一类二阶差分方程非振动解的存在性

一类二阶差分方程非振动解的存在性
一类二阶差分方程非振动解的存在性

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

有限差分法求解偏微分方程MATLAB教学教材

有限差分法求解偏微分方程M A T L A B

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 115104000545 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2 100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言 1.1问题背景 在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。诸如粒子扩散或神经细胞的动作电位。也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。热方程及其非线性的推广形式也被应用与影响分析。 在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。 科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。 解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。 1.2问题现状 近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。而且精度上更好。 目前,在欧美各国MATLAB的使用十分普及。在大学的数学、工程和科学系科,MATLAB

常微分方程和偏微分方程的数值解法教学大纲

上海交通大学致远学院 《常微分方程和偏微分方程的数值解法》教学大纲 一、课程基本信息 课程名称(中文):常微分方程和偏微分方程的数值解法 课程名称(英文):Numerical Methods for Ordinary and Partial Differential Equations 课程代码:MA300 学分 / 学时:4学分 / 68学时 适用专业:致远学院与数学系相关专业 先修课程:偏微分方程,数值分析 后续课程:相关课程 开课单位:理学院数学系计算与运筹教研室 Office hours: 每周二19:00—21:00,地点:数学楼1204 二、课程性质和任务 本课程是致远学院和数学系应用数学和计算数学方向的一门重要专业基础课程,其主要任务是通过数学建模、算法设计、理论分析和上机实算“四位一体”的教学方法,使学生掌握常微分方程与偏微分方程数值解的基本方法、基本原理和基本理论,进一步提升同学们利用计算机解决实际问题的能力。在常微分方程部分,将着重介绍常微分方程初值问题的单步法,含各类Euler方法和Runge-Kutta方法,以及线性多步法。将简介常微分方程组和高阶常微分方程的数值方法。在偏微分方程部分,将系统介绍求解椭圆、双曲、抛物型方程的差分方法的构造方法和理论分析技巧,对于椭圆型方程的边值问题将介绍相应变分原理与有限元方法。将在课堂上实时演示讲授的核心算法的计算效果,以强调其直观效果与应用性。本课程重视实践环节建设,学生要做一定数量的大作业。 三、教学内容和基本要求 第一部分:常微分方程数值解法 1 引论 1.1回顾:一阶常微分方程初值问题及解的存在唯一性定理

《有限差分法在微分方程中的应用》课程论文

课程论文

有限差分法在微分方程中的应用 本学期学习了《微分方程数值解》,本书中有限差分法给我留下的印象比较深刻,下边说说自己在方面的一点理解,请老师指正。 1.有限差分法的基本思想: 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。 2.有限差分法求解偏微分方程的步骤: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点; 近似替代,即采用有限差分公式替代每一个格点的导数。 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。 从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差分法时,除了要保证精度外,还必须要保证其收敛性。 3.构造差分法的几种形式: 主要草用的是泰勒级数展开的方法。其基本差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等。其中前两种形式为一阶计算精度,后一种为二阶计算精度。

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

一维导热方程 有限差分法 matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

有限差分法求解偏微分方程MATLAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程

一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程: 22(,)()u u f x t t x αα??-=??其中为常数 具体求解的偏微分方程如下: 22001 (,0)sin()(0,)(1,)00 u u x t x u x x u t u t t π???-=≤≤?????? =??? ==≥??? 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析; 4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1) 求解区域的网格划分步长参数如下:

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

偏微分方程求解-有限差分法解析

--以有限差分法为例偏微分方程数值求解 1. 偏微分方程求解问题的描述 教材P653[12.1.1]椭圆型 教材P653[12.1.2] 教材P664[12.2.1]双曲型 教材P665[12.2.4]拉普拉斯泊松 对流 波动 教材P684[12.3.1]抛物型 教材P685[12.3.6]扩散 对流扩散 教材P686[12.3.8]二维扩散 教材P678[12.2.23]二维对流

??????????????????????≥≤≤==≥≤≤==≤≤=>≥≤≤≤≤???? ????+??=??0,0, ),(),,(),(),0,(0,0,),(),,(),(),,0(,0,),()0,,(0,0 , 0 , 0 21212222t L x t x v t L x u t x v t x u t L y t y t y L u t y t y u L y x y x y x u b t L y L x y u x u b t u μμ?Ω 求解域初值条件边值条件) ,,(t y x u 未知函数

????? ? ????????????????????≥<<-==≥<<==≥≤≤-==≥≤≤==≤≤==≤≤≤≤≤≤???? ????+??=??0 , 50 , sin 255sin ),(),5,(0 , 50 , 0),(),0,(0 , 50 , 5sin sin 25),(),,5(0 , 50 , 0),(),,0(5,0,0),()0,,( 10000 , 50 , 50 001.022********t x x x t x v t x u t x t x v t x u t y y y t y t y u t y t y t y u y x y x y x u t y x y u x u t u μμ?Ω 求解域初值条件边值条件以具体问题为例演示具体的求解过程) ,,(t y x u 未知函数

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

有限差分法

有限差分法 有限差分法有限差分法 finite difference method 微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散 点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函 数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差 分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便 可以从离散解得到定解问题在整个区域上的近似解。 有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原 微分方程离散化为差分方程组以及如何解此代数方程组。此外为了保证计算过程的可行和 计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分 格式的相容性、收敛性和稳定性。对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。另外,一个差分格 式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。此外,还有一个重要的概念必须考虑,即差分格式的稳定性。因为差分格式的计算过 程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致 差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以 控制的,就认为格式是稳定的。只有在这种情形,差分格式在实际计算中的近似解才可能 任意逼近差分方程的精确解。关于差分格式的构造一般有以下3种方法。最常用的方法是 数值微分法,比如用差商代替微商等。另一方法叫积分插值法,因为在实际问题中得出的 微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。此外还可以用 待定系数法构造一些精度较高的差分格式。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法 将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从 而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分 的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目 前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分 方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

常微分方程差分解法、入门、多解法

毕业论文 题目抛物型方程的差分解法学院数学科学学院 专业信息与计算科学 班级计算0802 学生王丹丹 学号20080901045 指导教师王宣欣 二〇一二年五月二十五日

摘要 偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。本文以基本概念和基本方法为主,同时结合算例实现算法。 第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系 数扩散方程: 2 2 ,,0 u u a x R t t x ?? =∈>?? 第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。 第三部分通过算例检验每种差分格式的可行性。 关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例

ABSTRACT The numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example. The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for the first time. 2 2 ,,0 u u a x R t t x ?? =∈>?? The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability. The third part tests the accuracy of each scheme. Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application

相关文档
最新文档