最新高中物理解题方法分类大全(非常好!有解析)

最新高中物理解题方法分类大全(非常好!有解析)
最新高中物理解题方法分类大全(非常好!有解析)

高中物理解题技巧分类

专题一:方法迁移型、设计型实验题

1.为测定木块与斜面之间的动摩擦因数,某同学让木块从斜面上端自静止起做匀加速下滑运动,如图1所示.他使用的实验器材仅限于:①倾角固定的斜面(倾角未知) ②木块 ③秒表 ④米尺.

L

d h 图1

(1)实验中应记录的数据是_________;

(2)计算动摩擦因数的公式是μ=_______.

(3)为了减小测量的误差,可采用的方法是_______.

解析:(1)d ,L ,h ,t .

(2)L =

21at 2得a =22t

L ,又a =g sin α-μg cos α,而sin α=L h ,cos α=L d ,所以a =g L h -μg L d =22t L ,解之得:μ=d h -222dgt L . (3)多次测量求平均值.

答案:(1)d ,L ,h ,t (2)d h -2

22dgt L (3)多次测量求平均值 2.某同学用下列方法测定重力加速度:

(1)让水滴落到垫起来的盘子上,可以清晰地听到水滴碰盘子的声音.细心地调整水龙头的阀门,使第一个水滴碰到盘子听到响声的瞬间,注视到第二个水滴正好从阀门处开始下落.

(2)听到某个响声时开始计时,并数“0”,以后每听到一次响声,顺次加一,直到数到“100”,停止计时,表上时间的读数是40 s.

(3)用米尺量出水龙头滴水处到盘子的距离为78.56 cm.试根据以上的实验及其得到的数据,计算出重力加速度的值为______m/s 2.

解析:水滴从开始下落到落至盘子处所需时间

t =100

40s=0.4 s 又因为h =

21gt 2 故g =22t h =24.06785.02 m/s 2=9.82 m/s 2.

答案:9.82

3.试阐述当你乘坐高层住地宅的电梯时,如何用最简单的仪器来粗略地测定电梯启动和停止时的加速度.

(1)可选用的仪器有:_________________________;

(2)要测量的数据是:_________________________;

(3)所用的计算公式是:_________________________.

解析:本题考查超、失重问题.在电梯内将砝码挂在弹簧秤下,电梯启动时,向上做加速运动,电梯内物体处于超重状态.由牛顿第二定律F 1-mg =ma 1

电梯停止时,向上做减速运动,加速度竖直向下,电梯内物体处于失重状态,由牛顿第二定律mg -F 2=ma 2

要测定电梯启动、停止时的加速度a 1、a 2,由以上两式可知,只要在电梯内用弹簧秤悬挂砝码,记下砝码质量m 和电梯启动、停止时弹簧秤的读数F 1、F 2,就可求出加速度.

答案:(1)弹簧秤、砝码

(2)将砝码挂在弹簧秤下,记下砝码质量m ,并记下电梯启动和停止时弹簧秤的读数F

(3)F -mg =±ma

4.为了测定一根轻弹簧压缩最短时能储存的弹性势能的大小,可以将弹簧固定在一带有凹槽的轨道一端,并将轨道固定在水平桌面边缘上,如图2所示.用钢球将弹簧压缩至最短,而后突然释放,钢球将沿轨道飞出桌面,实验时:

图2

(1)需要测定的物理量是_____________________;

(2)计算弹簧最短时弹性势能的关系式是E p =_________.

解析:由机械能守恒定律可知E p =21mv 02,因v 0=t s =g

h s /2,故有E p =h mg 4s 2. 答案:(1)桌面高度h ,球落点与飞出点间水平距离s ,钢球质量m (2)

h

mg 4s 2 5.某山高耸入云,两登山运动员想估算一下山顶到山脚的高度,但他们没有带尺,也没有手表等计时装置.他们开动脑筋,在背包上抽出一根较长的细线,两人合作在山脚和山顶各做了一次实验,便估算出了山的高度.(设他们的身体状况没有因为登山活动而改变,山脚的重力加速度为g 0=9.8 m/s 2),请同学们回答:

(1)实验原理:__________________________;

(2)实验步骤:__________________________;

(3)如何计算山高?

________________________________________________________.

答案:(1)利用单摆测重力加速度,再利用万有引力定律由重力加速度的值与测点到地心距离的关系求出高度

(2)用细线拴住一小石子做成单摆,在山顶和山脚各做一次测重力加速度的值的实验,步骤为:

①甲、乙开始做实验后,甲摸脉搏,脉搏跳动的时间间隔为Δt ,并记脉搏的次数,乙数单摆全振动的次数.

②设在山脚下甲脉搏跳动n 1次时,单摆恰好全振动N 1次,则有

n 1Δt =N 1T 1=N 1·2π0/g l

同理,在山顶有:n 2Δt =N 2·2πg l /.

③由上面的两个关系式有:

0g g =(2

1n n )2(12N N )2 ④由万有引力定律和牛顿第二定律可推得:

g =2)(h R Gm

+ g 0=2R Gm

所以有(

h R R +)2=(1221N n N n )2 所以h =2

12112N n N n N n -R (3)h =

212112N n N n N n -R 6.气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为无摩擦的.在实验室中我们可以用带竖直挡板C 和D 的气垫导轨和质量均为M 的滑块A 和B 做验证动量守恒定律的实验,如图3所示实验步骤如下: C D

A B

图3

(1)在A 上固定一质量为m 的砝码,在A 和B 间放入一个压缩状态的弹簧,用电动卡销置于气垫导轨上.

(2)按下电钮放开卡销,同时分别记录滑块A 、B 运动时间的计时器开始工作,当A 、B 滑块分别碰撞C 、D 挡板时计时结束,记下A 、B 分别到达C 、D 的运动时间t 1、t 2.

(3)重复几次.

①在调整气垫导轨时应注意__________________________;

②还应测量的数据有__________________________;

③只要关系式__________________________成立,即可验证该过程动量守恒.

答案:①调整导轨水平

②A左端至C板距离L1,B右端至D板距离L2

③关系式为:(M+m)L1/t1=ML2/t2

7.取一根轻弹簧,上端固定在铁架台上,下端系一金属小球,如图4所示,让小球在竖直方向离开平衡位置放手后,小球在竖直方向做简谐运动(此装置也称为竖直弹簧振子).一位同学用此装置研究竖直弹簧振子的周期T与小球质量的关系,为了探索出周期T与小球质量m的关系,需多次换上不同质量的小球并测得相应的周期,现将测得的六组数据标在以m为横坐标、T2为纵坐标的坐标纸上,即图5中用“×”表示的点.

0.

0.

0.

0.

0.

0.

0.

0.

0.

图4 图5

(1)根据图5中给出的数据点作出T2与m的关系图线;

(2)假设图5中图线的斜率为b,写出T与m的关系式为_______;

(3)求得斜率b的值是_________.(保留三位有效数字)

答案:(1)如下图Array

0.

0.

0.

0.

0.

0.

0.

0.

0.

(2)T=bm(3)1.25

8.如图6所示是一根表面均匀地镀有很薄的发热电阻膜的长陶瓷管,管长L约40 cm,直径D约8 cm.已知镀膜材料的电阻率为ρ,管的两端有导电箍M、N.现有实验器材:米尺、游标卡尺、电压表、电流表、直流电源、滑动变阻器、开关、导线若干根,请你设计一个测定电阻膜膜层厚度d的实验,实验中应该测定的物理量是__________,计算镀膜膜层厚度的公式是__________.

M N

图6

答案:管长L,管直径D,MN两端电压U及通过MN的电流I d=ρIL/πDU

9.(2003年上海)图7甲中为某一热敏电阻(电阻值随温度的改变而改变,且对温度很敏感)的I-U关系曲线图.

(1)为了通过测量得到图甲所示I-U关系的完整曲线,在图乙和图丙两个电路中应选择的是图_______.简要说明理由:__________________________.

(电源电动势为9 V,内阻不计,滑动变阻器的阻值为0~100 Ω).

图7

(2)图丁电路中,电源电压恒为9 V,电流表读数为70 mA,定值电阻R1=250 Ω,由热敏电阻的I-U关系曲线可知,热敏电阻两端的电压为______V;电阻R2的阻值为_____Ω.

(3)举出一个可以应用热敏电阻的例子:__________________________.

解析:(1)应选择图乙,因为图乙中变阻器的接法可以使热敏电阻两端的电压由零开始变化,电压的调节范围大,能得到画图甲所需的实验数据.图丙中热敏电阻两端的电压不能调至零,不符合要求.

(2)通过R 1的电流I 1=

R U =250

9A=36 mA ,通过热敏电阻的电流I 2=I -I 1=34 mA.由图甲可查出在I =34 mA 时热敏电阻两端电压U =5.2 V ,R 2=034.02.59 Ω=111.8 Ω (3)可利用含热敏电阻的电路控制空调器的运转.

答案:(1)乙 理由略

(2)5.2 111.8

(3)可利用含热敏电阻的电路控制空调器的运转

10.(2004年江苏,12)某同学对黑箱(如图8)中一个电学元件的伏安特性进行研究.通过正确测量,他发现该元件两端的电压U ab (U ab =U a -U b )与流过它的电流I 之间的变化关系有如下规律:①当-15 V

图8

ab 图16-19-9

图10

c d e f u u /

//s /

s (甲)

(乙)1 -1

图11

(1)在图9的坐标纸中画出U ab ≥0时该元件的伏安特性曲线.(可用铅笔作图)

(2)根据上述实验事实,该元件具有的特性是_________.

(3)若将此黑箱接入图10所示电路中,在该电路的cd 两端输入如图11(甲)所

示的方波电压信号u cd .请在图11(乙)中定性画出负载电阻R L 上的电压信号u ef 的波形.

答案:(1)图略

(2)单向导电性

(3)如下图

专题二:图象法

方法简介

图象法是根据题意把抽象复杂的物理过程有针对性地表示成物理图象,将物理量间的代数关系转变为几何关系,运用图象直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图象法在处理某些运动问题,变力做功问题时是一种非常有效的方法。

好题精讲

例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。A 、B 两地相距s ,火车做加速运动时,其加速度最大为a 1 ,做减速运动时,其加速度的绝对值最大为a 2 ,由此可可以判断出该火车由A 到B 所需的最短时间为 。

解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最

大时,所用时间最短,分段运动可用图象法来解。

根据题意作v —t 图,如图11—1所示。

由图可得:a 1 =

1v t ① a 2 =

2v t ② s =1

2v (t 1 + t 2) =12

vt ③

由①、②、③解得:

图 11—1

例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为()

A、s

B、2s

C、3s

D、4s

解析:物体做直线运动时,其位移可用速度—时间图象中

的面积来表示,故可用图象法做。

作两物体运动的v—t图象如图11—2所示,前车发生的位

移s为三角形v0Ot的面积,由于前后两车的刹车加速度相同,

根据对称性,后车发生的位移为梯形的面积S′= 3S ,两车的位移之差应为不相碰时,两车匀速行驶时保持的最小车距2s 。

所以应选B 。

例3:一只老鼠从老鼠洞沿直线爬出,已知爬出速度v的大小与距老鼠洞中心的距离s成反比,当老鼠到达距老鼠洞中心距离s1 = 1m的A点时,速度大小为v1 = 20cm/s ,问当老鼠到达距老鼠洞中心s2 = 2m的B点时,其速度大小v2 = ? 老鼠从A 点到达B点所用

的时间t =?

解析:因为老鼠从老鼠洞沿直线爬出,已知爬出的速度

与通过的距离成反比,则不能通过匀速运动、匀变速运动公

式直接求解,但可以通过图象法求解,因为在1

v

—s图象中,

所围面积即为所求的时间。以距离s为横轴,1

v

为纵轴建立

直角坐标系,则s与1

v 成正比,作1

v

—s图象如图11—3所

示,由图可得s = 2m时,老鼠的速度为10cm/s 。在1m

到2m之间图象与横轴包围的面积即为所求的时间,所以老鼠从A到B爬行的时间为:

t = (1

0.2+1

0.1

)×1

2

= 7.5s 。

图11—2

图11—

3

例4:在一汽缸的活塞下面封闭有μ摩尔理想气,由于

受到骤然加热,气体迅速膨胀,且膨胀过程中其热力学温度与其体积的平方成正比,即T = KV 2 。在其体积由V 1膨胀至V 2的过程中,气体从外界吸收的热量为Q 1 ,试求此过程中气体的内能增加了多少?

解析:求此过程中气体的内能增加了多少,要用热力学第一定律,由已知条件可知,关键是要求出气体对外做了多少功,而功可用p —V 图象中所围的面积来计算。

以缸内气体为研究对象,根据克拉珀龙方程:

pV = μRt ①

又由已知条件有:T = KV 2 ②

①、②两式可得:p = μRKV

可见气体膨胀时,其压强p 与体积V 成正比例。

因此作p —V 图,如图11—4所示,图中阴影区的面积表示气体在此过程中,对外所做的功W 。 W =12p p 2 (V 2-V 1) =12

μRK(22V -21V ) 再由热力学第一定律,可知此过程中气体内能的增加量为:

ΔE = Q 1-W = Q 1-12μRK(22V -21V )

例5:如图11—5所示,在一个开有小孔的原来不带电的

导体球壳中心O 点,有一个点电荷Q ,球壳的内外表面半径

分别为a 和b ,欲将电荷Q 通过小孔缓慢地从O 点移到无穷

远处,应当做功多少?

解析:球内、外表面上的感应电荷的电量随着放在球心的

电荷电量的改变而改变,感应电荷在球心处产生的电势U =

KQ 感 (1

a -1

b ),也与感应电荷的电量Q 感成正比,利用U —Q 感的图象也可以求出外力做的功。

感应电荷在球心O 处产生的电势为U 0 ,则:

图11—

4

图11—5

U 0 = KQ 感(1

a -1b

) 作出U —Q 感的图象如图11—5甲所示,假设电量Q 是

一份一份地从无穷远处移到球心,而球内外表面上的感应电

荷Q 感随球心处的电荷增加而增加,在此过程中移动电荷所

做的功就应等于U 1—Q 感图象中阴影部分所示的三角形的面

积,则有: W =12Q 感U 当Q 感 = Q 时,U = U 0 = KQ(1

a -1b

) 那么移走Q 时所做的功应为2KQ 2(1a -1b ) ,所以:W =2KQ 2(1a -1b ) 例6:电源电动势为ε ,内电阻为r ,试求其外电阻为何值时,电源的输出功率最大?

解析:根据全电路欧姆定律得ε = U + Ir ,由此可知当ε 、r 不变时,U 随I 线性变化,作U —I 图,图中所围面积为功率。

设电源的输出电流为I ,路端电压为U ,由于U = ε-Ir ,

故作U —I 图如图11—6所示,以AB 线上任意一点和坐标原点

为相对顶点所围成的矩形的面积为:

S = IU

显然S 表示此时电源对应的输出功率,要使电源的输出功

率最大,即要此矩形的面积最大,由几何知识得,当一个顶点位于AB 线段中点C 处的

矩形面积最大,从图中可得: U =12ε ①

根据欧姆定律有:U =R r ε+R ②

图11—5甲

图11—6

由①、②解得:R = r 即当外电阻R+r 时,电源的输出功率最大,其最大值为:24r

ε 例7:在11—7图中,安培表的读数为I 1 = 20mA 。如果电池εx 反向联结,电流增加到I 2 = 35mA 。如果电灯发生短路时,电路中的电流I 等于多少?灯泡的伏安特性曲线如图11—7甲所示。

解析:题目中给出ε1的数值为9V ,εx 的大小不确定。当εx 从正向变为反向联结时,回路的总电动势增大,在εx <ε1和εx >ε1的两种情况下,I 2都有可能增加。所以要分两种情况讨论。

由灯泡的伏安特性曲线可知:当I 1 = 20mA 时,有U 灯1 = 3V ,I 2 = 35mA 时,U 灯2 = 9V 。

设两个电源的内阻与电流表内阻总和为R 内 ,根据回路电压方程有:

(1)当ε1>εx 时,有:ε1-εx -U 灯1 = I 1R 内 ①

εx 反向时,有:ε1 + εx -U 灯2 = I 2R 内 ②

由①+②得:2ε1-U 灯1-U 灯2 = (I 1 + I 2)R 内

所以:R 内 =60.055

Ω 将③式代入①式得:εx = 3.8V ③

短路瞬间,可视电灯两端电压为零,所以原电路中的电流:

1I '= 0.048A

(2)当ε1<εx 时,有:εx -ε1-U 灯1 = I 1R 内 ④

εx 反向时,有:εx + ε1-U 灯2 = I 2R 内 ⑤

⑤—④得:2ε1-2U 灯2 + U 灯1 = (I 2-I 1)R 内

所以:R 内 =1200015

Ω ⑥ 将⑥式代入④式得:εx = 28V

当回路短路时,电流为:2I '=x 1R ε-ε内

= 0.024A 图11—7 图11—7甲

例8:如图11—8所示,电源ε =12.0V ,内电阻r = 0.6Ω ,滑动变阻器与定值电阻R 0(R 0 = 2.4Ω)串联,当滑动变阻器的滑片P 滑到适当位置时,滑动变阻器的发热功率为9.0W ,求这时滑动变阻器aP 部分的阻值R x 。

解析:由闭合电路欧姆定律

作a P 两端的U ap —I 图象,因图

上任意一点的U ap 与I 所对应的矩

形面积是外电路电阻R x 的输出功

率,从而由已知R x 的功率求出对

应的R x 值。

根据闭合电路欧姆定律U =

ε-Ir 得:

U ap = 12-(0.6 + 2.4)I = 12-3I ,作U ap —I 图象如图11—8甲所示,由图可分析找到滑动变阻器的发热功率为9W 的A 点和B 点,所以R x 有两个值:

R x1 = 90Ω ,R x1 = 90Ω

例9:如图11—9所示,一宽40cm 的匀强磁场区域,磁场方向

垂直纸面向里。一边长为20cm 的正方形导线框位于纸面内,以垂直

于磁场边界的恒定速度v = 20cm/s 通过磁场区域,在运动过程中,

线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t =

0 ,在下列图线中,正确反映感应电流随时间变化规律的是图11—9

甲中的哪一个( )

图11—9甲 解析:可将切割磁感应线的导体等效为电源按闭合电路来考虑,也可以直接用法拉第电磁感应定律按闭合电路来考虑。

半导线框部分进入磁场时,有恒定的感应电流,当整体全部进入磁场时,无感应电流,当导线框部分离开磁场时,又能产生相反方向的感应电流。所以应选C 。

图11—8 图11—8甲

图11—

9

例10:LC 振荡回路中电容器两端的电压U 随时间t 变化的关系如图11—10所示,则( )

A 、在时刻t 1 ,电路中的电流最大

B 、在时刻t 2 ,电路中磁场能最大

C 、从时刻t 2至t 3 ,电路中的电场能不断增大

D 、从时刻t 3至t 4 ,电容的带电量不断增大

解析:在电磁振荡中,电路中的电流、磁场能、电容器

的带电量、电场能都随时间做周期性的变化,但步调不同。

电流和磁场能总是同步调变化,电压、电量和电场能也是同步调变化的。但电流和电容器的带电量步调不同。电流为零时电量最大,故BC 正确。 针对训练

1.汽车甲沿着平直的公路以速度v 0做匀速直线运动。当它路过某处的同时,该

处有一辆汽车乙开始做初速为零的匀加速运动去追赶甲车。根据上述的已知条件( )

A 、可求出乙车追上甲车时乙车的速度

B 、可求出乙车追上甲车时乙车所走的路程

C 、可求出乙车从开始起动到追上甲车时所用的时间

D 、不能求出上述三者中任何一个

2.一物体做匀变速直线运动,某时刻速度的大小为4米/秒,1秒钟后速度的大小变为10米/秒。在这1秒钟内该物体的( )

A 、位移的大小可能小于4米

B 、位移的大小可能大于10米

C 、加速度的大小可能小于4米/秒2

D 、加速度的大小可能大于10米/秒2

3.在有空气阻力的情况下,以初速v 1竖直上抛一个物体,经过时间t 1到达最高点。又经过时间t 2 ,物体由最高点落回到抛出点,这时物体的速度为v 2 ,则( )

A 、v 2 = v 1 ,t 2 = t 1

B 、v 2>v 1 ,t 2>t 1

C 、v 2<v 1 ,t 2>t 1

D 、v 2<v 1 ,t 2<t 1 4.一质点沿x 轴做直线运动,其中v 随时间t 的变化如图11—11(a )所示,设t = 0时,质点位于坐标原点O 处。试根据v —t 图分别在11—11(b )及图11—11(c )中尽可能准确地画出( )

图11—10

图11—11

(1)表示质点运动的加速度a随时间t变化关纱的a—t图;

(2)表示质点运动的位移x随时间t变化关系的x—t图。

5.物体从某一高度由静止开始滑下,第一次经光滑斜面滑至底端时间为t1,第二次经过光滑曲面ACD滑至底端时间为t2,如图11—12所示,设两次通过的路程相等,试比较t1与t2的大小关系。

图11—12 图11—13

6.两光滑斜面高度相等,乙斜面的总长度和甲斜面的总长度相等,只是由两部分接成,如图11—13所示。将两个相同的小球从斜面的顶端同时释放,不计在接头处的能量损失,问哪个先滑到底端。

7.A、B两点相距s ,将s平分为n等份。今让一物体(可视为质点)从A点由

,试求该物体到达B 静止开始向B做加速运动,但每过一个等分点,加速度都增加a

n

点的速度。

8.质量m = 1kg的物体A开始时静止在光滑水平地面上,在第1 、3 、5 、…奇数秒内,给A施加同向的2N 的水平推力F ,在2 、4 、6 、…偶数秒内,不给施加力的作用,问经多少时间,A可完成s = 100m的位移。

9.沿光滑水平面在同一条直线上运动的A 、B两物体相碰后共同运动,该过程的位移图象如图11—14所示。可以得出A、B的质量比为。

图11—14 图11—15

10.一均匀的直角三角形木板ABC ,可绕垂直纸面通过C点的水平转动,如图11—15所示。现用一始终沿直角边AB的、作用于A点的力F使BC边缓慢地由水平位置转至竖直位置,在此过程中,力F的大小随角α变化的图线是图11—15甲中的()

图11—15甲

11.火车重为G ,恒定牵引力为F ,阻力为f 。当它从静止出发,由车站沿直线驶过s距离到另一站停止,如果途中不用刹车。

(1)求车行驶的最少时间是多少?

(2)途中最大速度是多少?

参考答案

1、A

2、AD

3、C

4、如图所示:

5、t1>t2

6、乙图中小球先到底端

7、v B

8、13.64s

9、2∶1

10、D

11、

v m

专题三:用功的公式求变力做功的几种方法

一、知识讲解

功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:

1、等值法

等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从

而使问题变得简单。

例1、如图,定滑轮至滑块的高度为h,已知

细绳的拉力为F(恒定),滑块沿水平面由A点前

进S至B点,滑块在初、末位置时细绳与水平方向

夹角分别为α和β。求滑块由A点运动到B点过程

中,绳的拉力对滑块所做的功。

分析与解:设绳对物体的拉力为T,显然人对

绳的拉力F等于T。T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向都不变,所以F做的功可以

用公式W=FScosa 直接计算。由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:

β

αsin sin 21h h S S S -=-=? )sin 1sin 1(

.βα-=?==Fh S F W W F T 2、微元法

当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。

例2 、如图所示,某力F=10N 作用于半径R=1m 的转盘的

边缘上,力F 的大小保持不变,但方向始终保持与作用点的切

线方向一致,则转动一周这个力F 做的总功应为:

A 、 0J

B 、20πJ

C 、10J

D 、20J.

分析与解:把圆周分成无限个小元段,每个小元段可认为

与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ ,故B 正确。

3、平均力法

如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。

例3、一辆汽车质量为105kg ,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f 0,f 0是车所受的阻力。当车前进100m 时,牵引力做的功是多少?

分析与解:由于车的牵引力和位移的关系为F=103x+f 0,是线性关系,故前进100m 过程中的牵引力做的功可看作是平均牵引力-

F 所做的功。由题意可知f 0=0.05×105×10N =5×104

N,所以前进100m 过程中的平均牵引力: N N F 54341012)10510100(105?=?+?+?=-

∴W =

S =1×105×100J =1×107

J 。

二、课堂检测 1、如图、利用定滑轮将物体匀速提升h ,若不计滑轮和绳重,不计摩擦,则拉力F 、

拉力F 所做的功W 与夹角θ的关系是(D )

A、θ越大,F越大,W越大

B、θ越小,F越大,W越大

C、F与θ角无关

D、W与θ角无关

2、一个人从10m深的井中,用一质量为1kg的桶盛装10kg的水匀速地往上提,(绳子重力不计),由于水桶不断地漏水,每升高1m漏水0.2kg,则把这桶水提上来需要做多少功?

答案:1000J

三、课后检测

1、某个力F=70N作用于半径R=1m的转盘边缘上.力F的大小保待不变.但方向在任何时刻均与作用点的切线一致.则转动一周这个力F所做的总功为(B)

A. 0

B.20 J

C. 10J

D.20J

2、以初速度V0竖直向上抛出一质量为m的小球,上升的最大高度是h,如果空气阻

力f的大小恒定从抛出到落回出发点的整个过程中,空气阻力对小球做的功为(D)

A、0

B、-fh

C、-2mgh

D.-2fh

3、一个人从40m深的井中,用一质量为2kg的均质绳拉一桶盛装10kg的水匀速地往上提,则把这桶水提上来需要做多少功?

高中物理电场常见问题及解题方法

高中物理解题方法指导 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 四、电场解题的基本方法 本章的主要问题是电场性质的描述和电场对电荷的作用,解题时必须搞清描述电场性质的几个物理量和研究电场的各个规律。 1、如何分析电场中的场强、电势、电场力和电势能 (1)先分析所研究的电场是由那些场电荷形成的电场。

(2)搞清电场中各物理量的符号的含义。 (3)正确运用叠加原理(是矢量和还是标量和)。 下面简述各量符号的含义: ①电量的正负只表示电性的不同,而不表示电量的大小。 ②电场强度和电场力是矢量,应用库仑定律和场强公式时,不要代入电量的符号,通过运算求出大小,方向应另行判定。(在空间各点场强和电场力的方向不能简单用‘+’、‘-’来表示。) ③电势和电势能都是标量,正负表示大小.用qU =ε进行计算时,可以把它们的符号代入,如U 为正,q 为负,则ε也为负.如U 1>U 2>0,q 为负,则021<<εε。 ④ 电场力做功的正负与电荷电势能的增减相对应,W AB 为正(即电场力做正功)时,电荷的电势能减小,B A εε>;W AB 为负时,电荷的电势能增加B A εε<。所以,应用 B A B A AB U U q W εε-)=-(=时可以代人各量的符号,来判定电场力做功的正负。当然 也可以用)-(B A U U q 求功的大小,再由电场力与运动方向来判定功的正负。但前者可直接求比较简便。 2、如何分析电场中电荷的平衡和运动 电荷在电场中的平衡与运动是综合电场;川力学的有关知识习·能解决的综合性问题,对加深有关概念、规律的理解,提高分析,综合问题的能力有很大的作用。这类问题的分析方法与力学的分析方法相同,解题步骤如下: (1)确定研究对象(某个带电体)。 (2)分析带电体所受的外力。 (3)根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键。 (4)根据物理过程,已知和所求的物理量,选择恰当的力学规律求解。 (5)对所得结果进行讨论。 【例题4】 如图7—3所示,如果H 3 1 (氚核)和He 2 4(氦核)垂直电场强度方向进入同

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

高中物理解题方法---整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】 在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架 AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环 Q ,两环 质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连, 并在某一位置平衡,如图。现将P 环向左移一小段距离,两环再 A O B P Q

谈高中物理解题方法和技能-模板

谈高中物理解题方法和技能 【摘要】在物理教学中,提高学生的各种能力是十分必要的。新课程要求的三维目标的实现,落实到具体内容上,必然与学生的思维习惯、智力水平、解题方法相关联,再从目前高考的角度,考查学生思维能力、思维方法、创新能力成为重点。所以为提高学生智力水平、创新能力,总结一些解题方法,体会一些解题技巧,是十分必要的。 【关键词】高中物理解题方法技能 不少学生进入高中后,他们都反映物理难学。平时上课都听得懂,公式也记得很清楚, 但是一遇到稍难的题目就不会做,非常苦恼。 经过多年的高中物理教学实践, 我觉得要学好高中物理,首先要能将题目抽象成物理模型, 其次要有扎实的数学功底,最后必须有巧妙的解题方法。 一、常用的解题方法 1.观察法 观察法是学习物理最基本的方法, 是科学归纳的必要条件。学生对学习活动的外部表现进行有目的、有计划的观察、记录, 能够为物理概念的形成、物理知识的理解、物理规律的探究提供信息和依据。 常用观察方法有: (1)观察重点, 排除无关因素的干扰。(2)前后对比观察, 抓住因果关系。(3)正、反对比观察, 深化认识。在指导学生观察时,多采用一些正反对比的方法,可以加深学生理解知识,拓宽思路。 2.解析法 解析法是综合法的逆过程, 它是从未知到已知的推理思维方法,是从局部到整体的一种思维过程。其优点在于把复杂的物理过程分解为简单的要素分别进行分析, 便于从中找出最主要的,起决定性的物理要素和规律。具体是从待求量的分析入手, 从相关的物理概念或公式中去追求到已知量的一种方法。要求这个量, 必须知道哪些量,逐步寻求直至全部找出相的物理过程和已知的关系, 尔后再由已知量求出未知量。 3.综合法 综合法是通过题设条件, 按顺序对已知条件的物理各过程和各因素起来进行综合分析推出未知的思维方法。即从已知到未知的思维方法,是从整体到局部的一种思维过程。此法要求从读题开始,注意题中能划分多少个不同过程或不

(完整word版)高中物理解题方法:图解法

高中物理解题方法:图解法 2012-8-17 图解法,也叫图形法,是一种利用几何的方法解决物理问题的一种方法。解答共点力的平衡问题,动态平衡问题,常用图解法。基本法则有平行四边形法则,矢量三角形法则等,图解法的优点是简捷,方便,直观。可以化繁为简,化难为易,提高解题的效率。 【例题1】 (2012全国新课标).如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为N1,球对木板的压力大小为N2。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中 A.N1始终减小,N2始终增大 B.N1始终减小,N2始终减小 C.N1先增大后减小,N2始终减小 D.N1先增大后减小,N2先减小后增大 [答案]B 与N2的合力为定值,与重力反向等大。作图。由图形可 知,当板缓慢转动中,N1与N2的方向便发生如图示变 化,但合力不变,可得答案B 。 【点评】:该题为动态平衡问题,在挡板夹角连续变化中,重力始终保持不变,根据共点力平衡的条件,做出力的平行四边形,可以直观看出合力不变,但水平方向的支持力N1连续减小,挡板的支持力也N2始终减小。 【例题2】如图2所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向夹30°角且绷紧,小球A 处于静止,对小球施加的最小的力是 ( C ) A.mg 3 B.mg 23 C.mg 2 1- D.mg 33 【解析】:将mg 在沿绳方向与垂直于绳方向分解,如图所示. 所以施加的力与F1等大反向即可使小球静止,故 mg mg F 2 130sin 0min = =,故选C. 答案:C

高中物理解题方法

高中物理解题方法专题指导 方法专题一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中, 根据得出的一组数据作出U-I图像,如图所示, 由图像得出电池的电动势E=______ V,内电阻 r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车?

高中物理-常考题型与解题方法全汇总

高中物理-常考题型与解题方法全汇总 题型1 直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 题型2 物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种. (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。 题型3 运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类,一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 题型4 抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都

高中物理图像法解题方法专题指导

高中物理图像法解题方法专题指导 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义 在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出 的一组数据作出U-I图像,如图所示,由图像得出电池的 电动势E=______ V,内电阻r=_______ Ω. 3.挖掘交点的潜在含意 一般物理图像的交点都有潜在的物理含意,解题中 往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 例3、如图是额定电压为100伏的灯泡由实验得到的伏安 特曲线,则此灯泡的额定功率为多大?若将规格是“100 v、 100 W”的定值电阻与此灯泡串联接在100v的电压上,设 定值电阻的阻值不随温度而变化,则此灯泡消耗的实际功率为 多大? 4.明确面积的物理意义

最新最全,高中物理选择题,解题方法与技巧汇总,(附详细例题,与完整参考答案)

最新最全高中物理选择题解题方法与技巧汇总(附详细例题与完整想看答案) 一、比较排除法 二、特殊值代入法 三、极限思维法 四、逆向思维法 五、对称思维法 六、等效转换法 七、图象分析法 八、类比分析法

选择题在高考中属于保分题目,只有“选择题多拿分,高考才能得高分”,在平时的训练中,针对选择题要做到两个方面: 一是练准度:高考中遗憾的不是难题做不出来,而是简单题和中档题做错;平时会做的题目没做对,平时训练一定要重视选择题的正答率. 二是练速度:提高选择题的答题速度,能为攻克后面的解答题赢得充足时间. 解答选择题时除了掌握直接判断和定量计算等常规方法外,还要学会一些非常规巧解妙招,针对题目特性“不择手段”,达到快速解题的目的. 一、比较排除法 通过分析、推理和计算,将不符合题意的选项一一排除,最终留下的就是符合题意的选项.如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中只可能有一种说法是正确的,当然,也可能两者都错. [例1] 如图1所示,宽度均为d 且足够长的两相邻条形区域内,分别存在磁感应强度大小为B 、方向相反的匀强磁场.总电阻为R ,边长为433 d 的等边三角形金属框的AB 边与磁场边界平行,金属框从图示位置沿垂直于AB 边向右的方向做匀速直线运动.取逆时

针方向电流为正,从金属框C 端刚进入磁场开始计时,下列关于框中产生的感应电流随时间变化的图象正确的是( ) 图1 【解析】 感应电流随时间变化的图线与横轴所围的面积表示电荷量,其中第一象限面积取正,第四象限面积取负.金属框 从进入到穿出磁场,通过金属框的电荷量q =It =E R t =Φt -Φ0R =0,故感应电流随时间变化的图线与横轴所围的面积也应该为零,B 、C 选项显然不符合.金属框在最后离开磁场过程中切割磁感线的有效长度越来越大,故产生的感应电流也越来越大,排除D. 【答案】 A 【点评】 运用排除法解题时,对于完全肯定或完全否定的判断,可通过举反例的方式排除;对于相互矛盾或者相互排斥的

高中物理八大解题方法之七:逆向思维法

高中物理解题方法之逆向思维法 江苏省特级教师 戴儒京 内容提要:本文通过几道物理题的解法分析,阐述逆向思维解题方法的几种应用:一、在解题程序上逆向思维;二、在因果关系上逆向思维;三、在迁移规律上逆向思维。 所谓“逆向思维”,简单说来就是“倒过来想一想”。这种方法用于解物理题,特别是某些难题,很有好处。下面通过高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况。 一、 在解题程序上逆向思维 解题程序,一般是从已知到未知,一步步求解,通常称为正向思维。但有些题目反过来思考,从未知到已知逐步推理,反而方便些。 例1.如图1所示, 图1 一理想变压器的原副线圈分别由双线圈ab 和cd (匝数都为n 1)、ef 和gh (匝数都为n 2)组成。用I 1和U 1表示输入电流和电压,用I 2和U 2表示输出电流和电压。在下列四种接法中,符合关系1 2212121,n n I I n n U U ==的有: (A ) b 与c 相连,以a 、d 为输入端;f 与g 相连,以e 、h 为输入端。 (B ) b 与c 相连,以a 、d 为输入端;e 与g 相连、f 与h 相连作为输入端。 (C ) a 与c 相连,b 与d 相连作为输入端;f 与g 相连,以e 、h 为输出端。 (D ) a 与c 相连,b 与d 相连作为输入端;e 与g 相连、f 与h 相连作为输出端。 析与解:一般的选择题,是从题干所给的已知条件去求解,解出结果与选项比较,哪个正确选哪个。但本题我们不能根据两个公式去求解法,而只能逐一选项讨论哪种解法能得出题干给出的公式。 对(A ),初级ab 和cd 两线圈串联,总匝数为2 n 1,次级ef 和gh 两线圈亦串联,总

高中物理解题方法大全(完整版)

" 高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 - 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 ^ 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。

最新高中物理解题方法+高考物理知识点总结优秀名师资料

高中物理解题方法高考物理知识点总结物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪,哪个关键之处不懂,这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论(讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法

1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件?F,0,?M,0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ? 力的合成和分解规律的运用。 ? 共点力的平衡及变化。 ? 固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 ,对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有?F,0。若将各力正交分解则 有:?F,0,?F,0 。 XY ,对于刚体而言,平衡意味着,没有平动加速度即,0,也没有转动加速度即,,0(静止或匀逮转动),此时应有:?F,0,?M,0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据?F,0可以引伸得出以下结论: be carried out in time rust and antirust paint twice. While skeleton construction curtain wall fireproof, antisepsis, mine should be simultaneously, all skeletons complete after the required time and

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理解题方法指导讲义 杨绪军

第一讲:隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上, 如图所示,如果它们分别受到水平推力F1和F2作用,且F1>F2,则物体1施于物体2的作用力的大小为() A.F1 B.F2 C.1/2(F1+F2) D.1/2(F1-F2) 例2:如图在光滑的水平桌面上放一物体A,A上再放一物体B,A、B间有摩擦。施加一水平力F于B,使它相对于桌面向右运运,这时物体A 相对于桌面() A.向左动 B.向右动 C.不动 D.运动,但运动方向不能判断 例3:如图所示,已知物块A、B的质量分别为m1、m2,A、B间的摩 擦因数为μ1,A与地面之间的摩擦因数为μ2,在水平力F的推动下,要使A、B一起运动而B不至下滑,力F至少为多大?

例4:如图所示,用轻质细绳连接的A和B两个物体,沿着倾角为α的 斜面匀速下滑,问A与B之间的细绳上有弹力吗? 例5 如图所示,一根轻质弹簧上端固定,下端挂一质量为m0的平 盘,盘中有一物体质量为m,当盘静止时,弹簧的长度比其自然长度伸长了L,今向下拉盘,使弹簧再伸长△L后停止.然后松手放开,设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于() A. B. C. D. 例6 如图所示,AO是质量为m的均匀细杆,可绕O轴在竖直平面内自动转动.细杆上的P点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡,已知杆的倾角为θ,AP长度是杆长的1/4,各处的摩擦都不计,则挡板对圆柱体的作用力等于。

高一物理实验题解题方法归纳

高一物理实验题解题方法归纳 实验,是自然科学的研究方法之一,高中物理实验是解决物理问题的一种途径,学好高中物理实验的复就至关重要。下面是给大家带来的高一物理实验题方法,希望能帮助到大家! 高一物理实验题方法1 常用的高中物理实验方法之控制变量法 在高中物理实验中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。控制变量法是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。 常用的高中物理实验方法之等效替代法 等效替代法是在保证某种效果相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理实验问题和物理实验过程来研究和处理的方法。等效替代法是物理方法既是科学家研究问题的方法,也是高中学生在学习物理中常用的方法。 常用的高中物理实验方法之累积法

爱高中物理实验中把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。 常用的高中物理实验方法之放大法 对于高中物理实验中微小量或小变化的观察,可采用放大的方法。例如游标卡尺、放大镜、显微镜等仪器都是按放大原理制成的。 高一物理实验题方法2 解题技巧1.对于多体问题,要正确选取研究对象,善于寻找相互联系 选取研究对象和寻找相互联系是求解多体问题的两个关键。选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 解题技巧2.对于多过程问题,要仔细观察过程特征,妥善运用物理规律 观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律

高中物理解题方法大全

高中物理解题方法大全 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X=0,∑F Y=0 。 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。

高中物理解题方法大全(完整版)

高中物理解题方法指导 (完整版) 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大X围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件

高中物理解题方法指导二 隔离法

第二讲:隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情 况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图所示,如果它们分别受到水 平推力F 1和F 2作用,且F 1>F 2, 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .1/2(F 1+F 2) D .1/2(F 1-F 2) 例2:如图在光滑的水平桌面上放一物体A ,A 上再放一物体B , A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运运,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 例3:如图所示,已知物块A 、B 的质量分别为m 1、m 2,A 、B 间的摩擦因数为μ1,A 与地面之间的摩擦因数为μ2,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 例4:如图所示,用轻质细绳连接的A 和B 两个物体,沿着倾角为α的斜面匀速下滑,问A 与B 之间的细绳上有弹力吗? 例5 如图所示,一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了L ,今向下拉盘,使弹簧再伸长△L 后停止.然后松手放开,设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于( ) A .mg L L )/1(?+ B .g m m L L ))(/1(0+?+ C .Lmg ? D .g m m L L )(/0+? 例6 如图所示,AO 是质量为m 的均匀细杆,可绕O 轴在竖直平面内自动转动.细杆上的P 点与放在水平桌面上的圆柱体接触,圆柱体靠在竖直的挡板上而保持平衡,已知 杆的倾角为θ,AP 长度是杆长的1/4,各处的摩擦都不计,则挡板对圆柱体的作用力等于 。

高中物理知识点总结和常用解题方法(带例题)

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。三个大小相等的共面共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理) 文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则u=tanα6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 12、绳上的张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

高中物理解题方法和技巧

高中物理解题方法和技巧 物理:其实高中物理不难,它的规律性很强,因此是可以找到通用的解题方法的.首先是力学部分必须学好.每一个物理的计算题其实都可以分解成很多最基本的模型,如匀加速直线运动(包括自由落体),基本受力分析,弹性碰撞,非弹性碰撞,机械能守恒、动量守恒等.如果你现在不会做题,那么先问问自己那些基本模型掌握了吗.关键是在大题的训练中学会分析物理现象,找到题设中包含的各个基本模型,这要求大家独立地解决一定数量的题,自己要动脑筋思考,多练习自然就有感觉了。 力学学好了,其他部分只要掌握基本概念、基本定律,相信用力学已经掌握的思维解题也可以了.其实很多热学、电学的题也是以力学模型为基础的。 静力学问题解题的思路和方法 确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,

而后讨论。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论: 这三个力矢量组成封闭三角形。 任何两个力的合力必定与第三个力等值反向。 对物体受力的分析及步骤 明确研究对象 分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法” 作图时力较大的力线亦相应长些 每个力标出相应的符号(有力必有名),用英文字母表示 用正交分解法解题列动力学方程 受力不平衡时 一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。 受力分析步骤:

相关文档
最新文档