关帮助文档,学习函数的用法。 5.实验程序设计 %1.1

多项式加法

班级:信息1301 姓名:胡苗苗 ======== 实习报告一“PolyAdd ”演示程序================== (一)、程序的功能和特点 功能:将两个多项式相加,利用单链表存储多项式,并实现多项式的加法。 特点:利用单链表进行多项式相加时,不生成新的结点,直接在原来的结点上运算。 (二)、程序中的算法设计 1.【逻辑结构与存储结构设计】 逻辑结构:存储多项式的的单链表是线性结构。 存储(物理)结构:存储多项式的的单链表是链式存储结构。 例如: 2.【基本操作设计】 ①public booleaninsertBack(double c,int e) 给存储多项式的单链表的尾部插入一个结点 ②给存储多项式的单链表中插入一个结点 新结点 3.【算法设计】 流程图:

算法描述:构造两个链表类s1,s2,头指针分别为ah,bh,从第一个结点开始比较: (1)如果两个结点的多项式阶数相等,那么把两个系数相加,指数不变赋给s1的第一个结点,指针后移; (2)如果s1的结点阶数小于s2的结点阶数,s1的指针ah后移,判断下一个结点阶数与s2当前阶数大小; (3)如果s1的结点阶数大于s2,那么将s2的当前结点插入s1当前结点的前面。直到s1或s2的指针指向空。 判断s1或者s2指针是否指到末尾: ①若s2指针指空,那么结束程序。 ②若s1指针指空,则把s1 的末尾指针指向s2剩余的部分。 4.【高级语言代码】 多项式加法:自身多项式和ob相加,和为自身 public void addPoly(linkListob) { link ah=first; //自身的第一个结点 link bh=ob.first; //ob的第一个结点 link p,q; //辅助的指针,指向某个结点 //指针ah和bh都没有移到结束处 while(ah!=null&&bh!=null) { if(ah.exp==bh.exp) { //阶数相同 ah.coef+=bh.coef; //改变自身结点系数

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

[计算机]一元多项式相加完整实验报告

[计算机]一元多项式相加完整实验报告一元多项式的相加 一实验内容 根据所学的数据结构中线性结构(线性表)的逻辑特性和物理特性及相关算法,应用于求解一个具体的实际问题----------两个多项式相加 二需求分析 1掌握线性结构的逻辑特性和物理特性。 2建立一元多项式。 3将一元多项式输入,并存储在内存中,并按照指数降序排列输出多项式。 4能够完成两个多项式的加减运算,并输出结果。 三概要设计 1 本程序所用到的抽象数据类型: typedef OrderedLinkList polynomial; // 用带表头结点的有序链表表示多项式 结点的数据元素类型定义为: typedef struct { // 项的表示 oat flcoef; // 系数 int expn; // 指数 term, ElemType; Void AddPolyn(polynomail&Pa,polynomail&Pb) Position GetHead() Position NextPos(LinkList L,Link p) Elem GetCurElem(Link p) int cmp(term a term b)

Status SetCurElem(Link&p, ElemType e) Status DelFirst(Link h, Link &q) Status ListEmpty(LinkList L) Status Append(LinkList&L, Link S) FreeNode() 2 存储结构 一元多项式的表示在计算机内用链表来实现,同时为了节省存储空间,只存储其中非零的项,链表中的每个节点存放多项式的系数非零项。它包含三个域,分别存放多项式的系数,指数,以及指向下一个项的指针。 序数coef 指数exp 指针域next 创建一元多项式链表,对运算中可能出现的各种情况进行分析,实现一元多项式的相加相减操作。 3 模块划分 a) 主程序;2)初始化单链表;3)建立单链表; 4)相加多项式 4 主程序流程图 开始 申请结点空间 输入多项式各项的系数X,指数Y 输出已输出的多项式 否 是否输入正确 合并同类项 结束 四详细设计 根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相

相关文档
最新文档