六足机器人的运动分析及路径规划

六足机器人的运动分析及路径规划
六足机器人的运动分析及路径规划

六足机器人的运动分析及路径规划

机电工程3班诸焕城指导教师:李昌明副教授

摘要

本文针对六足步行机器人的机体设计、步态规划、运动学分析、足端轨迹规划中的空间插值方法及避障路径规划算法等理论和技术问题,开展了较为系统的研究工作。首先,对六足昆虫进行机械建模,确定选用椭圆形身体布局后,进一步对六足步行机器人在三角形步态下的爬行稳定性进行详细地分析;然后,求解机器人步行足运动学的正逆解问题,利用求解结果辅助规划机器人的足端轨迹。MATLAB的分析仿真发现,在六次多项式函数的足端轨迹曲线下,步行足具有较好的运动特性;最后,先简单介绍了人工势场和蚁群算法,再合理地对两种算法进行了有效地融合与改进,扬长避短,得到了一种更高效智能的路径轨迹规划算法。MATLAB的仿真实验结果证明了该算法的有效性。关键词:六足步行机器人;步态规划;轨迹规划;人工势场;蚁群算法

Abstract

This thesis addresses body design, gait planning and kinematics analysis, polynomial interpolation method of foot trajectory planning, and obstacle path planning algorithm for hexapod walking robot. In order to solve these problems, a systematic study for the robots is presented. Firstly, the oval body configuration is chosen based on the structure and motion characteristic of insect, and then drive deeper into the stability of crawl locomotion under the tripod gait movement. Secondly, after solving forward and inverse kinematics of swinging leg, polynomial interpolation method is adopted to find a better curve of foot trajectory. MA TLAB is used to do this simulation. The solution shows that swinging leg possesses the excellent kinetic characteristic under the six-order polynominal function curve. Finally, a brief description of artificial potential field method(PFM) and ant colony algorithm(ACO) exposes the imperfection of them. A new algorithm is proposed by combining PFM with ACO effectively.Simulation results testify the validity of this method for robot path planning.

Key words:Hexapod walking robot;Gait planning;Trajectory planning ;Artificial potential field;Ant colony algorithm

1 绪论

随着科学迅猛发展,人类探索研究范围逐渐扩展到一些人类无法到达或可能危及生命的特殊场合。寻求一条解决问题的可行途径已是科学技术发展和人类社会进步的迫在眉睫的任务。地形不规则或难以预测是这些环境的共同特点,从而使轮式机器人和履带式机器人的应用受到一定的限制。与轮式、履带式移动机器人相比,多足步行机器人面对复杂的非结构环境时适应性强和灵活性高,可以代替人类完成很多危险的作业,具有广泛的应用前景。近年来,得益于仿生科学的进步,仿生多足步行机器人如雨后春笋般快速地发展起来,成为当前各国科学家开发研究的重点课题之一。

2 仿生六足机器人机构建模

2.1 机器人机体结构

通过对自然界六足动物的细心地观察和分析,发现椭圆形机体比长方形机体的运动性能好。前者的主要优势:一是减少了腿的碰撞,增大了髋关节转动范围,提高了运动灵活性;二是增大了机体的纵向稳定裕量,提高了机器人的运动稳定性。因此,本研究中的机器人采用椭圆型的身体结构。

3 六足机器人静态步态规划分析

3.1 三角步态下的着地点优化

优化目标为:机器人的两组腿形成的支撑三角形的重合面积最大,即图3-1中多边形defgij的面积最大。

作平面坐标系如图所示。为了分析方便,设两个三角形全等且为等腰三角形;三角形在x轴方向的高为h;直线B’A’的斜率k,则直线AB的斜率为(-k);点B’到线AC的距离或点B到线A'C'

的距离为a;点B’到点B在y轴方向上的距离为b。

由上式知,支撑三角形的纵或横向跨度越大,灵活性和稳定性越高;爬行的步长越大,灵活性和稳定性越低。

4 六足机器人的运动学分析

4.1 步行足坐标系的建立

建立D-H刚体坐标系。其连杆D-H参数及关节变量如表4-1所示。

4.2 运动学正解

4.3 运动学逆解

5 机器人的足端轨迹规划

式中,()[(),(),()]T

p t x t y t z t =足末端的位置函数矢量,[,,]T i ix iy iz c c c c =多项式的系数矢量。

约束条件:起/终点的位置、速度、加速度和中间点的位置。七个约束条件,唯一确定一条六次多项式。

用MA TLAB 仿真得,用六次多项式插值成的六足机器人的足端轨迹具有良好的平滑性,足端在经过整条轨迹的过程中表现出了较好的运动特性;摆动足的各关节的速度、加速度过渡平滑,不存在冲击的现象。所以,六次多项式插值成的足端轨迹具有良好的运动特性。

6 六足机器人避障路径轨迹规划

6.1 人工势场法路径规划

吸引势()att U q 和排斥势()rep U q 本研究采用下面的表达式:

式中()g q ρ是从位姿q 到目标g

q 的欧氏距离;ξ是引力增益系数;η是斥力增益系

6.2 势场和蚁群算法结合与改进

人工势场法简洁、美观,但其找不到最优解,甚至找不到解。蚁群算法具有一定的智能,但常规蚁群算法在搜索过程中容易陷入局部最优和出现早熟,收敛速度慢。将势场法和蚁群算法进行了结合,扬长避短。

6.2.1 启发信息ij η的构造

式中,()g q

ρ表示机器人的姿态位置到目标的距离。 6.2.2 期望启发式因子β的改进

式中,K 为总共的迭代次数,k 表示第k 次迭代。

6.3 算法步骤

6.5 基于势场蚁群算法路径规划的仿真实现

用MA

通过上面两个实例可以看出基于势场蚁群算法的路径规划算法能成功地找出最佳的爬行路径,具有优越的性能。

参考文献

[1]龚振邦,汪勤悫,陈振华,钱晋武.机器人机械设计[M]. 电子工业出版社,1995:1-333 [2]戴佳,仿生六足机器人运动规划的设计与实现[D],东南大学硕士论文,2010

[3]罗庆生,韩宝玲等. 现代仿生机器人设计[M]. 电子工业出版社,2008

[4]蔡自兴. 机器人学[M].清华大学出版社,2009:18-68

[5]Thomas Stützle, Holger Hoos.The Max-Min ant system and local search for the traveling sales man problem[C]. Proceedings of IEEE International Conference on Evolutionary Computation,1997:309-314

[6]段海滨.蚁群算法原理及其应用[M].科学出版社,2005:1-331

[7]罗德林,吴顺祥. 基于势场蚁群算法的机器人路径规划[J]. 系统工程与电子技术,2010,32(6)

基于MATLAB的PUMA560机器人运动仿真与轨迹规划5.

The movement simulation and trajectory planning of PUMA560 robot Shibo zhao Abstract:In this essay, we adopt modeling method to study PUMA560 robot in the use of Robotics Toolbox based on MATLAB. We mainly focus on three problems include: the forward kinematics, inverse kinematics and trajectory planning. At the same time, we simulate each problem above, observe the movement of each joint and explain the reason for the selection of some parameters. Finally, we verify the feasibility of the modeling method. Key words:PUMA560 robot; kinematics; Robotics Toolbox; The simulation; I.Introduction As automation becomes more prevalent in people’s life, robot begins more further to change people’s world. Therefore, we are obliged to study the mechanism of robot. How to move, how to determine the position of target and the robot itself, and how to determine the angles of each point needed to obtain the position. In order to study robot more validly, we adopt robot simulation and object-oriented method to simulate the robot kinematic characteristics. We help researchers understand the configuration and limit of the robot’s working space and reveal the mechanism of reasonable movement and control algorithm. We can let the user to see the effect of the design, and timely find out the shortcomings and the insufficiency, which help us avoid the accident and unnecessary losses on operating entity. This paper establishes a model for Robot PUMA560 by using Robotics Toolbox,and study the forward kinematics and inverse kinematics of the robot and trajectory planning problem. II.The introduction of the parameters for the PUMA560 robot PUMA560 robot is produced by Unimation Company and is defined as 6 degrees of freedom robot. It consists 6 degrees of freedom rotary joints (The structure diagram is shown in figure 1). Referring to the human body structure, the first joint(J1)called waist joints. The second joint(J2)called shoulder joint. The third joint (J3)called elbow joints. The joints J4 J5, J6, are called wrist joints. Where, the first three joints determine the position of wrist reference point. The latter three joints determine the orientation of the wrist. The axis of the joint J1 located vertical direction. The axis direction of joint J2, J3 is horizontal and parallel, a3 meters apart. Joint J1, J2 axis are vertical intersection and joint J3, J4 axis are vertical crisscross, distance of a4. The latter three joints’ axes have an intersection point which is also origin point for {4}, {5}, {6} coordinate. (Each link coordinate system is shown in figure 2)

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

机器人路径运行操作步骤

3.23机器人路径运动操作步骤 任务:选取多个点构成一条路径,通过示教器完成机器人路径运动操作 相关知识:机器人路径示教器操作分为手动和自动两种模式 操作步骤: 一、手动模式 1、新建程序 (1)点击首页下拉菜单中“程序编辑器”选项,进入程序编辑器 (2)点击右上角“例行程序”选项,进如程序列表 (3)点击左下角“文件”,选择“新建例行程序”,新建例行程序 并命名 2、程序编写 (1)选择新建好的例行程序,进入程序编辑页面,点击左下角“添 加指令”,在右侧弹出菜单中选择轴运动指令“MoveJ” (2)根据需要修改显示的“MoveJ * ,v1000 , z50 , tool0”指令, *代表坐标点名称,v1000代表速度,z50代表路径选择幅度, tool0与工具坐标有关 (3)根据需要添加路径包含的点坐标并修改,完成全部路径点的设 置 3、调试 (1)从第一行“MoveJ”指令开始,利用示教器旋钮调节机器人至路 径点位,点击“修改位置”,程序与点位一一对应 (2)点位修改完成后,进行手动调试。点击“调试”选择“PP移动 至例行程序”,进入要调试的例行程序,光标选择调试的程序 行,再次点击“调试”,选择“PP移动至光标” (3)在右下角设置选项中选择机器人运行的速度

(4)左手按下示教器使能键,右手按下示教器上的“开始”按钮, 进行机器人路径运行操控 注意:机器人运行过程中不能松开示教器使能键 二、自动模式 1、完成手动调试模式调试后,点击“例行程序”菜单进入程序选择列表, 选择“Main”函数,进入函数编辑页面 2、光标选择,点击“添加指令”,在右侧弹出菜单中选择 “ProcCall”指令,将例行程序添加至主程序中 3、将机器人控制柜模式选择开关调到“自动模式” 4、点击示教器上的选项“确认” 5、按下控制柜上使能键,白色指示灯常亮 6、按下示教器上“开始”按钮,开始自动模式调试 7、自动模式下完成轨迹动作以后把控制柜上的“自动”模式旋转调回“手 动”模式

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.360docs.net/doc/e212187043.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

机器人路径动态规划

研究背景 近年来,机器人技术飞速发展,机器人的应用领域也在不断扩展。机器人的工作环境存在高度的多变性和复杂性,因此自主导航是实现真正智能化和完全自主移动的关键技术。机器人的导航问题可以归结为对“我在哪”、“我要去哪”以及“我如何到达那里”三个问题的回答。第三个问题就是路径规划,要求机器人在当前位置与目标位置之间寻找一条安全、合理、高效的路径,保证机器人能够安全地到达目标地点。机器人路径规划是机器人领域的一个研究热点。 一、课题应用 机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 智能移动机器人[1],是一个集环境感知、动态决策与规划、行为控制与执行等多功能于一体的综合系统。它集中了传感器技术、信息处理、电子工程、计算机工程、自动化控制工程以及人工智能等多学科的研究成果,代表机电一体化的最高成就,是目前科学技术发展最活跃的领域之一。随着机器人性能不断地完善,移动机器人的应用范围大为扩展,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在城市安全、国防和空间探测领域等有害与危险场合得到很好的应用。因此,移动机器人技术已经得到世界各国的普遍关注。 移动机器人的研究始于60 年代末期。斯坦福研究院(SRI)的Nils Nilssen 和Charles Rosen 等人,在1966年至1972 年中研发出了取名Shakey的自主移动机器人[1]。目的是研究应用人工智能技术,在复杂环境下机器人系统的自主推理、规划和控制。 根据移动方式来分,可分为:轮式移动机器人、步行移动机器人(单腿式、双腿式和多腿式)、履带式移动机器人、爬行机器人、蠕动式机器人和游动式机器人等类型;按工作环境来分,可分为:室内移动机器人和室外移动机器人;按控制体系结构来分,可分为:功能式(水平式)结构机器人、行为式(垂直式)结构机器人和混合式机器人;按功能和用途来分,可分为:医疗机器人、军用机器人、助残机器人、清洁机器人等; 一种由传感器、遥控操作器和自动控制的移动载体组成的机器人系统。移动机器人具有移动功能,在代替人从事危险、恶劣(如辐射、有毒等)环境下作业和人所不 及的(如宇宙空间、水下等)环境作业方面,比一般机器人有更大的机动性、灵活性。 移动机器人是一种在复杂环境下工作的,具有自行组织、自主运行、自主规划的智能机器人,融合了计算机技术、信息技术、通信技术、微电子技术和机器人技术等。 三、研究意义 路径规划技术是机器人研究领域中的一个重要分支,是机器人智能化的重要标志,是对

机器人路径规划

机器人路径规划 摘要:机器人路径规划是机器人技术的重要分支之一,路径规划技术的研究是研究机器人技术不可或缺的技术之一。本文首先介绍了当前研究人员热衷的ROS 系统是如何进行路径规划的,接着论述了作为群智能算法的蚁群算法应用于机器人的路径规划中。研究表明,可以将蚁群算法和ROS系统结合,进一步的进行机器人的路径规划。 关键词:路径规划,ROS系统,蚁群算法,机器人 1.引言 智能移动机器人技术是机器人技术的重要组成部分,应用前景十分广阔:工业,农业,国防,医疗,以及服务业等[1]。文献提出,未来数年内,中国服务机器人发展将超过传统的工业机器人[2],机器人路径规划技术是服务机器人研究的核心内容之一[3]。可见,研究机器人的路径规划问题十分必要。 随着机器人领域的快速发展和复杂化,代码的复用性和模块化的需求原来越强烈,而已有的开源机器人系统又不能很好的适应需求。2010年Willow Garage 公司发布了开源机器人操作系统ROS(robot operating system),很快在机器人研究领域展开了学习和使用ROS的热潮。ROS系统是起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Willow Garage来进行推动。ROS的运行架构是一种使用ROS通信模块实现模块间P2P的松耦合的网络连接的处理架构,它执行若干种类型的通讯,包括基于服务的同步RPC(远程过程调用)通讯、基于Topic的异步数据流通讯,还有参数服务器上的数据存储。ROS系统以其独特优点引起了研究人员的兴趣。 近年来,各国学者致力于机器人路径规划的研究且取得了相当丰硕的研究成果。目前已有多种算法用于规划机器人的路径,文献【4】将其主要分为经典方

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor , ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS (distributedproblemsolving )和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。

机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果 1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi 图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi 图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学 习等;其他方法主要有动态规划、最优控制算法、模糊控制等。它们中的大部分都是从单个机器人路径规划方法扩展而来的。 1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础

基于路径规划的智能机器人控制实验

I SSN C N 1 0 - 0 2 - 3 4 9 / 5 6 实验技术与管理 第27卷第12期201年1 2月 1 1 2 0 4 T E x p e r i m e n t a l T e c h n o l o g ya n d Ma n a g e m e n t Vo l .27N o .12D e c .201 基于路径规划的智能机器人控制实验 张佳,陈杰,窦丽华 ( 北京理工大学自动化学院,北京1081) 摘 验教学平台。在此平台上设计并开发了分别适用于本科生及硕士研究生的系列实验 规划、全区域覆盖路径规划以及多机器人队形控制等项实验内容。该实验能够让学生接触到先进的智能机 器人增强学生对自动化专业的学习兴趣提高了学生的动手能力和创新能力。 关键词智能机器人路径规划全区域覆盖队形控制 文献标志码文章编号 要 : 针对自动化专业学生 , 以 P i o n e e r 3 A T 系列的机器人为对象 , 搭建了基于路径规划的智能机器人实 , , 包括基于模型的路径 3 , , : ; ; ; 中图分类号 : T P 2 4 2 3 3 : A : 1 0 0 2 4 9 5 6 ( 2 0 1 0 ) 1 2 0 0 4 4 0 4 I n t e l l i g e n t r o b o t c o n t r o l e x p e r i m e n t s b as e d o n p a t h p l a n n i n g Zha n g J i a , Ch e n J i e , D o uL i hua ( S c h o o l o f A u t o m r a t i za t i o n , B e i e j i n g I n s t i t u t e o f T e c h n o l o g y , B e i j i r n g 1 0 0 0 8 1 r , Ch i n a ) A b s t r a c t : A i e m t i n g a t s t r ud e n n n i T t m o t t t s o f au t o e m a t i za m t e i o n m a j o r i , t h p i s p a p e m r t ak e s r o b n o o t s o r o f P i o n e e n 3 A T S e r i n e e sas o b p j e c t t a n d m c o n s t r u c sa n i x n t e l l i m g e o b o t x p o e r o e i n n t t o e a c h n e g l a t f o r , b as e d o p a t h p l a n t n i g .Bas ud e d e o n t h i s l a f o r b , as e r n i s e o x f p e p t e i e swh i c ha p p i n t d t u n d r p g r adua t i e t s c t ud e n t sa n d g adua e s t e n t s r g s p c t i v e l l ya r o n e d e s t i g n e da d l o e i r e m d. I t t n c l ud e s m d e l b as e d r p a t h p l p a o n n i n g o m p l t e t e c n v e a g e p a t h p t l a n n i n a e d m u l t c i r e b o f t o r m a t i e o n e x n p i e n . h e e x p e r i m t o f f e sa n o r t u n y f o r s ud e t s t w o r kw i hadva n c d i n t t e l i g t r b K o o s . I t n ha c e ss t t ud e n i s i n t e r e s t s t o l e a r n au t o m a t i za t i o n m a j o r . A l s o , s t ud e n t s i n n o va t i o n a b i l i y o u l d e i m p r o v e d b y e t h e e x p e o r e n t p . e y w o r d s : i n t l l i g e n r b t ; a t h p l a n n i n g ; c o m p l e t e c o v e r a g e ; f o r m a t i o n 自动化技术是一门涉及学科较多、应用广泛的综 1 实验平台的搭(智械科技) 合性科学技术。实验教学是自动化专业教学过程中 [1] 非常重要的一环。随着目前机器人技术的不断发展, 本课程选用的机器人是美国先锋(P i o n e r 3A T ) 系列机器人[。该系列机器人是目前世界上最成熟的 4] 机器人控制实验已逐步进入各个高校。机器人教学对 于培养和提高学生的创新精神和动手能力具有极其重 轮式移动机器人研究平台之一。通常科研人员对此系 要的作用[。在自动化专业开设机器人控制实验课 2 ] 列机器人的开发与研究都在控制台程序上运行,但需 要对v M a 机器人技术应用接口a 有较 深的了解因此需要花费大量时间阅读繁多的程序代 熟悉研究环境。由于实验学时有限为了能让学生 在最短的时间内最大程度地掌握机器人的有关知识 首先搭建了一个简单实用的实验平台。该平台的建立 能使学生在最短时间内熟悉各种底层动作在实验课 程中掌握基础理论和系统深入的专门知识。 整个平台系统包括个功能模块用户操作管理 模块、通信模块、控制模块、数据分析处理模块和显示 程, 不仅可以让学生接触到国际先进的机器人们的眼界还可以让学生学习先进的控制方法 些方法运用于机器人的实际控制上 提高学生的创新能力和动手能力 域的继续发展奠定坚实的基础。为此 重点实验室项目中购买了数台机器人 , , 开阔他 并将这 A c t i e d i A r i , , ,扩展他们的思维 , 码, , [ 3 ] , 为将来在控制领 , , 本校在北京市 , 针对自动化专 , 业的教学内容及要求,开设了机器人控制实验,取得了 良好的教学效果。 5 : 收稿日期 : 2 0 0 9 1 2 2 1 修改日期 : 2 0 1 0 0 3 1 5 管理模块。各模块所组成的功能结构如图 们之间通过数据信号和控制信号联系在一起 个统一的整体。在控制模块中为学生的实验操作 1 所示,它 基金项目 : 北京市教育委员会共建重点实验室资助项目 (CSYS ,构成一 1 0 0 0 (7 0417) 作者简介 : 张佳 1 9 8 0 ) , 女 ,北京市人 , 硕士 ,实验师 , 研究方向为机器 [ 5 ] , 人控制、智能控制和图像处理.

多机器人路径规划研究方法

多机器人路径规划研究方法 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning. Key words:multi robot;path planning;reinforcement learning;evaluating criteria 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor, ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS(distributedproblemsolving)和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术

界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1多机器人路径规划方法 单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学

智能机器人避障路径规划算法研究

龙源期刊网 https://www.360docs.net/doc/e212187043.html, 智能机器人避障路径规划算法研究 作者:张永妮 来源:《中小企业管理与科技·上旬刊》2016年第02期 摘要:智能机器人只有具备自主移动能力才能实现应用价值。路径规划用于决策机器人 在环境中如何行走的问题,是实现机器人智能化的关键技术。为提高机器人路径规划,对未知环境的实时性、适应性和优化性要求越来越高。自主移动机器人是集环境感知、动态策略与规划、行为控制与执行等多功能于一体的综合系统。近几年,移动机器人技术在工业、农业、医学、航天航空等许多领域发挥了重要作用。其中智能避障更是研究领域的难点和热点,智能避障是能够根据采集障碍物的状体信息,按照一定的方法进行有效的避障,最后到达终点。本文主要介绍了动态窗口和Bug2的避障算法和研究与仿真。实现这两种避障算法主要基于Matlab 等语言编程开发,实现对移动机器人避障算法的仿真。Matlab功能强大、编程简单、适用广。 最后,验证基于Bug算法的几种路径规划方法,将避障实时性,环境的适应性、规划路径的优化性作为算法性能指标,进行仿真实验与对比实验分析。结果验证了算法的有效性。 关键词:智能机器人;避障;MATLAB仿真;路径规划 1 绪论 智能机器人避障算法的研究对于推进机器人领域的应用和发展具有重要的意义。随着计算机技术、传感器技术、控制技术的发展,智能机器人的避障技术已经取得了丰硕的研究成果,其应用领域不断的扩大,应用复杂程度也越来越高,因此对其关键技术提出了更高要求,相应的方法也更加成熟。 本文通过查阅文献资料,对目前智能机器人的发展动态有了一定了解。对现阶段机器人避障的一些常用方法做了研究,然后设计了不同算法在未知环境下的避障仿真实验来验证本文所设计的算法的可行性。路径规划要求机器人能够在较短的时间内,感知到范围尽可能大的区域,从而找到最近的路径使机器人能够沿着最优路径运动到终点,并避开障碍物。 2 基于动态窗口的避障算法及仿真 2.1 概述 机器人局部路径规划的方法很多,动态窗口法就是其中的一种,其主要是在速度(v,w)空间中采样多组速度,并模拟机器人在这些速度下一定时间内的轨迹。在得到多组轨迹以后,对这些轨迹进行评价,选取最优轨迹所对应的速度来驱动机器人运动。该算法突出点在于动态窗口这个名词,它的含义是依据移动机器人的及速度性能限定速度采样空间在一个可行的动态图范围内。

相关文档
最新文档