现代物理学中的几个疑难问题

现代物理学中的几个疑难问题
现代物理学中的几个疑难问题

5 、现代物理学中的几个疑难问题

美籍华人著名的物理学家、诺贝尔奖金获得者李政道把“一些物理现象理论上对称,但实验结果不对称”、“暗物质问题、暗能量问题”、"类星体的发能远远超过核能,每个类星体的能量竟然是太阳能量的10 15倍"、“夸克禁闭”称为是21世纪科技界所面临的四大难题。无论是现存理论间或理论与事实间的微妙冲突都会引导代表人类的思维拓展科学发现的新疆界。近10多年来,关于非平衡统计物理学的研究前景也十分诱人,非平衡相变、耗散结构、协同学等就是其中比较活跃的研究领地。这几年,人们注意到,远离平衡的系统可能经过突变进入混沌(c haos)状态,而且混沌态可能并不比时空有序的状态更“无序”,混沌态和耗散结构还可能交替出现。现在,人们大体上已了解到,混沌是非常普遍的自然现象,在一定的意义上讲,混沌状态比无理数要多得多,而且混沌序(内在随机性)比自然界存在的有理序(周期性)、无理序(准周期性)更“高级”,即使在通常认为由决定论统治的牛顿力学中,也普遍地存在着内在随机性,完全确定论的描述在牛顿力学中倒是少如风毛麟角。但是,混沌决不是简单的无序,而更像是不具备周期性和其他明显对称特征的有序态。在理想情况下,混沌状态具有无穷的内部结构,只要有足够精密的观察手段,就可以在混沌态之间发现周期和准周期运动,以及在更小的尺度上重复出现的混沌运动。正因为如此,我国学者才从古汉语中引用“混沌”一词(气似质具而未相离,谓之混沌)来描述这种奇特的现象。混沌转变和非平衡相变都是经过突变而不是渐变实现的,这说明混沌状态的出现也与对称破缺有关。现在重整化技术已经成功地用于混沌转变的研究,已有一批反映通向混沌道路的数学模型,而且新的实验报道也在不断涌现。这个成为80年代重要研究课题的进展,也许不仅会导致数理科学中基本观念的又一次革新,而且可能导致对偶然性和必然性、确定论和概率论等哲学范畴以及自然科学方法论的更深刻的认识。

(一)弦理论家提出的理论物理问题

2000年弦理论会议上,弦理论家提出了跨世纪的十大理论问题:(1)表征物理宇宙的所有(可测量的)无量纲参数是否原则上都是可计算的,或其中某些仅仅是由历史或量子力学等偶然因素所

确定,因而是不可计算的?这是由超弦会议组织者之一,因夸克渐进自由研究后来获得2004年诺贝尔奖。物理学奖的戴维.格罗斯所命题的。《纽约时报》知名的科学记者乔治.约翰逊在报道中对这第一个问题进一步作了展开说明:“Einstein的表述更为清楚:上帝在创造宇宙时是否有选择?想象上帝坐在控制台前,准备引发宇宙大爆炸。‘我该把光速定在多少?’‘我该让这种叫电子的小粒子带多少电荷?’‘我该把决定量子大小的普朗克常数定在多大?’‘上帝是不是为了赶时间而胡乱抓来几个数字?抑或这些数值必须如此,因为其中深蕴着某种逻辑?”(2)量子引力如何有助于解释宇宙起源问题?(3)什么是质子的寿命?理论上如何解释?(4)自然是超对称的吗?若是,超对称怎样破缺?(5)为什么宇宙看来只有一维时间和三维空间?(6)为何宇宙学常数会有其值?是零吗?是常数吗?(7)何为M理论基本自由度?果真描述自然吗?(8)如何解决黑洞的信息佯谬?(9)引力尺度和基本粒子的典型质量尺度之间的差异如此巨大,什么物理可予以解释?(10)如何定量解释量子色动力学中的夸克胶子的禁闭,以及质量间隙的存在?

(二)格罗斯教授提出的理论物理问题理论物理学家、2004年诺贝尔物理学奖获得者、美国凯乌利理论物理研究所所长大卫?格罗斯教授,于2005年3月在中国科学院理论物理研究所“前沿科学论坛”做了题为《物理学的将来》的演讲,讨论当前物理学面临的25个问题,及它们如何引导物理学未来25年的发展。(注:《引领物理学发展的25个问题》摘自2005-3-15 [国

际数学动态] 科学时报 2005年3月7日作者:黎明)

问 1.宇宙起源:宇宙学观测表明宇宙是膨胀着的。通过对微波背景辐射和宇宙大尺度结构等的观测,宇宙的历史可以追溯到极早期发生的大爆炸。我们所知的基本物理,比如广义相对论和粒子物理标准模型,在那里都不适用。为理解宇宙起源,需要了解大爆炸时期的基本物理。

问 2.暗物质的本质:现代宇宙学观测表明宇宙中存在暗物质和暗能量。但是它们的起源仍然是个谜。

问3.暗能量的本质。

问 4.恒星、行星的形成:天体的形成是天体物理学中的重要问题。适合生物存在的行星,在银河系中出现的几率到底是多少?

问5.广义相对论:广义相对论在所有尺度上都是正确的吗?

问 6.量子力学:量子力学取得了巨大成功,但它描述的是自然的最终理论吗?也许它会在很小的距离上和非常复杂的系统中失效,是否可用来描绘整个宇宙也还值得探讨。

问7.标准模型:粒子物理标准模型无疑极为成功,但人们并没有理解夸克和轻子的质量混合的物理起源和中微子的质量等。

问8.超对称:存在低能超对称吗?超对称伴子的质量谱是什么?

问9.量子色动力学(QCD):量子色动力学可以完全求解吗?

问10.弦论:超弦理论是一个有望成功地统一自然相互作用的理论,但它到底是什么?

问11.时空的观念:时空是什么?超弦理论最终可能会放弃时间和空间这两个概念。

问12.物理理论是否与环境相关:物理的基本参数和规律都可以计算,还是仅由历史的或量子的偶然性决定,或者是由人择原理来确定?景观的图像是对的吗?

问13.新物态:存在常规实验可探查的一般非费米流体行为吗?

问14.复杂性:对一般的复杂大系统而言,其内在的混沌特性决定了系统的不可预测性。如何运用计算手段来分析这类系统、鉴别哪些特征?

问15.量子计算机:如何防止量子计算中的“退相干”?如何实际制造量子计算机?

问16.物理学的应用:如何得到室温甚至室温以上的超导材料?如何用电子材料(如半导体)制造室温铁磁体?

问17.理论生物学:生物学的理论是什么?理论物理学有助于生物学研究吗?需要新的数学吗?如何描述生物体这样呈现出多时间尺度动力学的体系?

问18.基因组学:物理学家如何参与基因组的“解密”?可能拥有一个定量的、可预测的进化理论吗?甚至能否直接从基因组出发“计算”有机体的形状?

问19.意识的研究:记忆和意识后面的自组织原则是什么?有可能在幼儿期测量到意识的发生吗?什么时候?如何发生?如何测

量?能否制造一个具有“自由意志” 的机器?

问20.计算物理学:计算机能代替解析计算吗?如果是,那么将来物理学家所受的训练该如何相应改变?

问21.物理学的分化:物理学自身发展日益分化,如何面对这种状况?

问22.还原论:是否应该怀疑这个物理学的根本逻辑?是否保持一个开放的态度?

问23.“理论”应该扮演何种角色:“理论”是否应仅仅靠实验来判断正误,或者应该是由基本物理原理发展出来的对自然“更高”层次的理解,而可以不顾及是否能在实际中实现?在对复杂系统的细节描述中,如何估价物理学家一贯坚持的“简洁性”和数学“优美性”等原则?

问24.物理学未来发展中潜在的危险:如何面对越来越大、越来越难以实现的物理学实验计划?在这种形式下,新的研究途径该是怎样的?理论在探索自然方面应该起什么作用?

问25.物理学是否仍将是最重要的科学?

(三)欧洲在天体粒子物理领域的发展战略

2008年9月29日布鲁塞尔消息,欧洲今天向全世界宣布了欧洲在天体粒子物理(Astroparticle Physics)领域的发展战略。

什么是暗物质(Dark Matter)?宇宙射线(Cosmic Ray)的起源是什么?宇宙中星体经历的剧烈过程起什么样的作用?我们是

否可以探测引力波(Gravitional Wave)?物理学家们期望通过这七类大型天体粒子物理项目找到这些问题的答案,这七类项目分别是:

1.CTA:用来探测高能宇宙伽马射线(Cosmic High-Energy Gamma Ray)的大型契伦科夫望远镜阵列(Array of Cherenkov Telescope);

2.KM3NeT:放置在地中海中的一个千米见方的中微子望远镜(Neutrino Telescope);

3.搜索暗物质的吨级探测器;

4.测定中微子质量和基本性质的吨级探测器;

5.研究中子衰变(Proton Decay)、中微子天体物理(Neutrino Astrophysics)以及探测中微子性质的百万吨级探测器;

6.探测带电宇宙射线的探测器阵列;

7.第三代地下引力波探测器(Gravitational Antenna)。

来自德国电子同步加速器实验室(DESY: Deutsches Elektronen Synchrotron)的Christian Spiering是路线图委员会(Roadmap Committee)的主席,他说:“新的激动人心的发现就在我们前面;在下个十年中能否引领潮流取决于我们现在做出什么样的决定”。在花了两年的时间规划战略路线图之后,《欧洲天体粒子物理战略》(The European Strategy for Astroparticle Physics)的发表标志着欧洲在这个领域日趋国际化的探索过程中为谋求领导地位跨出了重要的一步。

从海底到地下、再到无垠沙漠以及外太空的实验室,天体粒子

物理实验接受了激动人心的挑战。这个领域是粒子物理(Particle Physics)、宇宙学(Cosmology)和天体物理(Astrophysics)的交叉学科,它的目标是探测难以捉摸的粒子,探索宇宙最深层次的奥秘,是一个非常有希望取得重大进展的领域。

为了确保欧洲各国在天体粒子物理学研究方面能够相互协调,来自十三个国家的研究机构加入了欧洲天体粒子物理研究网(ASPERA: AstroParticle ERA-Net),这是一个由欧洲委员会(European Commission)资助的欧洲研究网(ERA-Net:European Research Area Net)。经过欧洲天体粒子物理研究网的努力,欧洲国家第一次有一个共同的平台一起参与项目,并分享他们在天体粒子物理方面的成果。

这个雄心勃勃的计划将联合欧洲国家一起开启一扇探索宇宙的窗口,并于2012年启动像CTA和KM3NeT这样一批最为先进的项目,这是非常激动人心的。这个项目的全部预算达到数十亿,为了实现这个目标需要从现在开始就逐年增加对于天体粒子物理的投入,并在十年之后达到百分之五十的增幅。

欧洲天体粒子物理研究网的协调员Stavros Katsanevas教授说:“要按时地实现这个七大项目是一个很大的挑战,但是我们非常自信,这些项目不会像电影里发生的那样被突然砍掉,因为欧洲的研究机构都非常支持这几个优先发展的项目,在其它几个洲也是同样的情况。”

这就是为什么欧洲天体粒子物理研究网将于2008年9月29日和30日欢迎来自欧洲之外的全世界200位科学家以及基金会的官员,以谋

求国际合作。欧洲的天子粒子物理学家们重申了他们支持致力于探索暗能量(Dark Energy)现象的地面和空间计划。他们还呼吁建立一个地下实验室之间的合作网、以及天体粒子物理领域中进行技术创新。此外他们还表示希望能建立欧洲天体粒子物理理论中心(European Centre for Astroparticle Physics Theory)。

(四)来自于网络的几个问题

1.为什么几十年来在高能粒子加速器碰撞实验中,喷射出来所有碎片的自由粒子,所有粒子分裂衰变整个过程的所有过渡产物粒子,包括最终稳定的质子、电子、中微子、光子,不是电中性的,就是只带一个单位电荷的粒子?

2.基本粒子最基本组成单元是什么?为什么所谓带分数电荷的36种“夸克”(含反粒子)居然会全部被禁闭?如果确实存在,那么禁闭的原因又是什么?为什么无穷小的点电荷一直未见能量“发散”?

3.为什么所有微观粒子都具有波粒二象性特征?我们至今仍不知道它们的形成原理和具体运动规律!为什么核能是E=mc2?是什么原因导致原子核内和所有粒子的质量缺失?

4.为什么质子、中子、电子及几百种原子核素都有固定不变的静止质量、磁矩值和相应的电磁场空间分布范围?它们的能量、磁矩是怎么形成的?又该如何精确计算?

5.为什么质子、中子、所有的基本粒子内部和原子核内都存在强、弱、电、磁相互作用?它们之间是什么关系?各相互作用形成原理如何?强度又该如何精确计算?

6.为什么天然放射系起始核Th232、U235、U238的总核子数都接近234?为什么已经合成核电荷数为114的重原子核仍然是极不稳定的?是什么原因导致核素稳定岛的预言失败?为什么稳定的结束核是Pb206、Pb207、Pb208?为什么原子核在高能快中子面前竟是完全“透明”的?它们内部到底呈什么样的结构?

7.为什么原子核会发射电子射线和加码射线?它们是原先就存在原子核内?还是后来转化形成的?它们是如何转化的?能谱、强度又该如何计算?

8.为什么电子在原子表层会形成所谓的“s、p、d、f型电子云”?各个电子在“电子云”中具体运动特征、规律如何?电子激发、跃迁中能谱(尤其是表层多个电子的原子中)又该如何精确计算?如

果电子确实是以几率状态分布,那么,固定不变的轨道磁矩和发射、吸收光谱能级又该如何解释?

9.重原子内层K、L层众多电子的运动特征和x荧光射线谱能量又该如何分析计算?

10.宇宙中为什么存在2.73K微波黑体背景辐射?它是由什么东西组成的?光子是电中性粒子,为什么有电磁波的特性?为什么光速c刚好是299792458m/s?它们之间存在什么关系?为什么热力学实验中获取近0.0 K的超低温相当困难?

11.既然质量较大的中子星必将导致引力塌缩形成黑洞,黑洞缩小时引力塌缩又必将导致引力势能趋于无穷大,也就是黑洞质量必将趋于无穷大。由此必将导致引力场强度、引力作用范围都趋于无穷大的“发散”现象。那为什么我们发现的所有星系中央星系核内都有巨大质量的黑洞,却从未见到质量、引力场强度、引力作用范围的“发散”现象?

12.既然我们已经知道所有的星系都是由大团星云收缩形成的。那么,从宇宙热大爆炸充分膨胀扩散形成稀薄的超大团星云,到星云分裂收缩成星系的过程中,密度和万有引力场又该是如何变化的?为什么有的形成椭圆星系,有的形成旋涡星系,有的又形成棒旋状的星系呢?星系的旋臂是怎么形成、演化的?整个星系在形成、演化过程中,是逐渐收缩的?还是逐渐扩散的?

13.现在天文学界一致认定宇宙年龄约150亿年。该年龄是指恒星年龄、古老球状星团表面恒星年龄、星系核中央黑洞的年龄、还是整个星系的年龄?宇宙中占90%以上的暗物质到底是什么东西?它们算不算宇宙中的主要成员?这90%以上的暗物质年龄又是多少?

14.宇宙真的是在不断膨胀吗?宇宙真的是由一次热大爆炸中形成的吗?如果真的是,那么大爆炸之前的所谓数学奇点是什么东西?它是怎么形成的?大爆炸前一秒钟的激发机制又是什么?

15.宇宙深处超高能量的加码射线爆是怎么形成的?超高能量的质子射线是怎么形成的?近年来观测到的所谓强度和规模仅次于宇宙创生的大爆炸又是怎么形成的?

16.为什么类星体具有难以想象的巨大能量辐射?它内部应具有什么样的结构?部分类星体光谱超常值红移到底是由什么原因引起的?所有的天体光谱红移都是多普勒红移吗?

17.相对论中的孪生子佯谬、不同时空之间的对钟难题该如何解决?牛顿的绝对时间和空间与爱因斯坦的相对时间和空间之间存在什么关系?光线在万有引力场作用下的弯曲现象,应理解为光子的运动轨道弯曲呢?还是所谓的空间弯曲?

18.量子物理学、宇宙物理学和相对论之间的所有基本物理学定律该如何统一?现代物理学和经典物理学之间的强、弱、电、磁相互作用与万有引力场作用又该如何统一?现代物理学和经典物理学的所有基本物理定律又该如何统一?……。

19、基本物理常数的数值会随时间改变吗?自然界的基本常数为什么具有现在的数值?为什么物理学的基本方程都具有时间反演不变性?

20、为什么绝对零度不可达到?为什么热水比冷水冻结快些(E rasto Mpemba问题)?运动物体的温度会改变吗?开放系统的熵具有什么物理意义?湍流形成的机理是什么?

21、地球磁场极性颠倒的原因是什么?南极空洞是怎么形成的?生物体内有核反应吗?地震前的地光是怎么形成的?为什么闪电多‘之'字形少球形?

22、能否解决强关联多电子系统的基态和元激发问题?能否解决低维凝聚态物理新现象的理论问题?何时能揭开狄拉克的大数之谜?可控轻核聚变能否实现?激光热核反应的点火条件(劳森判据)能否达到?常温核聚变能否实现?冷核聚变能否实现?量子混沌确实存在吗?最后一个超重元素的质子数是多少?热中子辐射俘获疑问的实质是什么?原子核磁矩能否准确计算出来?Gamow-Teller巨共振问题gA(核内核子)!=gA(自由核子)能否解决?奇异电子峰是怎样形成的?EMC效应能否解决?质子自旋危机能否解决?电子与核散射中,纵向响应形状因子问题能否解决?有限核的结合能与能极能否一一准确算出来?夸克-胶子等离子体(GP)物质态是否真的存在?

23、宇宙种子磁场的来历是什么?有无胶子球存在?存在第四代基本粒子吗?e-u-t之谜何时能解开?亚夸克结构仅仅是推测吗?质子的寿命有多长?电子有无结构?光子有无结构?有无奇异物质存在?C,Ψ物理中的ρπ疑难能否解决?

24、量子理论是一门实验科学,它描述微观空间中的物质运动,简单地说,就是用宏观的仪器测量微观粒子在各种相互作用过程中可由运动学和动力学表述的变化过程,它由二部分内容构成:一部分是由长度标度确认的实验结果;另一部分是沿用“欧氏几何学空间模型”的思路对实验结果的解析,即微观空间与宏观空间存在着反向自

然律的解析,也就是描述理论的对称性与实验结果不对称的解析,决定论与非决定论的解析,因果律与态叠加的几率解析,真空态和真空破缺的解析,强子“色优惠”和“夸克幽禁”的解析,人为附加场和测不准原理的解析,等等,并把这些解析作为整个量子理论的“补充性假设”,这里明摆着的一个问题同样是,在微观空间,“几何学空间模型”的使用存在着确定的边界条件,这些边界条件是由微观空间的物理学内容决定的。量子理论只是告诉我们,微观空间的物理学内容是由定义空间的量子化分割加上“补充性假设”完成的,如果定义空间稍有闪失,也就是通常所说的“物理量必需表述为(与坐标无关的)几何量”稍有闪失,20世纪量子理论的全部“补充性假设”面临的困境是可想而知的,因为只要用“庞加莱空间”置换出量子理论实际使用的欧氏相对空间,量子理论近30项“补充性假设”就没有一条是可以存活的。当然也包括已被科学界接受的“重整化”和“测不准原理”。

25、声音在密度高的物质中(例如在水或钢中)要比在空气中传播得快;但它在暖空气中又比在冷空气中传播得快,而暖空气的密度却比冷空气低。这是不是自相矛盾呢?为什么会形成晶体?为什么晶体总有一定的形状?什么是戈德尔证明?戈德尔证明是否说明真理是不可得知的?红光通过棱镜时的变化最小,而在通过衍射光栅时变化最大,为什么会有这种差别?当两道光束互相干涉并产生暗区时,能量发生了什么变化?数学家为什么对素数感兴趣?当一个不可抗拒的力遇到一个什么力都不能使之运动的物体时,将会发生什么情

况?增殖反应堆是什么东西?我们得把氢加热到多高的温度和保持这个温度多长的时间,才能使聚变反应持续进行下去?为什么人们说“宇宙空间的低温?”一个空虚的宇宙空间怎么会有温度呢?什么是宇宙尘?它们是从哪里来的?什么是脉冲星?气泡室是怎样工作的?恒星的温度能达到多少度?在一颗恒星上,聚变反应可以进行到什么程度?如果太阳的表面温度是白热的,太阳黑子为什么又是黑的呢?如果黑子真是黑的,它们就该也是冷的。太阳上的东西怎么会是冷的呢?为什么所有行星的轨道都近似地位于同一个平面上?冥王星与其它各行星有什么不同?为什么会有这些不同?彗星为什么有尾巴?时间是一种幻觉呢,还是确实存在的东西?怎么来描述时间呢?时间的最小可能单位是什么?

(五)梅晓春先生提出的理论物理问题1.带电粒子任意运动产生的推迟电磁场不满足宏观电磁场运动方程和电磁场相对论变换。宏观电磁场相对论变换导致电磁场运动方程解的唯一性破坏和其他严重问题,因而是不可能的。写成四维电磁势的形式后,不考虑电磁场相对论变换,宏观电磁场运动方程的形式在不同的惯性参考系中可以保持不变,但洛伦兹条件不可能保持不变。因此经典宏观电磁场理论不存在相对性,爱因斯坦时空相对性赖以生存的最重要的理论基础被破坏。

2.狭义相对论逻辑系统中存在三个基本问题:1.采用纯惯性参考系建立时空理论的超验性问题。2.参考系相对运动速率V’=V与真空

光速不变c的相容性和一致性问题。3.基本时空佯谬不可消除性问题。

3.为了能与地球近平直参考系中的实际测量结果进行比较,必须将弯曲时空中对引力问题的计算换算成用平直时空中的标准尺和标准钟(或局部惯性系的标准尺和标准钟)来计量。这在弯曲时空引力理论中被认为是基本原则,但目前广义相对论对具体问题计算的过程中却普遍地忽略了这个原则。采用标准尺和标准钟计算的结果表明,水星近日点进动是实际观察值的4.8倍,而且方向相反,雷达波延迟只是观察值的53%,这样的结果显然是根本不可能的。因此广义相对论实际上并未得到实验证实,除非爱因斯坦引力场方程描述的已经是平直时空中的结果,不是弯曲时空中的结果,但这与爱因斯坦弯曲时空引力理论的前提相矛盾。

4.按爱因斯坦引力场方程计算,细圆环和双球体引力场中心会出现奇点,表明时空奇异性是采用弯曲坐标的描述方法引起的,不是自然本性。所谓奇异性黑洞、白洞和虫洞以及时间旅行等在自然界中都是不存在和不可能的。

5.由于地球观察者与宇宙物质间存在相对运动速度,描述膨胀宇宙必须采用动态能量动量张量,不能采用静态能量动量张量。采用动态能量动量张量后的计算结果表明,爱因斯坦引力场方程不可能用来描述均匀且各向同性膨胀的宇宙,现代标准宇宙学面临基础缺失的危机。

(六)夸克同宇宙建立联系::新世纪的11个科学问题(转

载)

美国国家科学技术委员会(NSTC)“宇宙物理学”的跨部委工作小组,2004年5月初发表了“宇宙物理学”报告。该报告是对美国“国家研究理事会”2002年的报告—“建立夸克同宇宙的联系:新世纪的11个科学问题”做出的响应。

该工作小组成员包括能源部、宇航局、国家科学基金会、科技政策办公室和预算管理局的代表。NSTC是1993年11月23日根据当时的美国总统克林顿发布的行政命令建立的,是总统协调不同部门之间在科学、太空和技术发展的主要机构。委员会主席由总统担任,其成员由副总统、总统科技顾问、负责科技的内阁级部长和各直属局局长,以及其他白宫官员组成。NSTC的主要目的,是在诸如信息技术、卫生保舰运输系统和基础研究等领域,对联邦政府的科技投资设定清晰的国家目标。

“宇宙物理学”工作小组的这篇报告检查了联邦政府现有的投资状态,并为国家研究理事会2002年报告中提出的11个科学问题推荐了应采取的优先步骤(该报告由19名权威物理学家和天文学家联合执笔)。现将这11个科学问题介绍如下:

1、什么是暗物质?

天文学家已经证明:宇宙中的天体从比我们银河系小100万倍的星系到最大星系团,都是由一种物

质形式所维系在一起的,这种物质既不是构成我们银河系的那种物质,也不发光。这种物质可能包括一个或更多尚未发现的基本粒子组成,该物质的聚集产生导致宇宙中星系和大尺寸结构形成的万有引力。同时,这些粒子可能穿过地面实验室。

美国能源部LANL实验室的液体闪烁体中微子探测器、加拿大Sudbury中微子观测站和日本超级神冈加速器实验的最新结果给出有力的证据:中微子以各种形式“振荡”,因此必定会具有质量。虽然质量很小,但宇宙中大量的中微子加起来可使总的质量达到相当高。美国费米国家实验室新的加速器实验MiniBooNE和MINOS将研究中微子震荡和中微子质量。

尚未发现的其它粒子有可能存在,例如一种称为超对称的新对称理论预言有一种大的新类型的粒子,其中有些可解释暗物质。现正在费米实验室TeV能级加速器进行的和计划在CERN正建造的大型强子对撞机(LHC)上开展的实验,以及地下低温暗物质寻找和空间利用伽马射线大面积天体望远镜所进行的实验,目的都是要寻找超对称粒子。

阿尔法磁谱仪(AMS)安装在国际空间站上,寻找反物质星系和带有我们星系多数质量的神秘暗物质的任何证据。该项目由MI T丁肇中领导,国际上(包括中国)广泛参加。

2、暗能量的性质是什么?

最近的实验表明,宇宙膨胀正在加速而不是放慢。这一结论有悖引力具有吸引力的基本概念。如果这些测量成立,就能量”的物质形式存在,它的引力具有排斥性而不是吸引性。对膨胀率的详细测量有助于对提出的各种解释暗能量的理论模型加以区别。美国劳伦斯伯克力国家实验室(LBNL)超新星宇宙学项目的研究人员,利用从观测1a型超新星得到的数据直接观测宇宙的加速膨胀。要研究这种类型的超新星,必须观测大量的星系,因为每400年每个星系才只有唯一的一种类型的超新星。这个合作组使用智利天体望远镜、Keck天体望远镜和哈勃望远镜观测和收集1a型超新星的数据。到目前为止,利用哈勃望远镜仅对25个超新星进行了深入研究。2003年1月,被称为“超新星工厂”开始利用近地星形描迹天体望远镜(GLAST)观测 Haleakala和PalomarI和II,每隔4夜获得1a型超新星一个接近峰值亮度。这些观测每夜产生50千兆字节的数据,由美国国家能源研究计算中心(NERSC)的超级计算机和法国超新星观测组合作进行处理。 NERSC超级计算机可产生模拟,支持其他数据收集方法。通过超新星爆发中的中等大小的星,这些方法可直接对从原始星到超新星爆发后核心的核合成进行测量。

NERSC超级计算机产生的模拟也可用于LBNL超新星宇宙学项目组领导的超新星加速探测卫星和高-Z超新星寻找组进宇宙加速膨胀的研究。

3、宇宙是如何开始的?

有证据表明,在最初的时刻,宇宙经历了又一次的巨大爆炸,称为膨胀,这样宇宙中的最大星体就起源于亚原子量子态的绒毛微细结构。这一膨胀的根本物理原因是个谜。

Sloan 数字寻天项目是利用美国新墨西哥州的ApacheP oint观测站2.5米的天体望远镜来观测可见宇宙的实验。该项目完成对整个天空四分之一的系统测绘任务后,产生详细的图像,确定一亿个以上的天体的位置和绝对亮度,将在某种程度上阐明膨胀之谜。该实验还将测量距100万多个最近星系的距离,通过一个比我们到目前探索大100倍的体积,给出宇宙一个三维图像。最后,使我们前所未有地了解到可见宇宙边缘的物质分布情况。这会提供质量密度中原始波动情况,膨胀的结果应该是这样。

4、什么是引力?

黑洞在宇宙中普遍存在,可以探讨它们的巨大引力。早期宇宙中的强引力效应具有客观测到的重要性。爱因斯坦理论也应适用于这些情况,正像它适用于太阳系一样。完整的引力理论应该包括量子效应—爱因斯坦引力理论不包括—或不解释为什么它们不相关。

高能和核物理理论学家研究弦理论和额外维空间的可能性,有助于解释引力的量子方面。像在费米实验室(左图)TeV能级加速器和CERN的LHC上开展的实验将能够在未来几年内对一些这样的思想进行检验。弦理论已经导致对黑洞的熵进行计算。

5、中微子有质量吗,它们如何影响宇宙的演化?

宇宙学告诉我们,当今宇宙中一定存在着大量的中微子。物理学家们最近发现越来越多的证据,表明它们具有小质量。甚至可能有超越现行标准模型3个以外更多类型的中微子。

加拿大Sudbury中微子观测站(SNO)发布的第一批结果和日本超级神冈的实验结果,对丢失的太阳中微子进行的证据越来越多。这两项实验均系国际合作,得到美国能源部的大力支持。

称为MINOS的长基线实验,利用费米实验室中微子主注入器工程建造的设备,寻找具有极小质量的中微子存在的证据。费米实验室新的主注入器作为MINOS 实验的中微子源,实验的长基线从这里开始,探测器放在735公里之外的明尼苏达州北部原Soud an铁矿里。(Soudan矿中现有1000吨探测器)

参加MINOS实验的科学家们对从费米实验室出来的中微子和到达Soudan铁矿中的探测器的中微子的特性进行测量和比较。这两个探测器中中微子相互作用的特点之别提供不同类型的中微子振荡的证据,因此得出中微子质量。

1995 年美国LANL的液体闪烁器中微子探测器(LSND)发现了谬子中微子变成电子中微子的证据。费米国家实验室有一台探测器称为MiniBooNE,用来研究这一现象。因为更强的中微子束流,它比LSND获得更多的数据。MiniBooNE的中微子束流由比LSND束流短约10000倍强脉冲组成。这大大提高了实验将来自自然产生宇宙线相互作用的束流感应中微子事例分开的能力。

现行的理论假设中微子根本就没有质量。中微子具有质量要求对理论进行修改,它起码有助于解释构成90%以上宇宙的暗物质。中微子质量,以及其他所有轻子和夸克的来源,被认为是由因黑格斯玻色子传递的“黑格斯潮引起的独特相互作用。这个玻色子是费米实验室TeV能级加速器大力寻找的目标。如果找不到,可能会在CERN的LHC上找到。

6、质子不稳定吗?

构成我们星体的物质是从不对称数量的早期宇宙中出现的物质与反物质湮灭的小的残余物。这一小的不平衡可能依靠假设的质子不稳定性,即物质的最简单形式和稍倾向于物质的构成多于反物质形成的物理法则。

因为这意味着所有核物质的不稳定性,所以发现质子衰变将是一个具有历史意义的事件。为寻找质子衰变,已经投入巨大努力。寻找质子衰变过去是日本神冈和超级神冈探测器,以及美国Irvien-Michigan-Beookhave实验和Soudan探测器原来的主要目标。虽然没有观测到质子衰变,但那里的科学家们在中微子物理方面做出了如第五个问题中提到的给人印象深刻的发现。

斯坦福直线加速器中心(SLAC)的B工厂和BaBar 探测器通过研究B介子,有机会对宇宙中物质大大多于反物质做出解释。正负电子在几十亿电子伏特时对撞,可以按B介子衰变成其他粒子的方式研究非对称。非对称被称为CP破坏,1964年首次发现。CP 破坏仍然没有完全被弄明白,据信,它起码对大爆炸形成宇宙后物质的存在多于反物质负部分责任。研究这一重要的非对称也会扩大我们对基本粒子的了解。B工厂的物理学家们已经发现物质与反物质在衰变成被称为重短寿命粒子的鲜明差别。

7、超高能粒子来自哪里?

物理学家们已经探测到宇宙中惊人种类的高能现象,包括没有预料到的高能但不知起因的粒子束流。在实验室的加速器上,我们可以产生高能粒子束流,但这些宇宙线的能量大大超过地球上产生任何能量。

1000 平方英里的Pierre Auger观测站是个国际项目,用来研究甚高能宇宙线,对撞星系是形成极高能量宇宙线的机制。位于阿根廷的PierreAuger观测站有一台宇宙线探测器,展开面积超过巴黎的10多倍。在美国为其提供的建造费用金额中,美国能源部和国家科学基金会均摊。

8、在极高密度和极高温度下,新形态的物质是什么样的?

质子和中子是如何形成化学元素原子核的理论已有充分的

阐述。在极高密度和高温时,质子和中子可“熔化”成一种不可区分的夸克和胶子“汤”,这可以在重离子加速器中探测到。中子星和早期宇宙中可以产生更高的密度并可探测到。

相对论重离子对撞机(RHIC)正在BNL运行,研究极热、高密度核物质。它使金原子核束流在足以形成基本粒子(夸克和胶子)热、密度汤短暂微观宇宙的能量时对撞,这些粒子在宇宙大爆炸形成后的前几微秒存在过。

世界上的物理学家对RHIC上每秒发生几千次的对撞饶有兴趣。每次的对撞都像一台微观高压锅,产生甚至比最热星体核心中还要极端的温度和压力。事实上, RHIC对撞中的温度可超过绝对零度以上1011度,大约相当太阳温度的10000倍。虽然RHIC 对撞可能超快和超热使科学家们感兴趣,但是它们太小太短,没有危险。

使用大型PHENIX探测器的一个RHIC实验中,两个金原子核对撞向对撞轴横向发射出比标准模型要少的粒子。这是物质奇异态的第一个迹象,但需要更多的证据。将这一发现与未来几年更多发现结合在一起,研究人员就能弄懂宇宙诞生以来就不存在的物质态。

9、是否存在额外的时空维度?

在试图引申爱因斯坦理论和了解引力的量子性质时,粒子物理学家们假设存在着超出已知四维时空的高维时空。它们的存在对宇宙的诞生和演化具有隐含,可能会影响基本粒子的相互作用,并改变近距离时的引力。

像在第四个问题讨论的那样,高能与核物理在弦理论方面的研究表明有额外维。TeV能级加速器和其他对撞机的实验,通过寻找两个加速的粒子(如TeV能级加速器的质子与反质子)在对撞中产生粒子时丢失的能量,来寻找额外维。

10、从铁到铀的各种重元素是如何形成的?

科学家们对星体和超新星中一直到铁的元素的产生相当了解,但从铁到铀较重元素的准确起因仍然是个谜。美国能源部支持对在超新星中发生的核反应,以及对这些天体剧烈爆炸的计算机模拟研究。需要更多了解有关参与复杂连锁反应极短寿命原子核的信息。已经提出建造一种新的被称为稀有同位素加速器(RIA)的新装置,用以研究自然界可能存在的所有原子核。从RIA获得的数据和利用最大功率计算机对超新星的模拟,将使科学家们更加全面了解重元素的起源。

11、需要一种新的光和物质理论来解释在甚高能和温度时发生的情况吗?

用量子力学、电磁和它们作为电动力学统一的法则似乎对实验室中的物质和辐射进行了很好的描述。宇宙为我们提供地点和天体,如中子星和伽马射线爆炸源,这里的能量远远超过为验证这些基本理论在地球上可再现的能量。

伽马射线大面积空间望远镜(GLAST)通过观测来自许多不同天体源的高能伽马射线将开启这个高能领域。GLAST有一个伽马

射线成像天体望远镜,能力大大超过以前飞行的仪器,还有一台辅助的提高研究伽马射线爆的仪器。

在GLAST能区范围内,宇宙对伽马射线来说基本上是透明的。靠近可见宇宙边缘的高能源可用伽马射线光进行探测。如果这些天体在宇宙较早期间存在的话,我们就有充分的理由期待GL AST将看到红移值等于或大于5的已知类型的天体。对于伽马射线来说,小的相互作用截面意味着伽马射线可直接观测自然界最高能量的加速过程。伽马射线向后指向它们的源,不像宇宙线被磁场偏斜有了GLAST,天文学家们就拥有了非常好的工具,用于研究以将物质拉入而出名的黑洞是如何能够以大的难以令人相信的速度向外加速气体喷注的。物理学家们将能够研究比陆基粒子加速器中看到的更高能量时的亚原子物理。为同时进行天体物理和粒子物理研究,美国宇航局与美国能源部以及法国、德国、日本、意大利和瑞典的研究机构开展合作。GLAST计划于2006年3月发射。

许多人尚未敏感的意识到∶世界科学技术许多领域处于即将发生对原有基本理论实现重大科学技术创新的一场科技革命大风暴的前夕。这场科学技术革命大风暴在哪个国家首先掀起,哪个国家就首先受益;哪些大学对此能够有足够的敏感性,哪些大学就能有所准备且从中受益。反之,哪些大学对此没有任何感觉,就可能落伍。

浅谈物理学与现代科学技术的关系

题目:浅谈物理学与科学技术的关系姓名:李焘 专业:物理学类 学号:20112200207

浅谈物理学与现代科学技术的关系 摘要:科学技术的发展对我们的生活水平、生活方式、文化教育等方面的影响是极为深刻的.从日常的衣食住行中,处处可以感受到科学技术给我们生活带来的变化。各种合成纤维大大丰富了人们的衣着面料;农业的增产提供了丰富的食品,改善了人民的食品结构;至于汽车、飞机的发明和普及带给人们交通的方便、快捷;医学的进步提高了人民的健康水平,延长了平均寿命;教育的普及提高了人民的文化水平;电灯、电话、家用电器的普及大大方便了我们的生活……这样的例子不胜枚举。而这些发展却离不开物理学…… 关键词:物理学科学技术关系 一、物理学在现代科学技术发展中的作用与地位 现代科学技术正以惊人的速度发展。而在物理学中每一项科学的发现都成为了新技术发明或生产 方法改进的基础。 在18世纪以蒸汽机为动力的生产时 代,蒸汽机的不断提高改进,物理 学中的热力学与机械力学是起着相 当重要的作用的。 19世纪中期开始,电力在生产技术 中日益发展起来了,这是与物理中 电磁学理论建立与应用分不开的。 20世纪初相对论和量子力学的建立,诞生了近代物理,开创

了微电子技术的时代。半导体芯片,电子计算机等随之应运而生。可以毫不夸张的说,没有量子力学也就没有现代科技。 20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。 20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。 在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。 激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。 生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。 …… 物理学本身就是以实验为基础的科学,物理学实验既为物理学发展创造了条件,同时也为了现代工农业生产技术的研究打下了物质基础。

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

沪科版第六章经典力学与现代物理单元测试题及答案

经典力学与现代物理 (时间60分钟总分100分) 斗鸡中学命题人:李萍李卫东检测人:何海燕 一、选择题(每题5分,共30分) 1、提出量子论的科学家是( ) A、普朗克 B、爱因斯坦 C、瑞利 D、德布罗意 2、某单色光照到金属上时不能产生光电效应,则下述措施中可能使该金属产生光电效应的是( ) A、延长光照时间 B、增大光照强度 C、换用波长较短的光照射 D、换用频率较低的光照射 3、关于光子说,下列说法正确的是( ) A、再空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子 B、光子不具有能量 C、每个光子的能量跟光的周期成正比 D、光子说与电磁说是相互对立、互不联系的两种学说 4、下列说法正确的是( ) A、光的波粒二象性学说是由牛顿的微粒说与惠更斯的波动说组成的 B、光的波粒二象性学说彻底推翻了麦克斯韦的光的电磁说 C、光子说并没有否定光的电磁说,在光子能量E=hv中,频率v 代表波的特征,能量E代表粒子的特征 D、既不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子

5、甲、乙、丙三个完全相同的时钟,甲放在地面上,乙、丙分别放在两架航天飞机上,航天飞机沿同一方向高速飞离地球,但是乙所在的飞机比丙所在的飞机飞得快。则乙所在的飞机上的观察者认为( ) A、走得最快的钟是甲 B、走得最快的钟是乙 C、走得最快的钟是丙 D、走得最慢的钟是甲 6、已知电子的静止能量为0.511Mev若电子的动能为0.25Mev,则它所增加的质量与静止质量的比值近似为( ) A、0.1 B、0.2 C、 0.5 D、 0.9 二、填空题(每空2分,共18分) 7、相对论认为有( )才有空间和时间,空间和时间与( )有关。 8、经典力学的适用范围是:只适用于( )运动,不适用( )运动;只适用于( )世界,不适用( )世界。 9.用同一种单色光,在相同条件下,先后照射锌片和银片都能产生光电效应,对于这两个过程,一定相同的物理量是( ),可能相同的物理量是( ),一定不相同的物理量是( )。 三、计算题( 共计52分) 10、(10分)一固有长度为4.0m的物体,若以速率0.60c沿X轴相对于某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?

关于现代物理学在科技中的应用

现代物理学在航天技术中的应用 我国航天技术持续的不断发展,为我国空间科学的发展以及空间探测奠定坚实的基础。空间的物理学研究将不仅带动我国基础科学研究,而且将引领我国航天技术水平的进一步提高,有效促进空间科学与航天科技水平的协调发展。自上世纪90年代开始,我国利用“神舟”号飞船和返回式卫星,在空间材料和流体物理以及空间技术研究等领域开展了大量实验研究,取得一批重要成果。根据我国空间科学中长期发展规划,将利用返回式卫是进行微重力科学实验,同时探讨进行引力理论验证的专星方案。空间的物理学研究涉及空间基础物理、微重力流体物体、微重力燃烧、空间材料科学和空间生物技术等学科领域。空间基础物理涉及当今物理学的许多前沿的重大基础问题,在科学上极为重要,在我国还是薄弱领域。随着我国经济实力的增长,应该适时地安排引力理论家验证的专星研究。一、空间引力实验与引力波探测基础物理实验研究检验现有引力理论的假设和预言、寻找新的相互作用和引力波探测将为认识引力规律和四种相互作用的统一理论提供实验依据。加强空间引力实验和空间天文观测对于我国在空间基础科学领域参与国际竞争和发展高新空间技术具有重要牵引意义。与会专家认为应开展如下研究工作: 1、空间等效原理实验检验(TEPO); 2、空间微米作用程下非牛顿引力实验检验(TISS); 3、激光天文动力学空间计划(ASTROD); 4、空间引力波探测。 二、空间的冷原子物理和原子钟研究 冷原子和玻色爱因斯坦凝聚是当代物理学中最活跃的领域之一,它为探索宏观尺度上物质的量子性质提供了独一无二的介质。该领域的研究可以加深人们对基本物理规律的理解,同时具有重要的应用前景。此外,高准确度的时间频率标准是精密测量和探索研究基本物理问题的关键和基础,在应用技术上均占有是十分重要的地位。微波原子钟与光钟在空间物理有着广泛的应用前景,它不仅可以改进卫星定位导航系统,而且在深空跟踪和星座定位等深空科学上有着不可替代的作用。为了突破地面实验的温度极限和空间尺度,增加测量时间,以便进行更高精度的测量和探索新的物理现象,在微重力环境下进行冷原子物理实验是非常必要的。专家建议开展如下研究工作: 1、空间实验室中的物质波及其相干性研究; 2、微重力条件下用冷原子和玻色爱因斯坦凝聚探索物理极限; 3、空间超高精度微波原子钟; 4、空间高精度光钟。 三、微重力流体物理 微重力流体物理是微重力科学的重要领域,它是微重力应用和工程的基础,人类空间探索过程中的许多难题的解决需要借助于流体物理的研究。在基础研究方面,微重力环境为研究新力学体系内的运动规律提供了极好的条件,诸如非浮力的自然对流,多尺

物理学师范专业简介

物理学师范专业简介 Revised by BLUE on the afternoon of December 12,2020.

“物理学(师范)”专业简介 一、培养目标 物理学专业的培养目标是:培养德、智、体全面发展,具有较高的思想道德和文化素质修养、敬业精神和社会责任感,掌握物理学的基本理论、基本知识及实验技能,具备物理学基本理论、应用研究能力和高度的科学文化素养的,能在中等及以上学校从事教学和初步科学研究工作的物理学人才。 二、培养规格 本专业学生主要学习和掌握物理学的基本理论和基本知识,并进行物理实验以及教育实践的基本训练,具备从事物理教学工作及应用研究的能力。毕业生应获得以下几方面的知识和能力: (1)热爱社会主义祖国、拥护中国共产党领导,树立科学的世界观、正确的人生观和价值观,养成高尚的思想道德素质; (2)具有一定的人文、艺术、法律等方面知识,了解体育运动的基本知识,掌握一定的体育锻炼能力,具备系统的教育科学理论素养,树立育人为本、实践取向、终身学习的教育理念,形成正确的学生观、教师观和教育观; (3)掌握物理学科的基本理论、基本知识以及实验研究的初步能力;掌握和运用现代教育技术,特别是多媒体、网络教育技术的能力; (4)掌握并能够初步运用教育学、心理学基础理论,具有良好的教师职业道德素养和从事物理学教学的基本能力; (5)了解物理学的前沿理论、应用前景及发展动态,以及物理学教学的新成果,具有一定的创新意识和创新能力;

(6)具有在中等及以上学校,从事教学的工作能力和初步的科学研究能力;或者具有能将物理学应用于技术和社会各领域的能力。 (7)掌握一门外语,具有较好的听说读写能力和外语应用能力。 三、学制、学位、学时和学分 学制:4年(不少于3年,不超过6年,具体按学校有关文件执行) 学位:理学学士 学分: 165 学时: 2671 四、相关和相近专业 应用物理学 五、专业主要课程 力学、热学、电磁学、光学、近代物理学、普通物理实验、数学物理方法、理论力学、电动力学、热力学与统计物理学、量子力学、固体物理学、近代物理实验、教育学基础、心理学、现代教育技术、中学物理课程标准与教材研究、中学物理教学设计等。

现代物理基础丛书

现代物理基础丛书 1《现代声学理论基础》马大猷著 2《物理学家用微分几何》(第二版)侯伯元、侯伯宇著 3《数学物理方程及其近似方法》程建春编著 4《计算物理学》马文淦编著 5《相互作用的规范理论》(第二版)戴元本著 6《理论力学》张建树、孙秀泉、张正军编著 7《微分几何入门与广义相对论》(上册)(第二版)梁灿彬、周彬著8《物理学中的群论》(第二版)马中骐著 9《辐射和光场的量子统计理论》曹昌祺著 10《实验物理中的概率和统计》(第二版)朱永生著 11《声学理论与工程应用》何琳、朱海潮、邱小军、杜功焕编著12《高等原子分子物理学》(第二版)徐克尊著 13《大气声学》(第二版)杨训仁、陈宇著 14《输运理论》(第二版)黄祖洽、丁鄂江著 15《量子统计力学》(第二版)张先蔚编著 16《凝聚态物理的格林函数理论》王怀玉著 17《激光光散射谱学》张明生著 18《量子非阿贝尔规范场论》曹昌祺著 19《狭义相对论》(第二版)刘辽、费保俊、张允中编著 20《经典黑洞和量子黑洞》王永久著

21《路径积分与量子物理导引—现代高等量子力学初步》侯伯元、云国宏、杨战营编著22《量子光学导论》(第二版)谭维翰著 23《全息干涉计量——原理和方法》熊秉衡、李俊昌编著 24《实验数据多元统计分析》朱永生编著 25《微分几何入门与广义相对论》(中册)(第二版)梁灿彬、周彬著 26《中子引发轻核反应的统计理论》张竞上著 27《工程电磁理论》张善杰著 28《微分几何入门与广义相对论》(下册)(第二版)梁灿彬、周彬著 29《经典电动力学》曹昌祺著 30《经典宇宙和量子宇宙》王永久著 31《高等结构动力学》(第二版)李东旭编著 32《粉末衍射法测定晶体结构(上册)X射线衍射结构晶体学基础》(第二版)梁敬魁编著32《粉末衍射法测定晶体结构(下册)X射线衍射在材料科学中的应用》(第二版)梁敬魁编著 33《量子计算与量子信息原理》[意] Giuliano Benenti、Giulio Casati、Giuliano Strini 著王文阁李保文译 34《近代晶体学》(第二版)张克从著 35《引力理论》王永久著 36《低温等离子体——等离子体的产生、工艺、问题及前景》[俄]В. М. 弗尔曼、[俄]И. М. 扎什京编著邱励俭译 37《量子物理新进展》(第二版)梁九卿、韦联福著 38《电磁波理论》葛德彪、魏兵著

走向未来丛书书目

《走向未来》丛书书目 《走向未来丛书》,四川人民出版社出版,从1983年开始,到1989年因众所周知或不知的原因结束,共出版约74种。因介绍西方现代思潮特别是“三论”(控制论、信息论、系统伦)、融会文理、倡导科学理性而著称,被誉为中国新思想启蒙运动的先锋和主将。 1984年出版: 《人的发现》李平晔著 《增长的极限》(罗马俱乐部关于人类困境的研究报告)李宝恒译 《激动人心的年代》李醒民著 《GEB--一条永恒的金带》道.霍夫斯塔特著乐秀成译 《现代物理学和东方神秘主义》根据F.卡普拉的《物理学之道》编译灌耕编译 《现实与选择》朱家明吕政著 《经济控制论》何维凌邓英淘编著 《探险与世界》于有彬编著 《看不见的手》杨君昌编著 《语言学与现代科学》陈明远编著 《在历史的表象背后》金观涛著 《让科学的光芒照亮自己》刘青峰著 1985年出版: 《人的现代化》[美]阿历克斯.英格尔斯等著殷陆君编译 《大变化时代的建设者》汪家溶编著 《没有极限的增长》朱利安.林肯.西蒙原著黄江南朱嘉明编译 《西方社会结构的演变》金观涛唐若昕著 《在国际舞台上》陈汉文编著 《昨天今天明天》邓正来编著 《摇篮与墓地》陈越光陈小雅著 《择优分配原理》茅于轼著 《第三次数学危机》胡作立著 《凯恩斯革命》杨君昌编著 《艺术魅力的探寻》林兴宅编著 《西方文官系统》杨百揆陈子明陈兆刚李盛平缪晓非著 《动态经济系统的调节与变化》邓英淘何维凌编著 《新的综合》[美]爱德华.奥尔本.威尔逊著李昆峰编译

1986年出版: 《富饶的贫困》王小强白南风著 《定量社会学》郭治安姜璐沈小峰编著 《儒家文化的困境》萧功秦著 《系统思想》[美] 小拉尔夫.弗.迈尔斯主编杨志信葛明浩译 《日本为什么成功》[日]森岛通夫著胡国成译 《悲壮的衰落》金观涛王军衔著 《弗洛伊德著作选》约翰.克里曼编贺明明译 《西方的丑学》刘东著 《十七世纪英国的科学、技术与社会》[美]R.K.默顿著范岱年吴忠蒋效东译《画布上的创造》戴士和著 《梁启超与中国近代思想》[美]约瑟夫.阿.勒文森著刘伟刘丽姜铁军译《新教伦理与资本主义精神》[德]马克斯.韦伯著黄晓京彭强译 《信息革命的技术源流》宋德生著 《增长、短缺与效率》[匈]亚诺什.科内尔著崔之元钱铭今译 1987年出版: 《走向现代国家之路》钱乘旦陈意新著 《竞争中的合作》陈汉文编著 《计量历史学》[苏]科瓦尔琴科主编闻一肖吟译 《哲学的还原》麦克斯韦.约翰.查尔斯沃斯著田晓春译 《凯恩斯理论与中国经济》林一知著 《人的创世纪》张猛顾昕张继宗编著 《社会研究方法》[美]艾尔.巴比著李银河译 《发展社会学》胡格韦尔特著白桦丁一凡编译 《上帝怎样掷骰子》陈克艰著 《空寂的神殿》谢选骏著 《震撼心灵的古旋律》郑凡著 《以权力制约权力:西方分权论和分权制评述》朱光磊著 《整体的哲学》金观涛著 《人体文化》谢长葛岩著 《人心中的历史》刘昶著 《探寻新的模式》罗首初万解秋著 《发展的主题》周其仁杜鹰邱继成著 《社会选择与个人价值》[美]K.J.阿罗著陈志武崔之元译 《对科学的傲慢与偏见》[英] 查.帕.斯诺著陈恒六刘岳译 《马克斯.韦伯》[英]弗兰克.帕金著刘东谢维和译 1988年出版: 《波兰危机》王逸舟著

经典力学与现代物理

经典力学与现代物理 物理2第6章 安徽合肥十中钟建和 本章概述这一章是在学生学习了宏观物体机械运动的规律、牛顿运动定律、机械功与机械能之后,使学生进一步了解经典力学的伟大成就与不足,通过对一些物理现象的分析与研究,使学生初步接触到现代物理的研究方法、思想和理论。 这一章是以肯定牛顿运动三定律是整个经典力学的基础、肯定了当时牛顿等科学家的思想方法的重大意义为背景,指出了经典力学存在着局限性,引出爱因斯坦的狭义相对论、普朗克的量子理论、光电效应及其规律和玻尔的原子结构模型。 这一章涉及到的教学内容较新,知识跨度较大,特别是相对论一节对学生的数学思维能力、空间想象能力要求较高,光电效应中光子、光电子、光电流、光子的能量、光的强度、极限频率等物理概念都很抽象,玻尔的原子结构模型的产生以及用它解释线状光谱的产生机理对学生的理解能力要求也很高。教学中应该充分考虑到学生的知识水平与思维能力,适当介绍一些科普知识、物理学史,适时地运用多媒体来辅助教学,使学生在欣赏着前人的研究方法与成果的同时,在充满着激情和追求气氛中学习这一章。 课时划分本章可划分为4课时 第一课时讲授6.1经典力学的巨大成就和局限性 第二课时讲授6.2狭义相对论的基本原理 第三课时讲授6.3爱因斯坦心目中的宇宙 第四课时讲授6.4微观世界与量子论 6.1经典力学的巨大成就和局限性 教学要求 1.通过对以牛顿为代表的经典力学的总结与回顾,体会前人的研究途径与方法, 认识到经典力学的巨大成就以及对人类的影响。

2.从认识论和方法论的角度介绍经典力学的局限性,培养学生的思想、方法。教学建议 1.怎样介绍《原理》的产生背景、内容,怎样对《原理》进行评价?教材中安排 了《原理》这部分内容目的是让学生了解在当时的社会背景、知识背景下,牛顿等科学家是怎样得到对整个物理学产生巨大影响的包括运动三定律的物理规律。教学中应该把重点放在让学生感受前人坚忍不拔的探索精神、科学严谨的思维方法和谦虚的态度,不要过多地介绍《原理》中的其它内容,对一些感兴趣的学生可以推荐其通过阅览室、互联网查阅更多的相关资料。 2.对经典力学的巨大成就的教学,不能变成知识的总结和规律的整理,应该把重 点放在让学生知道经典力学的重要地位、对人类产生的积极影响,他们的方法论对自然科学甚至社会科学都有重大的意义。 3.经典力学的局限性的教学,应该在充分肯定经典力学的重要地位的前提下,从 认识论的角度去引导学生,注意通过教学活动以达到培养学生科学的思想方法、正确的世界观。 4.本节的教学应该自始至终地渗透科学观点和思维方法的培养,激发学生发现问 题的兴趣,敢于向困难挑战的精神,能客观地科学地对自己的研究成果进行评价。 5.教学中可以结合牛顿、伽利略的杰出贡献,从他们超人的智慧、坚强的毅力的 角度适时、适当的介绍一点物理学史。 6.建议认真组织并评价课后作业3:撰写一篇题为“关于伽利略、牛顿的科学研 究方法对物理学发展的意义”的小论文,鼓励学生通过各种渠道获取相关的信息。 6.2狭义相对论的基本原理 教学要求 1.通过学生熟悉的物理事例让学生理解经典力学中的时空观(绝对时空观),使学 生首次对时空进行研究。

物理学发展简介

1687年,依萨克·牛顿经过多年的潜心研究,终于出版了他的《自然哲学的数学原理》(以下简称《原理》),它标志着物理学的真正诞生 《原理》是人类自然科学知识的首次大综合。在这里,牛顿把伽利略“地上的”物体运动规律,与开普勒“天上的”星球运动规律天才地统一起来,建立了牛顿力学(也称经典力学或古典力学)的完整理论体系。 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。 古典物理学 经典力学 阿基米德公元前250:浮力原理——王冠密度测量 杠杆原理——给我一个支点,我可以翘起地球 托勒密2世纪:地心说——地球是宇宙中心 哥白尼1543:日心说——太阳是宇宙中心 亚里士多德:力是维持物体运动的原因 伽利略17世纪:比萨斜塔实验,惯性提出者,物理实验之父 斜面小球实验说明:力不是维持物体运动的原因 笛卡尔:完善补充了伽利略的观点,指出如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下也不偏离原来方向。 开普勒1609:行星三大运动定律 牛顿1687:牛顿力学三大定律,万有引力定律 牛顿总结伽利略和笛卡尔的正确结论,得出动力学的一条基本规律,即牛 顿第一定律(惯性定律) 伯努利1738:流体动力定律 热学 前人:热质说,认为热是一种由高温流向低温处之物质 卡诺:卡诺循环理论,卡诺热机 布朗:布朗运动 焦耳:测量出热功当量,证明热是能量的一种形式 克劳修斯:分子动理论 光学 司乃尔:折射定律 牛顿:光的微粒说,光的色散 海根斯:光的波动性提出者 汤姆斯、杨:光的波动性证明:杨氏双缝实验 麦克斯韦:建立光学是电磁波的理论 赫兹:发现光电效应 爱因斯坦:光量子理论,解释了光电效应,光电方程 电磁学

牛顿对经典力学的贡献

牛顿对经典力学的贡献 一、认识牛顿 艾萨克·牛顿 艾萨克·牛顿爵士是人类历史上出现过的最伟大、最有影响的科学家,同时也是物理学 家、数学家和哲学家,晚年醉心于炼金术和神学。他在1687 年7月5日发表的不朽著作《自然哲学的数学原理》里用数学 方法阐明了宇宙中最基本的法则——万有引力定律和三大运 动定律。这四条定律构成了一个统一的体系,被认为是“人类 智慧史上最伟大的一个成就”,由此奠定了之后三个世纪中物 理界的科学观点,并成为现代工程学的基础。牛顿为人类建立 起“理性主义”的旗帜,开启工业革命的大门。牛顿逝世后被安 葬于威斯敏斯特大教堂,成为在此长眠的第一个科学家。 二、牛顿力学 1679年,牛顿重新回到力学的研究中:引力及其对行星轨道的作用、开普勒的行星运动定律、与胡克和弗拉姆斯蒂德在力学上的讨论。他将自己的成果归结在《物体在轨道中之运动》(1684年)一书中,该书中包含有初步的、后来在《原理》中形成的运动定律。 《自然哲学的数学原理》(现常简称作《原理》)在埃德蒙·哈雷的鼓励和支持下出版于1687年7月5日。该书中牛顿阐述了其后两百年间都被视作真理的三大运动定律。牛顿使用拉丁单词“gravitas”(沉重)来为现今的引力(gravity)命名,并定义了万有引力定律。在这本书中,他还基于波义耳定律提出了首个分析测定空气中音速的方法。 三、牛顿对经典力学的贡献 所谓经典力学,是指研究在低速情况下宏观物体的机械运动所遵循的规律的力学。经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理。

牛顿在前人积累的大量动力学知识的基础上,又通过自己反复观察和实验,提出了“力”、“质量”和“动量”的明确定义,并将它们与伽利略提出的“加速度”联系起来,总结出了物体机械运动的三个基本定律。牛顿的这三个定律是人类对自然界认识的一个大飞跃,它为经典力学奠定了坚实的基础,决定了300多年来力学发展的方向,并且对其他学科的发展产生了巨大的影响,至今仍是自然科学的基础理论之一。牛顿的一生不仅为经典力学奠定了基础,而且在热学、光学、天文和数学等方面也都作出了卓越的贡献。 牛顿(1642—1727)是一位伟大的物理学家、数学家和天文学家。他在自然科学史上占有独特的地位。他的科学巨著《自然哲学的数学原理》的出版,标志着经典力学体系的建立。经典力学理论体系的科学成就和科学的方法论启迪了人类征服自然的无穷智慧,对现代化科学技术发展和社会进步产生了极其深远的影响。 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿力学较多采用直观的几何方法,在解决简单的力学问题时,比分析力学方便简单。 经典力学的基本定律是牛顿运动定律或与牛顿定律有关且等价的其他力学原理,它是20世纪以前的力学,有两个基本假定:其一是假定时间和空间是绝对的,长度和时间间隔的测量与观测者的运动无关,物质间相互作用的传递是瞬时到达的;其二是一切可观测的物理量在原则上可以无限精确地加以测定。20世纪以来,由于物理学的发展,经典力学的局限性暴露出来。如第一个假定,实际上只适用于与光速相比低速运动的情况。在高速运动情况下,时间和长度不能再认为与观测者的运动无关。第二个假定只适用于宏观物体。在微观系统中,所有物理量在原则上不可能同时被精确测定。因此经典力学的定律一般只是宏观物体低速运动时的近似定律。 因为牛顿的力学与现代力学(以量子力学和相对论为主导)有很大差别,牛顿的力学虽然在高速和微观领域不正确(由于受当时认识水平的局限),但其在一般情况下(低速、宏观),可以很容易地处理问题(也就是说牛顿力学虽然错误但还是有用的),所以就打算把它们分别起个名字。起什么名字呢?最后,一个叫经典力学,一个叫现代力学。 牛顿三大定律 力学三大定律和万有引力定律,它是研究经典力学的基础。

1.物理学与现代科技

1.物理学与现代科技 物理学(physics)一词起源于古希腊,拉丁文原意是“自然”。自公元前七世纪,物理 学就以自然哲学的形式从人类的生产劳动中萌芽出来,先后经历了古代物理学、经典物理学、近代物理学和现代物理学四个阶段。物理学是研究物质的最基本、最普遍的运动形式以及物 质的基本结构的科学。 20世纪50年代以来的当代物理学已经发展成为一个相当庞大的学 科群,包括了高能物理(粒子物理)、原子核物理、等离子体物理、凝聚态物理、原子分子 物理、光物理、声学、计算物理和理论物理等主体学科以及难以数计的分支学科。物理学内 部各个分支学科的渗透和交叉,物理学和化学、生物学、材料科学、天文学等其他学科的渗 透和交叉,又产生了许多新的、富有生命力的边缘学科,形成了众多极有发展前途的科学前沿。当代物理学还呈现出高速发展的趋势,现代物理学中90%的知识是1950年以后取得的。其发展之快,分支之多,变化之大,已使人们很难及时作出全面的概括。近、现代物理学革 命带来了科学图景的巨大变革:相对论打破了经典力学的绝对时空观,量子力学打破了可控 测量过程的梦想,混沌粉碎了拉普拉斯的机械决定论……。无论从外延还是从内涵上看,当 今物理均处于较高地位,从经典物理不能线性导出当今物理。这其间的范式转换,不仅涉及 具体科学知识的变化,更主要的体现在基本思想、基本观念的变革。 当代物理学研究的综合性、深入性、复杂性、创新性和可应用性,都呈现出鲜明的时代特点。物理学在21世纪发展的全景,人们无法作出全面的预测。只能根据我们目前的认识水平,根据当代物理学发展的状况和特点,对21世纪最初几十年的发展趋势作“豹斑之窥”。大体说来,在科学技术整体发展的推动下,物理学仍将加速地发展和分化,同时又会出现更多的渠道,增强各个分支之间的交叉和非线性作用,导致更为广泛和深刻的综合,朝着各个分支学科不断深入而整体领域综合交叉的整体化方向进展。p.c.w戴维斯指出:“物理学是最自负的一门科学,物理学家把理解宇宙的奥秘视为自己的职责。而其他科学家只局限于研究一些具体的东西……像神学家一样,物理学家不承认任何系统在原则上处于他们的研究范围之外。” 物理学作为精密科学的典范,并以其探索视野的广阔性、研究层次的广谱性、理论适用的广泛性,在今后很长时期内仍将发挥其中心科学和基础科学的作用。它也仍将不断地推出新思想、新原理和新方法,孕育出功能奇特、威力巨大的新技术,成为新技术和新兴产业部门的源泉和生长点。物理学与未来高新技术将更加紧密地发生融合,互相促进,协同发展,成为科学技术革命深入发展的主旋律;物理科学技术领域愈来愈频繁出现的突破性进展,将会更加吸引社会公众对物理学事业发展的热切关注。 近10多年来,关于非平衡统计物理学的研究前景也十分诱人,非平衡相变、耗散结构、协

经典力学基本原理

经典力学基本原理 经典力学是以牛顿运动定律为基础,在宏观世界和低速状态下,研究物体运动的基础学科。在物理学里,经典力学是最早被接受的力学基础。经典力学的理论有一种简洁的、深刻的美,这些定律中包含了内在而优雅的数学内涵,因此非常有必要将这些内容介绍给高年级的大学生们。因此本书主要是针对对于现代数学感兴趣的物理学高年级本科 生和研究生,书中将用拓扑场论和微分几何来建立经典力学的数学框架。本书同样针对将重要物理问题作为研究对象的数学系高年级本科生和研究生。 本书共分为43章:1.向量、张量和线性变换;2.外代数和行列式;3.霍奇星算子和向量叉积;4.运动学和活动标架:从角速度到规范场;5.微分流形:正切和余切包络;6.外微积分:微分形式;7.通过微分形式的向量计算;8.斯托克斯定理;9.活动标架的嘉当方法;10.机械约束:弗罗贝尼乌斯定理;11.流形和李微分;12.牛顿定律:惯性和非惯性框架; 13.牛顿定律的简单运用;14.势理论:牛顿万有引力定律; 15.离心力和科氏力;16.谐振子:傅里叶变换和格林函数; 17.原子的经典模型:能级;18.动力学系统及稳定性;19.多粒子系统和守恒律;20.刚体动力学:运动的欧拉-泊松方程;

21.完整约束的拓扑学和系统;22.矢量丛上的联络:正切丛上的仿射联络;23.向量平移;24.几何相、规范场和可变形体力学:佛科摆(The Foucault Pendulum);25.力和曲率;26.GaussBonnetChern定理和完整性;27.黎曼几何中的曲率张量;28.标架丛和主从:标架丛上的联络;29.变分法,欧拉-拉格朗日方程,弧长和短程线的一阶变分;30.弧长的二阶变分,指数形式和雅克比场;31.经典力学的拉格朗日表达式:最小作用量的哈密顿原理,约束运动中的拉格朗日乘数; 32.小扰动和正态振型;33.经典力学的哈密顿表达式:运动的哈密顿方程;34.对称和守恒;35.对称顶点;36.正则变换和辛群;37.生成函数和哈密顿-雅克比方程;38.可积性,不变环面和作用角变量;39.哈密顿动力学中的辛几何,哈密顿流和PoincaréCartan积分不变量;40.辛几何中的达布定理; 41.KolmogorovArnoldMoser (KAM)定理;42.同宿环纠缠和不稳定性;43.限制性三体问题。 本书是本领域研究生课程的优秀教科书,也为理论力学专业人员提供了详尽的参考资料。适合力学专业、数学专业、物理专业的研究生、博士生和相关的科研人员阅读。 甘政涛,博士研究生 (中国科学院力学研究所)

2.现代物理学的辉煌成就汇总

2、现代物理学的辉煌成就 二十世纪物理学对人类的思维方式和社会发展做出了三方面的重要贡献:第一,相对论、量子力学和它们相结合产生的量子场论从根本上改变了人类对时空和宇宙万物的看法,使人们从绝对的决定论的宇宙观变为辩证的唯实的宇宙观。第二,二十世纪物理学是带头的学科,它带动了化学、天文、材料、能源、信息等学科的发展,它为生物、医疗、地学、农业提供了强大的探测手段和研究方法。物理学在半导体、集成电路、激光、磁性、超导等方面的发现奠定了信息革命的科学基础。它推动了高技术产业的发展,引发了以微电子、光电子和微光机电技术为核心的工业革命,由物理学研究衍生的新技术和新产品层出不穷,从根本上改变了人们的生产方式和生活方式。第三,通过计算机的帮助,应用古典物理理论讨论流体运动和气象预报时,发现了自组织、混沌和分形等现象。随后发现,这是普遍存在于非线性相互作用的开放系统中的现象,生命系统和社会系统也不例外。物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果。物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善。现今物理学(狭义与广义相对论、量子力学和量子场论及其发展如标准模型(包含弱电统一理论和量子色动力学))已经把目前实验能触及到的领域都涵盖进去了。从尺度讲,包含从10-17米的极微观到1026米的宇观范围;从能量角度讲,已经到达现在LHC的TeV能标。所以现在的新物理,都只能出现在:(1)10-17米以下尺度(检验超对称、超弦是否存在,检验超引力及量子引力);(2)从星系尺度到1026米的宇观尺度(检验所谓的暗物质、暗能量是否存在及其本质);(3)在LHC的TeV 能标之上,解决标准模型(弱电统一理论和量子色动力学)中出现的一些疑难。虽然标准模型整个框架已经确定,应该也不存在什么问题,但模型本身提出了不少更为本质的疑问,暗示着新的发展路线。标准模型现在的情况就好比1900-1926年的旧量子论,未来还将存在TeV能标以上的新物理,包括弱、电、强力三者的统一(大统一理论)。(4)超低能低温下的丰富的对称破缺。这是凝聚态物理的事情。能量标度上升,对称性增高及得以恢复,各种力都走向同一,物理学趋向统一,所以大统一理论(弱、电、强力三者的统一)以及四种力(弱、电、强、引力)的统一,都必然是在极高能标下完成的;能量标度下降,对称破缺产生,四种力(弱、电、强、引力)都逐渐分离,表现不同行为。总之,高能量标度使得对称性恢复,物理世界变得简单及统一;能量标度下降,世界变得复杂,丰富多彩。超低能低

物理学简介

物理学简介(各专业,各方向) 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这?目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。 物理学介绍---物理学 物理学 物理学早期称为自然哲学,是自然科学中与自然界的基本规律关系最直接的一门学科。它以研究宇宙间物质各层次的结构、相互作用和运动规律以及它们的实际应用前景为自己的任务。 从17世纪牛顿力学的建立到19世纪电磁学基本理论的奠定,物理学逐步发展成为独立的学科,当时的主要分支有力学、声学、热力学和统计物理学、电磁学和光学等经典物理。本世纪初,相对论和量子论的建立使物理学的面貌焕然一新,促使物理学各个领域向纵深展,不但经典物理学的各个分支学科在新的基础上深入发展,而且形成了许多新的分支学科,如原子物理、分子物理、核物理、粒子物理、凝聚态物理、等离子体物理等。在近代物理发展的基础上,萌发了许多技术学科,如核能与其它能源技术、半导体电子技术、激光和近代光学技术、光电子技术、材料科学等,从而有力地促进了生产技术的发展和变革。 19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理学某些领域的基本规律认识的突破为前提的。当代,物理学科研究的突破导致技术变革所经历的时间正在缩短,从而在近代物理学与许多高技术学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域。物理学科与技术学科各自根据自身的特点,从不同的角度对这一领域的研究,既促进了物理学的发展和应用,又加速了高技术的开发和提高。 我国的物理学专业,从来就不是纯物理专业,它是包括应用物理和技术物理在内的基础研究和应用研究相结合的专业。建国以来,我国的许多新技术学科如半导体、核技术、激光、真空技术等的大部分,都是在物理学科中萌芽、形成和发展起来的。基础性工作与应用性工作同时并存、相互结合是我国物理学科的特点. 物理学科是一门基础学科。在物理学基础研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,已成为其他学科诸如天文学、化学、生物学、地学、医学、农业科学等学科的组成部分,并推动了这些学科的发展。物理学还与其他学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等。这种相互渗透过程一直在进行之中,例如量子计算问题是当前的一个研究热点,有可能对信息科学产生重要的影响。数学对物理学的发展起了重要的促进作用,反过来物理学也促进了数学和其他交叉学科的发展。 物理学也是各种技术学科和工程学科的共同基础,物理量测量的规范化和标准化已成为计量学的一个重要研究内容。依据上述认识,物理学科可包含如下几个分支∶理论物理、粒

近代物理基础练习题

信息商务学院《近代物理基础》 期末练习题 计算用物理常数: 1eV=1.6×10-19J 1uc2=931.5Mev 电子静止质量:m0=9.11×10-31kg 普朗克常数:h=6.63×10-34J·s 一、填空题(共30分,每题3分) 1.狭义相对论的两条基本原理是; 和。 2.电介质的极化有两种,一是; 二是。 3.在硅基体中掺进了3价元素锑,则形成了型半导体,其杂质能级叫 4.频率为ν 的光子的能量ε = ,动量p = ,静质量m0= 。5.在下列给出的条件中那些是产生激光的条件,将其标号列出。 (1)自发辐射(2)受激辐射(3)粒子数反转(4)两能级系统(5)谐振腔 6.在太阳能电池中,本征半导体锗的禁带宽度是0.67eV,它能吸收的辐射的最大波长是m。 7.放射性衰变的三种形式是衰变、衰变、衰变。8.光电效应中从铝中逸出一个电子最少需要4.2eV的能量,铝的红限波长为nm。9.在布喇菲晶体点阵分类中,三维晶格的布喇菲胞共有种。 10.氢原子中的电子处于量子数为n=4,l=3的量子态,则该电子角动量L的值为 二、分析与计算题(共50分,每题10分) 1.一静止长度为l0的火箭(可看作S’系)以恒定速度u相对参考系S运动,某时刻从火箭头部A发出一光信号。 (1)对火箭上的观察者,求光信号从火箭头部A到达火箭尾部B所需的时间? (2)对S系中的观察者,求光信号从火箭头部A到达火箭尾部B所需的时间?

2、一电子与光子的波长都为0.2nm ,不考虑相对论效应,他们的动量和能量各为多少? 3、设粒子在一维无限深势阱中运动,波函数为; 求粒子在第一激发态(n=2)中,几率最大的位置。 (1)写出密度函数; (2)求几率最大的位置。 4、在氦氖激光器中,从氖的5s 到3p 能级跃迁时辐射632.8nm 的激光,已知将氖原子从基态激发到3p 能级需吸收18.8eV 的能量,求将氖原子从基态激发到5s 能级需要多大的抽运能量? 5、一维原子链,链上原子等间距分布,最近邻原子间的力常数相间地为β和10β,各原子质量相等为m 。 (1)画出一维单原子链模型图(要求表示出原子位移及力常数); (2)写出第2n 个原子的振动方程 二、应用题(10分) 1.1932年,科可洛夫赫瓦尔顿用加速后的质子轰击锂(Li 73)原子发生裂变反应,产 生了两个完全相同的粒子,并放出大量能量。 (1)写出此裂变反应式 (2)求反应放出的能量(单位取Mev )。(锂核(Li 73)质量7.016005u ,氦核(He 4 2)质量 4.002603u ,质子(H 11)质量1.007825u ) 四、综述题(10分) 按要求写出本学期学过的量子力学部分所满足的下列物理规律。

数学 专业 书籍

数学知多少 ├─初等数学│几何的有名定理(矢野健太郎).pdf │几何变换第二册(U.M.亚格龙).pdf │几何不等式(O.Bottema等).pdf │美国新数学丛书几何学的新探索(H.S.M.考克瑟特S.L.格雷策).pdf │美国新数学丛书几何变换3(U.M.亚格龙).pdf │奇妙和几何世界(H·N·鲍里斯基).pdf │美国新数学丛书连分数(C·D·奥尔德斯).pdf │九种平面几何(И·M·雅格龙).pdf │世界数学名题欣赏丛书哥德尔不完全性定理(朱水林).pdf │世界数学名题欣赏丛书斐波那契数列(吴振奎).pdf │├─代数、数论、组合│├─组合和离散数学││拟阵(刘桂真陈庆华).pdf ││图论导引教程(B.布鲁巴斯).pdf ││图论(F·哈拉里).pdf ││图论及其应用(J.A.邦迪U.S.R.默蒂).pdf ││图论及其应用习题解答(张克民林国宁张忠辅).pdf ││现代组合论(Peter Frankl 秋山仁).pdf ││组合数学基础(李乔).pdf ││组合数学简介(陈景润).pdf ││组合学导引(Brualdi,R.A.).pdf │││├─数论││代数数论入门(冯克勤).pdf ││初等数论II(陈景润).pdf ││初等数论III(陈景润).pdf ││初等数论100例(柯召孙琦).pdf ││代数数论(冯克勤).pdf ││代数数论(叶哲志陈弘毅译).pdf ││初等数论I(陈景润).pdf ││素数定理的初等证明(潘承洞潘承彪).pdf ││数论教程(J·-P·塞尔).pdf ││数论导引(华罗庚).pdf ││简明数论(潘承同潘承彪).pdf ││数论的方法(上册)(闵嗣鹤).pdf │││└─代数│代数曲线(P·格列菲斯).pdf │Lie群及其Lie代数(严志达许以超).pdf │布尔代数(R·L·古德斯坦因).pdf │抽象代数学(谢邦杰).pdf │代数几何(R·哈茨霍恩).pdf │代数结构与拓扑结构(Cartan).pdf │Hilbert 第十七问题(戴执中曾广兴).pdf │李代数及其表示理论导引(J·E·汉弗莱斯).pdf │代数学(THOMAS W.HUNGERFORD).pdf │对称性群及其应用(W.密勒).pdf │伽罗华理论(E·阿丁).pdf │广义逆矩阵及其应用(王松桂杨振海).pdf │交换代数基础(冯克勤).pdf │近世代数(第二版)(熊全淹).pdf │矩阵论(第二版)(程云鹏).pdf │代数特征值问题(J.H.威尔金森).pdf │连续群上、下册(Л.С.邦德列雅金).pdf │幂零与可解之间(Henry G.Bray W.E.Deskins等).pdf │模与环(F.卡施).pdf │群论(上册)(A.г.库洛什).pdf │群论(下册)(A.г.库洛什).pdf │群论基础(М.И.КАРГАПОЛОВ 等).pdf │线性代数题库上、下册(方世荣).pdf │实半单李代数(严志达).pdf │线性代数(第二版)(Serge Lang).pdf │线性代数导论问题详解(弗里德伯格英塞尔).pdf │线性代数基础(J·索普P·佩尔).pdf │群论引论(W·莱德

相关文档
最新文档