换热器的结构

换热器的结构
换热器的结构

换热器的结构

管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式换热器、方形壳体翅片管换热器等。详细结构如下:

固定管板式换热器:

固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。换热管可为光管或低翅管。其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。

其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力

浮头式换热器

浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程

都要进行清洗的工况。

浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况,所以装配时一定要注意密封性能

U形管式换热器

上图为双壳程U形管式换热器。U形管式换热器是将换热管弯成U形,管子两端固定在同

一块管板上。由于换热管可以自由伸缩,所以壳体与换热管无温差应力。因U形管式换热

器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。U形管式换热器一般用于高温高压情况下,尤其是

壳体与换热管金属壁温差较大时。

壳程可设置纵向隔板,将壳程分为两程(如图中所示)。

填料函式换热器

上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质

靠填料密封。对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用

填料函式换热器。它具有浮头换热器的优点,又克服了固定管板式换热器的缺点,结构简单,制造方便,易于检修清洗。

填料函式换热器的缺点:使用直径小;不适于高温、高压条件下;壳程介质不适于易挥发、易燃、易爆、有毒等介质

方形壳体翅片管换热器:

方形壳体翅片管换热器的壳体为方箱形(如上图所

示),其换热管为带翅片的翅片管。换热管可为单

排或多排换热管。翅片材料可采用碳钢、不锈钢、

铝或铜材等。翅片的翅高、翅距和翅片厚度可根据实际工况而定。

这种形式的换热器因为采用了翅片管,可大大强化传热面积,所以特别适用于给热系数较低的流体。壳程流通面积可设计较大,流动阻力较小,所以对于压力较低和对压力降要求较小的流体特别适用。在实际生产中,常常用这种换热器来加热或冷却低压空气。

其缺点:因为壳体为方箱形,虽然管程可承受高压介质,但壳程只能承受较低压力的介质。这种换热器的金属消耗量大,制造成本较高。

在实际生产装置中,为提高壳程的耐压能力,往往将壳体做成圆形,而管束采用方形布管。结构可参见下面附图

左图为我

厂设计制

造的空气

段间冷却

器的剖视

图。该换

热器的管

束采用方

形排列的

翅片管,

管束长度

为3.7m。

为提高壳

体的承压

能力,壳

体采用圆

筒形,直

径900mm。

换热管为紫铜整体轧制翅片管,翅片外径36mm,翅片根径为20mm,换热管内径16mm,翅片间距2.5mm,翅片厚度为0.5mm,换热总面积为440m2。

空气条件:

流量:30000Nm3/h

温度:100-40oC

工作压力:0.1MPa

压降:150mm水柱

总热负荷:597000kcal/h

管壳式换热器主要由换热管束、壳体、管箱、分程隔板、支座等组成。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。分程隔板可将管程及壳程介质分成多程,以满足工艺需要。

管壳式换热器在结构设计时,必须考虑许多因素,例如传热条件、材料、介质压力、温度、管壳程壁温温差、介质结垢情况、流体性质以及检修和清洗条件等等,从而确定一种适合的结构形式。对于同一种形式的换热器,由于各种不同工况,往往采用的结构并不相同。在工程设计中,应按其特定的条件进行分析设计,以满足工艺需要。

换热面积的计算

在管壳式换热器的设计中,确定了一种换热器的结构形式后,首先必须确定的一个重要因素是有效换热面积,换热面积的多少决定了换热器的大小。如果换热面积太小,使工艺过程不能实现,使换热器介质出口温度不能得到有效控制。如果换热面积太大,不仅造成材料的浪费,增加投资,而且增大了换热器的体积,使其占据过多的空间。

计算换热面积的一个重要参数是总传热系数,它包括冷热介质的给热系数、介质的污垢系数和金属壁的传热系数。其中计算较为复杂的是介质的给热系数。介质的给热系数不仅与介质的物性有关,而且与介质的流动状态有关。介质的流动状态是由换热器的结构决定的,如果换热器的结构作很小改动,将引起介质流动状态作较大的变化。在一个换热器中,同一种介质的温度是不断变化的,所以在换热器中的不同位置,同一种介质的热力学数据因温度的不同而不同。在实际计算中,往往将一种介质分成许多个温度区域,在不同的温度区域,对介质的热力学数据作相应的计算。在换热器的设计过程中,换热面积的确定是最为关键的一步,它不仅需要计算方法正确严密,而且各种参数必须十分精确。

换热器的分析计算过程是一个动态的计算过程,往往须不断地调整换热器的结构参数。而管壳式换热器的结构参数很多,其中一项的改变将会使计算结果产生很大变化,所以需要不断的反复,不仅要使换热面积满足需要,而且还应兼顾到其它许多因素,例如介质阻力情况等等。

流体阻力的计算

在管壳式换热器的分析设计中,流体的阻力计算是极为重要的,流体的阻力对于工艺过程是较为关键的参数,它不仅影响到整个系统的压力平衡,

而且对于节能降耗也起到重要的作用。在实际生产中,常常由于流体阻力不适而使工艺过程难以实现。在管壳式换热器中,流体的阻力包括壳程流体的阻力及管程流体的阻力。

壳程流体阻力包括介质进口管、出口管、换热管间、折流板缺口等处阻力。介质进出口管阻力可以通过改变进出口管的大小来进行调节。换热管间的介质阻力可以通过改变换热管间的介质流通面积来进行调节,例如改变换热管的布管形式,改变壳体直径,改变折流板间距等。折流板缺口处的介质阻力可以通过改变折流板缺口高度来进行调节。

管程流体的阻力包括介质进出口管、换热管内、管箱等处阻力。介质进出口管阻力可以通过改变进出口管的大小来进行调节。换热管内的介质阻力可以通过改变换热管的数量,换热管的长度,换热管的直径以及管程数等来进行调节。管箱处的介质阻力可以通过改变管箱处的介质流通面积来进行调节。

换热器中流体的阻力计算,应分别计算出换热器内部各处的流体阻力。只有掌握了介质阻力的分布情况,才能够通过有效调整换热器各处的结构尺寸来改变介质的阻力,从而满足工艺要求。

管束震动分析

对于管壳式换热器,一个容易被忽视的问题是换热管的振动。而换热管束的振动往往是换热管破坏的主要原因,使换热器过早报废。

引起换热管振动的因素很多,也较复杂。当介质流量接近使换热管产生共振的临界流量时,将引起换热管束产生较大的振动。另外换热器内部介质的局部湍流、涡流也会引起换热管振动。

换热管振动的位置较广,可以是某两个折流板间的所有换热管同时产生振动,或只有几排换热管产生振动。也可能是在介质进口或出口端的某些换热管产生振动。总之,换热管的振动可能发生在换热管束的任何一处或多处。

换热器的管束振动分析,就是要确定换热管的振动位置以及振动性质,了解引起换热管产生振动的原因,从而消除换热管的振动。消除换热管振动的方法有很多,可以通过改变换热器

的结构尺寸来改变换热管束的固有频率或流体的流动状态,从而消除换热管的振动。或者在换热管束的振动部位增加局部支撑板,来约束换热管的振动。

换热器网络分析

在一个工程系统中,往往不是对单一的某台换热器进行分析,常常是对由多个换热器组成的网络进行联合计算,其间还有一些其它设备(例如:阀门、混合、分离等设备)。下图为一个简单的换热器网络。对一个换热器网络应进行综合的考虑并进行系统的分析。

在一个工程系统中,往往不是对单一的某台换热器进行分析,常常是对由多个换热器组成的网络进行联合计算,其间还有一些其它设备(例如:阀门、混合、分离等设备)。下图为一个简单的换热器网络。对一个换热器网络应进行综合的考虑并进行系统的分析。

换热器强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME 标准进行设计。对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。

下面提供一氮气冷却器的受压元件强度计算,以供参考。该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。

详细强度计算如下:

1.壳程筒体强度计算:

氮气冷却器(U形管式换热器)筒体计算

计算条件筒体简图计算压力P c0.60MPa

设计温度 t100.00? C

内径D i500.00mm

材料16MnR(热轧) ( 板材)

试验温度许用应力[

σ]

170.00MPa

设计温度许用应力[

σ]t

170.00MPa

试验温度下屈服点σ

s

345.00MPa

钢板负偏差C10.00mm

腐蚀裕量C2 1.00mm

焊接接头系数φ0.85

厚度及重量计算

计算厚度

δ == 1.04

mm

有效厚度δ

e =δ

n

- C1- C2= 7.00mm

名义厚度δ

n

= 8.00mm 重量481.06Kg

压力试验时应力校核

压力试验类型液压试验

试验压力值

P

T = 1.25P = 0.7500

MPa

压力试验允许通过

的应力水平[σ]

T

[σ]T≤0.90 σs = 310.50MPa 试验压力下

圆筒的应力σT = = 31.95

MPa

校核条件σ

T≤[σ]

T

校核结果合格

压力及应力计算

最大允许工作压力

[P w]= = 3.99014

MPa

设计温度下计算应力

σt = = 21.73

MPa

[σ]tφ144.50MPa 校核条件[σ]tφ≥σt

结论合格

2.前端管箱筒体强度计算

氮气冷却器前端管箱筒体计算

计算条件筒体简图

计算压力P c 3.80MPa

设计温度 t100.00? C

内径D i500.00mm

材料0Cr18Ni9 ( 板材)

试验温度许用应力[

σ]

137.00MPa

设计温度许用应力[

σ]t

137.00MPa

试验温度下屈服点σ

s

205.00MPa

钢板负偏差C10.80mm

腐蚀裕量C20.00mm

焊接接头系数φ0.85

厚度及重量计算

计算厚度

δ == 8.29

mm

有效厚度δ

e =δ

n

- C1- C2= 11.20mm

名义厚度δ

n

= 12.00mm 重量75.76Kg

压力试验时应力校核

压力试验类型液压试验

试验压力值

P

T = 1.25P = 4.7500

MPa

压力试验允许通过

的应力水平[σ]

T

[σ]T≤0.90 σs = 184.50MPa 试验压力下

圆筒的应力σT = = 127.53

MPa

校核条件σ

T≤[σ]

T

校核结果合格

压力及应力计算

最大允许工作压力

[P w]= = 5.10266

MPa

设计温度下计算应力

σt = = 86.72

MPa

[σ]tφ116.45MPa 校核条件[σ]tφ≥σt

结论合格

3.前端管箱封头强度计算

氮气冷却器前端管箱封头计算

计算条件椭圆封头简图

计算压力P c 3.80MPa

设计温度 t100.00? C

内径D i500.00mm

曲面高度h i125.00mm

材料0Cr18Ni9 (板材)

试验温度许用应力[

σ]

137.00MPa

设计温度许用应力[

σ]t

137.00MPa

钢板负偏差C10.80mm

腐蚀裕量C20.00mm

焊接接头系数φ 1.00

厚度及重量计算

形状系数

K = = 1.0000

计算厚度

δ = = 6.98

mm

有效厚度δ

e =δ

n

- C1- C2= 11.20mm

最小厚度δ

min

= 0.75mm

名义厚度δ

n

= 12.00mm 结论满足最小厚度要求

重量32.23Kg

压力计算

最大允许工作压力

[P w]= = 6.06962

MPa 4.后端壳程封头强度计算

氮气冷却器后端壳程封头计算

计算条件椭圆封头简图

计算压力P c0.60MPa

设计温度 t100.00? C

内径D i500.00mm

曲面高度h i125.00mm

材料16MnR(热轧) (板材)

试验温度许用应力[

σ]

170.00MPa

设计温度许用应力[

σ]t

170.00MPa

钢板负偏差C10.00mm

腐蚀裕量C2 2.00mm

焊接接头系数φ 1.00

厚度及重量计算

形状系数

K = = 1.0000

计算厚度

δ = = 0.88

mm

有效厚度δ

e =δ

n

- C1- C2= 6.00mm

最小厚度δ

min

= 0.75mm

名义厚度δ

n

= 8.00mm 结论满足最小厚度要求

重量19.61Kg

压力计算

最大允许工作压力

[P w]= = 4.05567

MPa 结论合格

5.管板强度计算

氮气冷却器管板计算

设计条件

0.60MPa 壳程设计压力

3.80MPa 管程设计压力

100.00? C 壳程设计温度

100.00? C 管程设计温度

8.00mm 壳程筒体壁厚

12.00mm 管程筒体壁厚

壳程筒体腐蚀裕量C1.00mm 管程筒体腐蚀裕量 C0.00mm

500.00mm 换热器公称直径

换热管使用场合一般场合

a型

管板与法兰或圆筒连接方式 ( a b c d

型 )

换热管与管板连接方式 ( 胀接或焊接 ) 焊接

材料(名称及类型) 0Cr18Ni9

70.00mm

名义厚度

0.40

强度削弱系数

0.40

刚度削弱系数

材料泊松比0.30

210.00mm2隔板槽面积

3.50mm

换热管与管板胀接长度或焊脚高度

l

191000.00MPa 设计温度下管板材料弹性模量

137.00MPa 设计温度下管板材料许用应力

68.50MPa

许用拉脱力

壳程侧结构槽深h10.00mm

板管程侧隔板槽深h2 4.00mm 壳程腐蚀裕量

0.00mm

管程腐蚀裕量

0.00mm

材料名称0Cr18Ni9

换管子外径d19.00mm

管子壁厚

2.00mm

管 U型管根数n138根换热管中心距 S25.00mm 设计温度下换热管材料许用应力137.00MPa

垫片材料软垫片

压紧面形式1a或1b

垫垫片外径D o565.00mm 片垫片内径D i515.00mm a型垫片厚度δg mm 垫片接触面宽度Ωmm

垫片压紧力作用中心园直径D G547.11mm ( c

型 )

管板材料弹性模量0.00MPa

( d

型 )

管板材料弹性模量0.00MPa ( b d 型 )

管箱圆筒材料弹性模量0.00MPa ( b c

型 )

壳程圆筒材料弹性模量0.00MPa

( c d

型 )

管板延长部分形成的凸缘宽度0.00mm

( c

型)

壳体法兰或凸缘厚度0.00mm

( d

型 )

管箱法兰或凸缘厚度0.00mm

参数计算

管板布管区面

三角形排

正方形排

一根换热管管

金属横截面积

= 106.81

mm2

管板开孔前抗

弯刚度

b c d 型

0.00

N·mm 管板布管区当

量直径

436.43

mm

a 型

其他

系数0.80

系数按和查图得 : = 0.000000

系数按和查图得 : = 0.000000

a d 型

= 0

b c型0.00

a ,c 型

= 0

b ,d 型

0.00

a 型

= 0

其他

0.00

旋转刚

度无量

刚系数

0.00

系数

0.2696

按和0.0713

0.0000

管板厚度或管板应力计算

a

管板计

算厚度

取、大值

61.345 mm

型管板名

义厚度

66.000 mm

管板中

心处径

向应力

= 0

MPa = 0

MPa b

c

d

布管区

周边处

径向应

= 0

MPa 型

= 0

MPa

边缘处

径向应

= 0

MPa = 0

MPa 管板应力校核单位:MPa

|σr|

r=0

=

b

工况|σ

r |

r=Rt

=

c

|σr|

r=R

=

d

|σr|

r=0

=

型工况

|σr|

r=Rt

=

|σr|

r=R

=

换热管轴向应力计算及校核: MPa (单位)

计算工况计算公式计算结果校核

只有壳程设计压力

,

管程设计压力=0 : |-1.59|

合格

只有管程设计压力

,

壳程设计压力=0 : =

|6.29|

合格

壳程设计压力,管程

设计压力同时作用: |4.69|

合格

换热管与管板连接拉脱力校核

拉脱力q

3.21 ≤[q]

MPa

校核合格

重量64.89Kg

6.管程设备法兰强度计算

氮气冷却器管箱法兰强度计算

设计条件简图

设计压力 p 3.800 MPa

计算压力 pc 3.800 MPa

设计温度 t 100.0 ° C

轴向外载荷 F 0.0 N

外力矩 M 0.0 N.mm

壳材料名称0Cr18Ni9

体许用应力137.0 MPa

法材料名称#

许用 [s ]f 137.0 MPa

兰应力 [s ]tf 137.0 MPa

材料名称40Cr

螺许用 [s ]b 212.0 MPa

应力 [s ]tb 189.0 MPa

栓公称直径 d B 24.0 mm

螺栓根径 d 1 20.8 mm

数量 n 24 个

Di 500.0 Do 660.0

垫结构尺寸Db 615.0 D外565.0 D内 515.0 δ0 16.0 mm Le 22.5 LA 31.5 h 35.0 δ1 26.0 材料类型软垫片N 25.0 m 2.00 y 11.0 压紧面形状1a,1b b 8.94 DG 547.1 片b0≤6.4mm b= b0b0≤6.4mm DG= ( D外+D内 )/2

b0 > 6.4mm b=2.53

b0 > 6.4mm DG= D外 - 2b

螺栓受力计算

预紧状态下需要的最小螺栓载

荷Wa

Wa= πbDG y = 169119.0N

操作状态下需要的最小螺栓载荷Wp Wp = Fp + F = 1127044.1

N

所需螺栓总截面积 Am Am = max (Ap ,Aa ) = 5963.2 mm2 实际使用螺栓总截面积 Ab

Ab = = 8117.5

mm2

力矩计算

FD = 0.785pc

N LD= L A+ 0.5δ1

= 44.5 mm MD= FD LD

= 33185876.0

N.mm

= 745750.0

作FG = Fp

= 233573.5 N LG= 0.5 ( Db - DG )

= 33.9

mm MG= FG LG

= 7928625.5

N.mm

Mp FT = F-FD

= 147150.2 N LT=0.5(LA + d 1 +

LG )

= 45.7

mm MT= FT LT

= 6728066.0

N.mm

外压: Mp = FD (LD - LG )+FT(LT-LG ); 内压: Mp = MD+MG+MT Mp = 47842568.0

N.mm

预紧Ma W = 1492550.6 N LG = 33.9 mm Ma=W LG =

50664460.0

N.mm

计算力矩 Mo= Mp 与中大者 Mo=50664460.0

N.mm

螺栓间距校核

实际间距

= 80.5

mm

最小间距

56.0 (查GB150-98表9-3)

mm

最大间距

158.4

mm

形状常数确定

89.44 h/ho = 0.4 K = Do/DI = 1.320

1.6

由K查表9-5得T=1.789 Z =3.694 Y =7.145 U=7.851

整体法兰查图9-3和图

9-4 FI=0.85944 VI=0.31415

0.00961

松式法兰查图9-5和图

9-6 FL=0.00000 VL=0.00000

0.00000

查图9-7 由得f = 1.06578 整体

兰 =

572246.8

松式

法兰 = 0.0

0.2

ψ

=δf e+1

=1.44 g = y /T =

=0.81 1.59

= 0.98

剪应力校核计算值许用值结论

预紧状态

0.00

MPa

操作状态

0.00

MPa

输入法兰厚度δf = 46.0 mm时, 法兰应力校核

应力

性质

计算值许用值结论轴向

应力158.57

MPa

=205.5 或

=342.5( 按整体法

兰设计的任意式法兰,

取 )

校核合格

径向

应力77.96

MPa

= 137.0

校核合格

切向

应力54.14

MPa

= 137.0

校核合格

综合应力

=

118.27

MPa

= 137.0

校核合格

法兰校核结果校核合格

7.接管开孔补强计算

氮气冷却器开孔补强计算

接管: a,φ219×16计算方法 : GB150-1998 等面

积补强法, 单孔

设计条件简图

计算压力p c 3.8MPa

设计温度100℃

壳体型式圆形筒体

壳体材料名称及类型0Cr18Ni9 板材

壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm 壳体开孔处名义厚度

δ

n

12mm

壳体厚度负偏差 C10.8mm

壳体腐蚀裕量C20mm

壳体材料许用应力

[σ]t

137MPa

接管实际外伸长度100mm

接管实际内伸长度0mm 接管材料0Cr18Ni9

接管焊接接头系数1名称及类型管材

接管腐蚀裕量0mm 补强圈材料

名称

补强圈外径mm

补强圈厚度mm

接管厚度负偏差C1t2mm 补强圈厚度负偏差

C

1r

mm 接管材料许用应力[σ]t137MPa 补强圈许用应力[σ]t MPa

开孔补强计算

壳体计算厚度δ8.293mm 接管计算厚度δt 2.63mm 补强圈强度削弱系数f rr0接管材料强度削弱系

数f r

1

开孔直径d191mm 补强区有效宽度B382mm 接管有效外伸长度h155.28mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A1584mm2壳体多余金属面积A1555.2 mm2接管多余金属面积A21257mm2补强区内的焊缝面积

A

3

64mm2

A

1

+A2+A3=1876 mm2 ,大于A,不需另加补强。

补强圈面积A4mm2A-(A1+A2+A3) mm2结论: 补强满足要求,不需另加补强。

氮气冷却器开孔补强计算

接管: b,φ108×6计算方法 : GB150-1998 等面

积补强法, 单孔

设计条件简图

计算压力p c0.6MPa

设计温度100℃

壳体型式圆形筒体

壳体材料名称及类型16MnR(热轧) 板材

壳体开孔处焊接接头系数φ0.85壳体内直径D i500mm

壳体开孔处名义厚度

δ

n

8mm

壳体厚度负偏差 C10mm

壳体腐蚀裕量C21mm

壳体材料许用应力

[σ]t

170MPa

接管实际外伸长度100mm

接管实际内伸长度0mm 接管材料20(GB8163)

接管焊接接头系数1名称及类型管材

接管腐蚀裕量2mm 补强圈材料

名称

补强圈外径mm

补强圈厚度mm

接管厚度负偏差C1t0.75mm 补强圈厚度负偏差

C

1r

mm 接管材料许用应力[σ]t130MPa 补强圈许用应力[σ]t MPa

开孔补强计算

壳体计算厚度δ 1.04mm 接管计算厚度δt0.222 mm 补强圈强度削弱系数f rr0接管材料强度削弱系

数f r

0.765

开孔直径d101.5mm 补强区有效宽度B203mm 接管有效外伸长度h124.68mm 接管有效内伸长度h20mm 开孔削弱所需的补强面积A107.2mm2壳体多余金属面积A1595.8 mm2接管多余金属面积A2114.3mm2补强区内的焊缝面积

A

3

36mm2

A

1

+A2+A3=746.1 mm2 ,大于A,不需另加补强。

补强圈面积A4mm2A-(A1+A2+A3) mm2结论: 补强满足要求,不需另加补强。

氮气冷却器开孔补强计算

接管: c,φ89×5计算方法 : GB150-1998 等面

积补强法, 单孔

设计条件简图

计算压力p c0.6MPa

设计温度100℃

壳体型式圆形筒体

壳体材料名称及类型16MnR(热轧) 板材

壳体开孔处焊接接头系数φ0.85

列管式换热器课程设计作业

化工原理课程设计说明书 列管式换热器的选用和设计 苏州科技学院 班级应化0921 姓名朱子屹 指导教师杨兰 2011-6-30 目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数

5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢 1化工原理课程设计任务书 欲用井水将6000kg/h的煤油从140℃冷却至40℃,冷水进、出口温度分别为30℃和40℃。若要求换热器的管程和壳程压强降不大于30kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水煤油 密度 994 825 比热 4.08 2.22 导热系数 0.626 0.14 粘度 0.725×10^-3 0.715×10^-3 2.概述和设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目和管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

2.浮头换热器结构设计要点讲解

浮头换热器 结构设计常用要点汇总 (根据标准和手册综合整理)(碳钢、卧式、内导流) 2011-11-11

目录 一、换热管————————————————————————————3 二、筒体、隔板————————————————————————————3 三、法兰——————————————————————————————3 四、缠绕垫片————————————————————————————3 五、双头螺柱/带肩双头螺柱/支耳————————————————————4 六、管板结构————————————————————————————5 七、钩圈与浮动管板——————————————————————————8 八、折流板与支持板——————————————————————————9 九、拉杆——————————————————————————————10 十、滑道———————————————————————————————10 十一、内导流筒与防冲板———————————————————————11 十二、防短路结构—————————————————————————12 十三、排液(排气)口—————————————————————————13 十四、吊耳与顶丝——————————————————————————14 附件1: Ⅰ级管束的管板管孔/折流板管孔—————————————————15 附件2 球面封头半径SR尺寸—————————————————————15 附件3 隔板槽处管孔中心距—————————————————————15 附件4 关于螺纹的一般要求—————————————————————15 附件5 关于技术要求—————————————————————15 附件6 分程隔板密封面加工——————————————————————16

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

固定管板式换热器结构设计

固定管板式换热器的结构设计 摘要 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。 换热器的型式繁多,不同的使用场合使用目的不同。其中常用结构为管壳式,因其结构简单、造价低廉、选材广泛、清洗方便、适应性强,在各工业部门应用最为广泛。 固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。 固定管板式换热器主要由壳体、换热管束、管板、前端管箱(又称顶盖或封头)和后端结构等部件组成。管束安装在壳体内,两端固定在管板上。管箱和后端结构分别与壳体两端的法兰用螺栓相连,检修或清洗时便于拆卸。换热器设计的优劣最终要看是否适用、经济、安全、运行灵活可靠、检修清理方便等等。一个传热效率高、紧凑、成本低、安全可靠的换热器的产生,要求在设计时精心考虑各种问题.准确的热力设计和计算,还要进行强度校核和符合要求的工艺制造水平。 关键词:换热器;固定管板式换热器;结构;设计

The Structural Design of Fixed Tube Plate Heat Exchanger Author : Chen Hui-juan Tutor : Li Hui Abstract Heat exchanger is one of the most important equipments which is used in the fields of chemical, oil, power, metallurgy, transportation, national defense industry. Its right setting and the improvements of performance play an important role in the rationality o technology, economy, energy utilization and saving, which has a very important impact on the national economy. The type of heat exchanger is various, the different use occasions and the purpose is are commonly used for the tube shell type structure, because of its simple structure, low cost and wide selection, easy to clean, strong adaptability, the most widely used in various industry departments. Fixed tube plate heat exchanger is a kind of typical structure of tube and shell heat exchanger, also is a kind of heat exchanger is applied more widely. This kind of heat exchanger has simple and compact structure, high reliability, the characteristics of wide adaptability, and the production of low cost, wide range of selection of materials, heat exchange surface cleaning more convenient. Fixed tube plate heat exchanger can operate under high pressure and temperature, therefore, the heat exchanger in high temperature and high pressure and large in its possession of absolute advantage. Fixed tube plate heat exchanger is mainly composed of shell, heat

板式换热器结构及工作原理

板式换热器结构及工作原理 要了解板式换热器,首先看一下其结构图: 板式换热器是按一定的间隔,由多层波纹形的传热板片,通过焊接或由橡胶垫片压紧构成的高效换热设备。按其加工工艺分为可拆式换热器和全焊接不可拆式换热器,办焊接式换热器是介于两者之间的结构,即两种流体作为相对独立的结构体进行组装的。板片的焊接或组装遵循两两交替排列原则组装时,两组交替排列。为增加换热板片面积和刚性,换热板片被冲压成各种波纹形状,目前多为v型沟槽,当流体在低流速状态下形成湍流,从而强化传热的效果,防止在板片上形成结垢。板上的四个角孔,设计成流体的分配管和泄集管,两种换热介质分别流入各自流道,形成逆流或并流通过每个板片进行热量的交换。 板式换热器的特点: (1)由于采用0.6mm—0.8mm不锈钢片,传热效率得以极大的提高。 (2)体积小,是管壳式换热器体积的1/3——1/5,既节省了金属材料,又减少了占地面积。 (3)组装灵活,便于推行标准作业,从而为进一步降低生产成本带来可能。

(4)不易结构,清洗方便,便于日常维护。 (5)由于体积小、响应迅速,运行热损失小。 (6)焊接式板式换热器的缺点是焊接工艺要求高、带来成本的增加:可拆卸换热器运行温度受密封材料制约,一般在200摄氏度以 下,耐压能力也较差。 实际应用中,根据不同用户的要求,选择不同的换热器。一般工矿企业、社区楼宇集中供热换热站采用可拆式换热器,家庭生活用热水、室内空调等小功率用户采用全焊接式板式换热器。随着焊接技术和工艺的不断改进和提高,大功率换热器采用全焊接工艺将日益普及,结构更趋经凑合理。 发展展望:据统计,在现代石油化工企业中,换热器投资占30% ~40%。在制冷机中,蒸发器和冷凝器的重量占机组重量的30% ~40%,动力消耗占总动力消耗的20% ~30%。可见换热器对企业投资、金属耗量以及动力消耗有着重要的影响。大力发展板式换热器更替原有效率低下、材料消耗惊人的陈旧换热器是节能降耗有效途径,行业发展也将迎来新的机遇。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器的结构和分类

换热器的结构和分类 换热器的分类 按用途分类: 加热器、冷却器、冷凝器、蒸发器和再沸器 按冷热流体热量交换方式分类: 混合式、蓄热式和间壁式 主要内容: 1. 根据工艺要求,选择适当的换热器类型; 2. 通过计算选择合适的换热器规格。 间壁式换热器的类型 一、夹套换热器 结构:夹套式换热器主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。 缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。也可在釜内安装蛇管。 二、沉浸式蛇管换热器 结构:这种换热器多以金属管子绕成,或制成各种与容器相适应的情况,并沉浸在容器内的液体中。 优点:结构简单,便于防腐,能承受高压。 缺点:由于容器体积比管子的体积大得多,因此管外流体的表面传热系数较小。

三、喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被冷却的流体从最上面的管子流入,从最下面的管子流出,与外面的冷却水进行换热。在下流过程中,冷却水可收集再进行重新分配。 优点:结构简单、造价便宜,能耐高压,便于检修、清洗,传热效果好 缺点:冷却水喷淋不易均匀而影响传热效果,只能安装在室外。 用途:用于冷却或冷凝管内液体。 四、套管式换热器

结构:由不同直径组成的同心套管,可根据换热要求,将几段套管用U形管连接,目的增加传热面积;冷热流体可以逆流或并流。 优点:结构简单,加工方便,能耐高压,传热系数较大,能保持完全逆流使平均对数温差最大,可增减管段数量应用方便。 缺点:结构不紧凑,金属消耗量大,接头多而易漏,占地较大。 用途:广泛用于超高压生产过程,可用于流量不大,所需传热面积不多的场合。五、列管式换热器 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,大型装置中普遍采用。 结构:壳体、管束、管板、折流挡板和封头。一种流体在管内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 根据所采取的温差补偿措施,列管式换热器可分为以下几个型式。 (1)固定管板式 1—列管2—膨胀节 壳体与传热管壁温度之差大于 蚀的介质。

常见换热器结构及优缺点

6.7 换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。化工生产中,换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用甚为广泛。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。根据冷、热流体热量交换的原理和方式基本上可分为三大类:混合式、蓄热式、间壁式。 6.7.1 直接接触式(混合式) 在这类换热器中,冷热两种流体通过直接混合进行热量交换。在工艺上允许两种流体相互混合的情况下,这是比较方便和有效的,且其结构比较简单。直接接触式换热器常用于气体的冷却或水蒸汽的冷凝。 6.7.2 蓄热式 蓄热式换热器又称为蓄热器,它主要由热容量较大的蓄热室构成,室中可填耐火砖或金属带等作为填料。当冷、热两种流体交替地通过同一蓄热室时,即可通过填料将得自热流体的热量,传递给冷流体,达到换热的目的。这类换热器的结构简单,且可耐高温,常用于气体的余热及其冷量的利用。其缺点是设备体积较大,而且两种流体交替时难免有一定程度的混合。 6.7.3 间壁式 这一类换热器的特点是在冷热两种流体之间用一金属壁(或石墨等导热性好的非金属)隔开,以使两种流体在不相混合的情况下进行热量交换。由于在三类换热器中,间壁式换热器应用最多,因此下面重点讨论间壁式换热器。 (1)夹套式换热器 结构:夹套装在容器外部,在夹套和容器壁之间形成密闭空间,成为一种流体的通道。 优点:结构简单,加工方便。 缺点:传热面积A小,传热效率低。 用途:广泛用于反应器的加热和冷却。 为了提高传热效果,可在釜内加搅拌器或蛇管和外循环。 (2)沉浸式蛇管换热器 结构:蛇管一般由金属管子弯绕而制成,适应容器所需要的形状,沉浸在容器内,冷热流体在管内外进行换热。 优点:结构简单,便于防腐,能承受高压。 缺点:传热面积不大,蛇管外对流传热系数小, 为了强化传热,容器内加搅拌。 (3)喷淋式换热器 结构:冷却水从最上面的管子的喷淋装置中淋下来,沿管表面流下来,被

换热器的结构讲解

换热器的结构 管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。 按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式 换热器、方形壳体翅片管换热器等。详细结构如下: 固定管板式换热器: 固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。换 热管可为光管或低翅管。其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。 其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力 浮头式换热器 浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产 生温差应力。浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提 供了方便。这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程 都要进行清洗的工况。 浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况, 所以装配时一定要注意密封性能 U形管式换热器

上图为双壳程U形管式换热器。U形管式换热器是将换热管弯成U形,管子两端固定在同 一块管板上。由于换热管可以自由伸缩,所以壳体与换热管无温差应力。因U形管式换热 器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。U形管式换热器一般用于高温高压情况下,尤其是 壳体与换热管金属壁温差较大时。 壳程可设置纵向隔板,将壳程分为两程(如图中所示)。 填料函式换热器 上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。它具有浮头换热器的优点,又克服了固定管板式换热器的缺点,结构简单, 制造方便,易于检修清洗。 填料函式换热器的缺点:使用直径小;不适于高温、高压条件下;壳程介质不适于易挥发、易燃、易爆、有毒等介质 方形壳体翅片管换热器:

板式换热器结构

板式换热器主要部分是由换热板片、密封胶垫、夹紧板、导杆、夹紧螺栓组成。换热板片是由不锈钢板压制成型,太上面开有4个流道孔,中部压成人字形波纹,四周压有密封樔。密封樔内粘有密封胶垫。换热板片通过两导杆定位对齐,两夹紧板通过加紧螺栓将各板片压紧,从而形成换热器内强换热流道。相邻换热板片的人字形波纹方向安装时相反,接触点彼此相互支撑。人字形波纹和这些支撑点使流体介质在其内部流动时充分形成湍流,这是板式换热器具有很高换热效率的主要原因。另外换热板片厚度较薄,导热热阻较小,板片两侧的流体介质流动分布较为均衡,也使得传热较为充分。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、

冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修 及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

化工原理课程设计列管换热器讲解

《化工原理课程设计》报告 换热器的设计 年级2008级 专业化学工程与工艺

设计者姓名刘国雄 设计单位西北师范大学化学化工学院完成日期2010年 11 月 25 日

目录 概述 1.1.换热器设计任务书................................................................................................................ - 6 - 1.2换热器的结构形式................................................................................................................ - 9 - 2.蛇管式换热器.......................................................................................................................... - 9 - 3.套管式换热器.......................................................................................................................... - 9 - 1.3换热器材质的选择.............................................................................................................. - 10 - 1.4管板式换热器的优点.......................................................................................................... - 11 - 1.5列管式换热器的结构.......................................................................................................... - 12 - 1.6管板式换热器的类型及工作原理...................................................................................... - 13 - 1.7确定设计方案...................................................................................................................... - 14 - 2.1设计参数.............................................................................................................................. - 14 - 2.2计算总传热系数.................................................................................................................. - 15 - 2.3工艺结构尺寸...................................................................................................................... - 16 - 2.4换热器核算.......................................................................................................................... - 18 - 2.4.1.热流量核算............................................................................................................... - 18 - 2.4.2.壁温计算................................................................................................................... - 20 - 2.4.3.换热器内流体的流动阻力.................................................................................... - 21 -

列管式换热器 (化工原理课程设计)

化工原理课程设计 题目:列管式换热器设计 班级: 姓名: 学号: 指导教师: 2015 年-2016 年学年第1 学期

目录 设计任务书3 前言4 一.工艺说明及流程示意图5 1. 工艺流程5 酒精的工艺流程5 冷却流程图5 白酒加工工艺流程5 冷却流程5 2. 工艺说明6 流体流入空间的选择6 出口温度的确定(含算法程序)6 流速的选择7 计算平均温差8 二.流程及方案的论证与确定8 1. 设计方案的论证8 2. 确定设计方案及流程 8 选择物料8 确定两流体的进出口温度9 确定流程9 换热器类型的选择 9 三.设计计算及说明9 1. 流体物性的确定9 水的物性9 无水乙醇的物性9 2. 初步确定换热器的类型和尺寸9 计算两流体的平均温度差9 计算热负荷和冷却水流量10 传热面积10 选择管子尺寸11 计算管子数和管长,对管子进行排列,确定壳体直径11根据管长和壳体直径的比值,确定管程数12 3. 核算压强降12 管程压强降12 壳程压强降12 4. 核算总传热面积14 管程对流传热系数α014 壳程对流传热系数αi14 污垢热阻15

总传热系数K’15 传热面积安全系数 15 壁温的计算15 4. 7 偏转角的计算 (15) 四.设计结果概要表16 五.对设计的评价及问题的讨论17 1.对设计的评价 (17) 2.问题的讨论 (17) 六.参考文献18 七.致谢 八.附录:固定管板式换热器的结构图、花板布置图 设计任务书 设计题目:列管式换热器设计。 设计任务:将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力G = 学生学号最后2位数×300 t 物料 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30℃;加热器用热水或水蒸汽为热源,条件自选。

四种换热器的结构特点及优缺点

四种换热器的结构特点及优缺点 3、四种换热器的结构特点及优缺点。(1)固定管板式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管等。结构特点:管板与壳体之间采用焊接连接。两端管板均固定,可以是单管程或多管箱,管束不可拆,管板可延长兼作法兰。优点:结构简单,制造方便,在相同管束情况下其壳体内径最小,管程分程较方便。缺点:壳程无法进行机械清洗,壳程检查困难,壳体与管子之间无温差补偿元件时会产生较大的温差应力,即温差较大时需采用膨胀节或波纹管等补偿元件以减小温差应力。(2)浮头式换热器组成:管箱、管板、换热管、壳体、折流板或支撑板、拉杆、定距管、钩圈、浮头盖等。结构特点:一端管板与壳体固定,另一端管板(浮动管板)与壳体之间没有约束,可在壳体内自由浮动。只能为多管程,布管区域小于固定管板式换热器,管板不能兼作法兰,一般有管束滑道。优点:不会产生温差应力,浮头可拆分,管束易于抽出或插入,便于检修和清洗。缺点:结构较复杂,操作时浮头盖的密封情况检查困难。(3)U形管式换热器组成:管箱、管板、U形换热管、壳体、折流板或支撑板、拉杆、定距管等。结构特点:只有一个管板和一个管箱,壳体与换热管之间不相连,管束能从壳体中抽出或插入。只能为多管程,管板不能兼作法兰,一般有管束滑道。总重轻于固定管板式换热器。优点:结构简单,造价较低,不会

产生温差应力,外层管清洗方便。缺点:管内清洗因管子成U形而较困难,管束内围换热管的更换较困难,管束的固有频率较低易激起振动。(4)填料函式换热器组成:管箱、管板、管束、壳体、折流板或支撑板、拉杆、定距管、填料函等。结构特点:一侧管箱可以滑动,壳体与滑动管箱之间采用填料密封。管束可抽出,管板不兼作法兰。优点:填料函结构较浮头简单,检修清洗方便;无温差应力,(具备浮头式换热器的优点,消除了固定管板式换热器的缺点)。缺点:密封性能较差,不适用于易挥发、易燃、易爆和有毒介质。

列管式换热器结构设计毕业设计论文

列管式换热器结构设计毕业设计论文 第一章换热器概述 过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。在化工厂中,换热设备的投资约占总投资的10%~20%;在炼油厂,约占总投资的35%~40%。 1.1 换热器的应用 在工业生产中,换热器的主要作用是将能量由温度较高的流体传递给温度较低的流体,是流体温度达到工艺流程规定的指标,以满足工艺流程上的需要。此外,换热器也是回收余热、废热特别是低位热能的有效装置。例如,高炉炉气(约1500℃)的余热,通过余热锅炉可生产压力蒸汽,作为供汽、供热等的辅助能源,从而提高热能的总利用率,降低燃料消耗,提高工业生产经济效益。 随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热极力的研究十分活跃,一些新型高效换热器相继面世。 1.2 换热器的主要分类 在工业生产中,由于用途、工作条件和物料特性的不同,出现了不同形式和结构的换热器。 1.2.1 换热器的分类及特点 按照传热方式的不同,换热器可分为三类: 1.直接接触式换热器 又称混合式换热器,它是利用冷、热流体直接接触与混合的作用进行热量的交换。这类换热器的结构简单、价格便宜,常做成塔状,但仅适用于工艺上允许两

种流体混合的场合。 2.蓄热式换热器 在这类换热器中,热量传递是通过格子砖或填料等蓄热体来完成的。首先让热流体通过,把热量积蓄在蓄热体中,然后再让冷流体通过,把热量带走。由于两种流体交变转换输入,因此不可避免地存在着一小部分流体相互掺和的现象,造成流体的“污染”。 蓄热式换热器结构紧凑、价格便宜,单位体积传热面比较大,故较适合用于气--气热交换的场合。 3.间壁式换热器 这是工业中最为广泛使用的一类换热器。冷、热流体被一固体壁面隔开,通过壁面进行传热。按照传热面的形状与结构特点它又可分为: (1)管式换热器:如套管式、螺旋管式、管壳式、热管式等; (2)板面式换热器:如板式、螺旋板式、板壳式等; (3)扩展表面式换热器:如板翅式、管翅式、强化的传热管等。 1.2.2 管壳式换热器的分类及特点 由于设计题目是浮头式换热器的设计,而浮头式又属于管壳式换热器,故特此介绍管壳式换热器的主要类型以及结构特点。 管壳式换热器是目前用得最为广泛的一种换热器,主要是由壳体、传热管束、管板、折流板和管箱等部件组成,其具体结构如下图所示。壳体多为圆筒形,内部放置了由许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为了增加壳程流体的速度以改善传热,在壳体内安装了折流板。折流板可以提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 流体每通过管束一次称为一个管程;每通过壳体一次就称为一个壳程,而图1-2-1所示为最简单的单壳程单管程换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分为若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程;同样。为提高管外流速,也可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可以配合使用。

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (3) 2.2.1 换热器类型的选择 (3) 2.2.2流径的选择 (5) 2.2.3流速的选择 (5) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (6) 三、工艺及设备设计计算 (6) 3.1确定设计方案 (7) 3.2确定物性数据 (7) 3.3计算总传热系数 (7) 3.4计算换热面积 (8) 3.5工艺尺寸计算 (8) 3.6换热器核算 (10) 3.6.1传热面积校核 (10) 3.6.2.换热器内压降的核算 (11) 四、辅助设备的计算及选型 (12) 4.1拉杆规格 (12) 4.2接管 (12) 五、换热器结果总汇表 (13) 六、设计评述 (14) 七、参考资料 (14) 八、主要符号说明 (14) 九、致谢 (15)

一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互混合传递热量。该类换热器结构简单,传热效率高,适用于冷、热流体允许直接接触和混合的场合。常见的设备有凉水塔、洗涤塔、文氏管及喷射冷凝器等。 蓄热式换热器又称回流式换热器或蓄热器。此类换热器是借助于热容量较大的固体蓄热体,将热量由热流体传给冷流体。当蓄热体与热流体接触时,从热流体处接受热量,蓄热体温度升高后,再与冷流体接触,将热量传给冷流体,蓄热体温度下降,从而达到换热的目的。此类换热器结构简单,可耐高温,常用于高温气体热量的回收或冷却。其缺点是设备的体积庞大,且不能完全避免两种流体的混合。 工业上最常见的换热器是间壁式换热器。根据结构特点,间壁式换热器可以分为管壳式换热器和紧凑式换热器。 紧凑式换热器主要包括螺旋板式换热器、板式换热器等。 管壳式换热器包括了广泛使用的列管式换热器以及夹套式、套管式、蛇管式等类型的换热器。其中,列管式换热器被作为一种传统的标准换热设备,在许多工业部门被大量采用。列管式换热器的特点是结构牢固,能承受高温高压,换热表面清洗方便,制造工艺成熟,选材范围广泛,适应性强及处理能力大等。这使得它在各种换热设备的竞相发展中得以继续存在下来。 使用最为广泛的列管式换热器把管子按一定方式固定在管板上,而管板则安装在壳体内。因此,这种换热器也称为管壳式换热器。常见的列管换热器主要有固定管板式、带膨胀节的固定管板式、浮头式和U形管式等几种类型。 2.2设计方案简介 2.2.1 换热器类型的选择 根据列管式换热器的结构特点,主要分为以下四种。以下根据本次的设计要求,介绍几种常见的列管式换热器。 1.固定管板式换热器 这类换热器如图1-1所示。固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

相关文档
最新文档