桶形基础液压下沉过程的耦合欧拉_拉格朗日有限元法分析_闫澍旺

桶形基础液压下沉过程的耦合欧拉_拉格朗日有限元法分析_闫澍旺
桶形基础液压下沉过程的耦合欧拉_拉格朗日有限元法分析_闫澍旺

液压缸设计

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

工况负载组成负载值F 工况负载组成负载值F 启动981 保压3150×103加速537 补压3150×103快速491 快退+G 10301 按上表绘制负载图如图***所示。 F/N v/mm s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限单元法与有限元分析

有限单元法与有限元分析 1.有限单元法 在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 1.1.有限元法分析本质 有限元法分析计算的本质是将物体离散化。即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 1.2.特性分析 1)选择位移模式: 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如

任意拉格朗日欧拉(ALE)理论基础

暨两岸船舶与海洋工程水动力学研讨会文集 拉格朗日、欧拉和任意拉格朗日-欧拉描述的 有限元分析 孙江龙1杨文玉2 杨侠3 (1 华中科技大学船舶与海洋工程学院,武汉 430074;2 华中科技大学机械科学与工程学院,武汉 430074;3 武 汉工程大学机电工程学院,武汉 430073) 摘要:对拉格朗日、欧拉和任意拉格朗日–欧拉三种描述方法进行了分析,为了便于理解给出了三种描述的参考构形和参考坐标系,在参考坐标系下根据物质导数的定义分别得到相应的速度和加速度,并进行比较,将三种描述方法的区别列于表中,清晰地阐述了三种描述之间的相互关系,并进行了有限元分析。 关键词:拉格朗日;欧拉;任意拉格朗日–欧拉;有限元法 1 引言 自由液面大晃动引起的强非线性往往给问题的求解造成很大困难,对大晃动问题进行数值模拟,要先解决描述方法的选择问题。过去通常采用欧拉法[1-3]和拉格朗日法[4-5]来描述非定常自由面流体流动,它们有着各自的优势和局限性。 采用固定网格的欧拉描述,整个计算过程中计算网格始终保持初始状态,从而可以描述流体质点运动的急剧变化,如碎波等现象。欧拉描述虽然可以有效地分析整个流场内部的运动,但很难精确跟踪流体的自由液面,即很难给出准确的自由面形状和位置。 在拉格朗日描述中,网格结点与流体质点在整个运动过程中始终保持重合,流体质点与网格结点之间不存在相对运动,因此很容易跟踪自由液面,适用于线性小晃动问题。这不仅大大地简化了控制方程地求解,而且还能有效地跟踪流体质点的运动轨迹,准确地描述波动的自由液面。但是,在涉及求解带自由面流体大幅运动时,此时的晃动已经具有很强的非线性特征,如果还采用拉格朗日描述,由于流体质点运动的急剧变化,将导致计算网格的扭曲,会面临网格奇异问题,从而使计算无法继续进行。 拉格朗日描述和欧拉描述虽有各自的优点,但也存在较大的缺陷,如果将它们有机地结合在一起,充分利用各自的优点并克服其缺点,则可以解决各自都难于解决的问题,任意拉格朗日–欧拉描述[6-7](ALE)方法就是基于该思路提出的。在任意拉格朗日–欧拉描述中,网格结点的运动方式比较灵活,网格结点可以跟随流体质点一起运动,也可以固定不变,甚至可以采用网格结点在一个方向上固定而在其他方向上随流体质点一起运动等方式。为了更加清晰地理解这三种描述方法,本研究从以下几个方面进行阐述和比较。 - 164 -

力士乐液压缸样本解读

1/44 Hydraulic cylinder Mill type Series CDH2 / CGH2 Component series 1X Nominal pressure 250 bar (25 MPa RE 17334/09.05Replaces: 02.05 Overview of contents Contents Page T echnical data 2Diameter, weights 2Areas, forces, flows 3T olerances 3 IHC-Designer: Engineering software 4Mounting style overview 4Ordering details 4Plain clevis at base MP3 6Self-aligning clevis at base MP5 8 Round flange at head MF3 10Round flange at base MF4 12Trunnions MT4 14Foot mounting MS2

16 H4652_d Features – Standards: DIN 24333, ISO 6022 and VW 39 D 921– 6 mounting styles – Piston ?: 40 to 320 mm – Piston rod ?: 25 to 220 mm – Stroke length up to 6 m Contents Page Flange connections 18Position measuring system 20Proximity switch 24Screwed coupling 26Self-aligning clevis 27Fork clevis 28Mounting block 29Buckling 31 End position cushioning 34Spare parts 37Tightening torques 39Seal kits 40 Engineering software: IHC-Designer from Rexroth Online https://www.360docs.net/doc/e214413469.html,/Rexroth-IHD Download https://www.360docs.net/doc/e214413469.html,/ business_units/bri/de/downloads/ihc Technical data (for applications outside these parameters, please consult us! Standards :

四柱液压机工作原理解读

四柱液压机工作原理 四柱液压机四柱液压机是油泵把液压油输送到集成插装阀块,通过各个单向阀和溢流阀把液压油分配到油缸的上腔或者下腔,在高压油的作用下,使油缸进行运动。液压机是利用液体来传递压力的设备。液体在密闭的容器中传递压力时是遵循帕斯卡定律。 四柱液压机由主机及控制机构两大部分组成。液压机主机部分包括液压缸、横梁、立柱及充液装置等。动力机构由油箱、高压泵、控制系统、电动机、压力阀、方向阀等组成。[1] (二用途https://www.360docs.net/doc/e214413469.html, 该液压机适用于可塑性材料的压制工艺。如粉末制品成型、塑料制品成型、冷(热挤压金属成型、薄板拉伸以及横压、弯压、翻透、校正等工艺。 四柱液压机具有独立的动力机构和电器系统,采用按钮集中控制,可实现调整、手动及半自动三种操作方式。 (三特点 机器具有独立的动力机构和电气系统,采用按钮集中控制,可实现调整、手动及半自动三种工作方式:机器的工作压力、压制速度,空载快下行和减速的行程和范围,均可根据工艺需要进行调整,并能完成顶出工艺,可带顶出工艺、拉伸工艺三种工艺方式,每种工艺又为定压,定程两种工艺动作供选择,定压成型工艺在压制后具有顶出延时及自动回程。 液压机简介 (又名:油压机利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。

工作原理 四柱液压机[2]的液压传动系统由动力机构、控制机构、执行机构、辅助机构和工作介质组成。动力机构通常采用油泵作为动力机构,一般为积式油泵。为了满足执行机构运动速度的要求,选用一个油泵或多个油泵。低压(油压小于2.5MP用齿轮泵;中压(油压小于6.3MP用叶片泵;高压(油压小于32.0MP用柱塞泵。各种可塑性材料的压力加工和成形,如不锈钢板钢板的挤压、弯曲、拉伸及金属零件的冷压成形,同时亦可用于粉末制品、砂轮、胶木、树脂热固性制品的压制。 安全操作 1、液压机操作者必须经过培训,掌握设备性能和操作技术后,才能独立作业。 2、作业前,应先清理模具上的各种杂物,擦净液压机杆上任何污物。 3、液压机安装模具必须在断电情况下进行,禁止碰撞启动按钮、手柄和用脚踏在脚踏开关上。 4、装好上下模具对中,调整好模具间隙,不允许单边偏离中心,确认固定好后模具再试压。 5、液压机工作前首先启动设备空转5分钟,同时检查油箱油位是否足够、油泵声响是否正常、液压单元及管道、接头、活塞是否有泄露现象。深圳油压机TM系列引 6、开动设备试压,检查压力是否达到工作压力,设备动作是否正常可靠,有无泄露现象。 7、调整工作压力,但不应超过设备额定压力的90%,试压一件工件,检验合格后再生产。 8、对于不同的液压机型材及工件,压装、校正时,应随时调整压机的工作压力和施压、保压次数与时间,并保证不损坏模具和工件。

液压缸基本结构

液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。 上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。下面对液压缸的结构具体分析。 3.2.1 缸体组件 ?

缸体组件与活塞组件形成的 密封容腔承受油压作用,因此, 缸体组件要有足够的强度,较高 的表面精度可靠的密封性。 3.2.1.1 缸筒与端盖的连接 形式 常见的缸体组件连接形式如图3.10所示。 (1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用 的一种连接形式。 (2)半环式连接(见图b), 分为外半环连接和内半环连 接两种连接形式,半环连接 工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。 (3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,

但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。 ? (4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。只适用于长度不大的中、低压液压缸。 (5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。 3.2.1.2 缸筒、端盖和导向套的基本要求 ?缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要

液压缸的机械锁紧装置理论分析和优化设计

目录 第1章绪论 (4) 1.1课题背景及研究的目的和意义 (4) 1.2诸多可行性方案的比较以及局限性分析 (5) 1.2.1钢球式锁紧液压缸 (5) 1.2.2滚子式锁紧液压缸 (6) 1.2.3套筒式锁紧液压缸 (7) 1.3国内外技术研究现状 (8) 1.3.1国内研究现状 (8) 1.3.2国外有关科研成果 (8) 1.4本文的主要研究内容 (11) 1.4.1本设计的工作原理及技术参数 (11) 1.4.2本设计相对前文几种可行性方案的优势 (12) 1.5本设计的主要内容 (13) 1.5.1内锥套内外表面摩擦副的摩擦磨损试验 (13) 1.5.2锁紧装置理论设计计算 (13) 1.5.3锁紧装置简化模型的静力学有限元分析及参数优化 (13) 1.5.4锁紧装置的样机试验 (13) 第2章摩擦副材料的选用及其摩擦磨损试验的设计 (14) 2.1引言 (14) 2.2 内锥套内表面材料的选择 (14) 2.2.1 铜或铜合金材料作对偶件 (15) 2.2.2铸铁材料作对偶件 (16) 2.2.3钢材料作对偶件 (17) 2.2.4其他材料作对偶件 (17) 2.3内锥套外表面摩擦副材料选择 (17) 2.4试验方案 (19) 2.4.1试验器材及用品 (19) 2.4.2试验方案 (20) 2.4.3试验数据处理 (21) 2.5本章小结 (24) 第3章液压缸锁紧装置的理论计算和设计 (25)

3.1 引言 (25) 3.2 核心零件的关键尺寸及基本算法 (25) 3.2.1假设条件的提出 (26) 3.2.2简化模型力学求解方程的建立 (27) 3.3.1弹簧弹力—内锥套斜角函数关系 (29) 3.4内锥套厚度的设计计算 (31) 3.5 碟形弹簧的设计计算 (33) 3.6 MATLAB计算程序 (36) 3.7本章小结 (37) 第4章锁紧装置的ANSYS有限元仿真优化试验 (38) 4.1引言 (38) 4.2简化模型的建立 (39) 4.3接触组设置 (39) 4.4约束设置 (40) 4.5外部载荷设置 (41) 4.5.1加载碟簧弹力F K (41) 4.5.2加载活塞杆负载F (41) 4.5.1负载施加时序 (42) 4.6网格划分 (42) 4.7 计算结果处理 (43) 4.7.1内锥套应力分布 (44) 4.7.2外锥套应力分布 (44) 4.7.3 活塞杆应力分布 (45) 4.7.4 内锥套-活塞杆接触压应力 (45) 4.7.5 内锥套-活塞杆接触摩擦应力 (46) 4.8 数据分析处理 (47) 4.8.1 各因素对根部圆弧槽最大应力的影响关系 (48) 4.8.2 综合评估 (50) 4.9 活塞杆负载力作用方向对内锥套应力分布的影响 (52) 4.10本章小结 (54) 第5章液压缸锁紧装置试验台设计 (55) 5.1引言 (55) 5.2样机试验主要内容 (56)

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

液压缸的设计计算

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

液压缸密封件的有限元分析及改进设计

液压缸密封件的有限元分析及改进设计Optimization of sealing o-ring based on finite element analysis 【摘要】介绍了液压缸的常用密封件的分类,利用有限元分析软件ANSYS对液压缸往复密封用橡胶密封圈进行建模和计算,分析密封圈最易受损和失效的关键部位,并结合液压缸活塞杆动态密封机理提出了优化设计模型。对密封件的设计改进提供一种可行的方法。 关键词:有限元分析;优化设计;密封圈;密封机理 【Abstract】By using ANSYS engineering analysis system,the finite element analysis model for sealing 0-ring of hydrodynamic cylinder was set up to analyze the easiest parts to be damaged and the key parts to be disabled.Integrated with sealing principles for piston of hydrodynamic cylinder,an optimized model of sealing O-ring Was proposed,which pointed out an available way to optimize the design of sealing O-ring Key words:FEM;Optimization;Sealing O-ring;Sealing principle 0引言 在液压系统中,液压缸是动力传递元件。而液压缸中,活塞和导向套上所选用的密封圈,对液压缸在规定的条件下,规定的时间内,完成规定的功能,而使其性能保持在允许值范围内是至关重要的。如果密封件过早地失效,动力传递的功能必将随之消失。在现代设计中,合理选用密封件以及合理的结构设计,是保证产品性能提高产品质量的必要条件。 1 液压缸的密封性及密封装置的分类 液压缸依靠密封油液容积的变化传递动力和速度。密封装置的优劣,将直接影响液压缸的工作性能。密封件的不好液压缸,不仅不会污染环境、降低容积效率、增加功率损失,有时还会影响液压缸的正常动作,甚至引起安全事故。液压缸的活塞干往复运动不可避免的要带出些油液,因此不可能做到绝对密封。但是这种渗漏要尽量少。 根据工作原理和结构特点的不同,密封装置可作如下分类: (1)挤压密封密封件在液压力的作用下,紧贴于相互配合件之间的间隙实现密封,如o形密封因和矩形密封图。 (2)唇边密封密封件的唇边在液压力作用下贴在互相配合的另一个零件表面上形成密封圈等。 3)压紧密封依靠外力或液力压紧密封件,使其产生过盈量贴紧于被密封表面实现密封。 (4)间隙密封通过严格控制两个相互配合零件的间隙防止漏油,实现密封。 密封装置还可按使用方法不同分为固定密封、往复运动密封和旋转运动密封;按密封件材料不同可分为橡胶、塑料、皮革和金属密封。 0形橡胶密封圈以其成本低廉、结构简单以及安装和使用方便等优点,被广泛应用子汽车、动力机械及流体液鹾机械等领域。近年来,随着尖端科学技术的迅速发展和工业、交通运输等部门机械化、自动化水平的不断提高,对密封件的性能和质量要求也愈来愈高。普通0型橡胶密封圈已不能满足密封发展的需求,对其进行创新设计已经势在必行。利用大型通用有限元分析软件ANSYS对液压缸用0形橡胶密封圈进行

有限元法中的几个基本概念

诚信·公平·开放·共赢 Loyalty Fair Opening Win-win 有限元法中的几个基本概念 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。 这些单元仅在顶角处相互联接,称这些联接点为结点。 离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。 通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。 在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰富了文本编辑功能,改善了用户的视觉体验,方便用户快速便捷的对脚本或程序进行编辑、编译与调试。其中并行版在前后处理上进行了相应的改进。

液压机

液压机 1.简介 压机是一种以液体为工作介质,根据帕斯卡原理制成的用于传递能量以实现各种工艺的机器。液压机一般由本机(主机)、动力系统及液压控制系统三部分组成。液压机分类有阀门液压机,液体液压机,工程液压机 液压机(又名:油压机)液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它常用于压制工艺和压制成形工艺,如:锻压、冲压、冷挤、校直、弯曲、翻边、薄板拉深、粉末冶金、压装等等。[1] 它的原理是利用帕斯卡定律制成的利用液体压强传动的机械,种类很多。当然,用途也根据需要是多种多样的。如按传递压强的液体种类来分,有油压机和水压机两大类。水压机产生的总压力较大,常用于锻造和冲压。锻造水压机又分为模锻水压机和自由锻水压机两种。模锻水压机要用模具,而自由锻水压机不用模具。我国制造的第一台万吨水压机就是自由锻造水压机。 液压机设备维修与保养 每次开机应空负荷运转2—5分钟,(冬季可加长时间,不低于30分钟),方可正常工作。 2.新设备在使用一星期以后需将全部油路滤清一次,并清洗油箱,然后依据机器工作的负荷情况,3—6个月更换一次油液,清洗一次油箱。 3.使用过程中严禁由于系统发热而将油箱盖或注油孔打开。压力表开关压力调整完毕后,应关闭(禁止长期开启压力表开关,损坏压力表)。5、严禁露天使用,应有防雨措施 2用途 液压机是一种以液体为工作介质,用来传递能量以实现各种工艺的机器。液压机除用于锻压成形外,也液压机可用于矫正、压装、打包、压块和压板等。液压机包括水压机和油压机。以水基液体为工作介质的称为水压机,以油为工作介质的称为油压机。液压机的规格一般用公称工作力(千牛)或公称吨位(吨)表示。锻造用液压机多是水压机,吨位较高。为减小设备尺寸,大型锻造水压机常用较高压强(35兆帕左右),有时也采用 100兆帕以上的超高压。其他用途的液压机一般采用 6~25兆帕的工作压强。油压机的吨位比水压机低 3简史 1795年,英国的J.布拉默应用帕斯卡原理发明了水压机,用于打包、榨植物油等。到19世纪中期,英国开始把水压机用于锻造,水压机遂逐渐取代了超大型蒸汽锻锤。到19世纪末,美国制成126000千牛自由锻造水压机。此后,全世界先后制造20余台10万千牛级的自由锻造水压机,其中中国制造的有2台。随着电动高压泵的出现和完善,锻造水压机也向较小吨位方向发展。20世纪50年代后出现了小型快速锻造水压机,可进行相当于30~50千牛锻锤所做的工作。40年代,德国制成180000千牛的巨型模锻水压机,此后全世界先后制成180000千牛以上的模锻水压机18台,其中中国制造的一台为300000千牛。 4工作原理 液压机的工作原理。大、小柱塞的面积分别为S2、S1,柱塞上的作液压机 用力分别为F2、F1。根据帕斯卡原理,密闭液体压强各处相等,即 F2/S2=F1/S1=p;F2=F1(S2/S1)。表示液压的增益作用,与机械增益一样,力增大了,但功不增益,因此大柱塞的运动距离是小柱塞运动距离的S1/S 2

液压机

第三章液压机 第一节液压机的工作原理、特点及分类 重点掌握:液压机的工作原理。 掌握:液压机的特点及分类 1、工作原理:两个充满工作液体的具有柱塞或活塞的容腔由管道相连接,当小柱塞上作用的力为F1时,根据帕斯卡原理:在密闭的容器中,液体压力在各个方向上是相等的,则压力将传递到容腔的每一点。因此,在大柱塞2上将产生向上的作用力F2,迫使制件3变形。且F2=F1×A2/A1。A1、A2分别为小柱塞1和大柱塞2的工作面积。 1-小柱塞 2-大柱塞 3-制件 2、液压机的特点及分类 1)优点 1)基于液压传动的原理,执行元件(缸及柱塞或活塞)结构简单,结构上易于实现很大的工作压力、较大的工作空间和较长的工作行程,因此适应性强,便于压制大型或较长较高的制件。 2)在行程的任何位置均可产生压力机额定的最大压力。可以在下转换点长时间保压,这对许多工艺来说都是十分需要的。 3)可以用简单的方法(各种阀)在一个工作循环中调压或限压,不易超载,模具容易得到保护。

4)滑块的总行程可以在一定范围内任意改变,滑块行程的下转换点可以根据压力或行程位置来控制和改变。 5)滑块速度可以在一定范围内进行调节,从而可以适应各种工艺对滑块速度的不同要求。 用泵直接传动时,滑块速度的调节可以与压力及行程无关。 6)工作平稳,撞击、振动和噪声较小,对工人健康、厂房基础、周围环境及设备本身都有很大好处。 缺点: 1.对密封技术要求较高。残漏会影响机器 效能,污染环境。 2.最高工作速度受到限制 3、分类 液压机在锻压机械标准中属于第二类,代号为“Y”。 液压机按其用途分为十个组别: (1)锻造液压机用于自由锻造、钢锭开坯以及有色与黑色金属模锻。 (2)冲压液压机用于各种薄板及厚板冲压,其中有单动、双动及橡皮模冲压等 (3)一般用途液压机各种万能式通用液压机。 (4)校正、压装用液压机用于零件校形及装配。 (5)层压液压机用于胶合板、刨花板、纤维板及绝缘材料板的压制。 (6)挤压液压机分别用于挤压各种有色金属及黑色金属的线材、管材、棒材、型材及工件的拉深和穿孔等工艺。 (7)压制液压机分别用于各种粉末制品的压制成形,如粉末冶金、人造金钢石、耐火砖、碳极塑料及橡胶制品的压制等。 (8)打包、压块液压机用于将金属切屑及废料压块与打包、非金属科的打包等。 (9)其它液压机如用于轮轴压装、电缆包覆、模具研配等各种专用工序。 (10)手动液压机为小型液压机,用于试压、压装等要求力量不大的手工工序。

有限元法基础重点归纳(精)

1、有限元这种数值计算方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。 2、有限单元法的基本思想:在力学模型上将一个原来连续的物体离散成为有限个具有一定 大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。 3、节点:网格间相互连接的点。 4、边界:网格与网格的交界线。 5、有限元的优点:①理论基础简明,物理概念清晰,且可在不同的水平上建立起对该法的 理解②具有灵活性和适用性,应用范围极为广泛③该法在具体推导运算中,广泛采用了矩阵方法。 6、有限单元法分类(从选择基本未知量的角度:位移法(以节点位移为基本未知量,通用 性广、力法(以节点力、混合法(一部分以节点位移,另一部分以节点力 7、有限元法分析计算的基本步骤:①结构的离散化②单元分析(选择位移模式,建立单元 刚度方程,计算等效节点力③整体分析④求解方程,得出节点位移⑤由节点位移计算单元的应变与应力。 8、单元划分:将某个机械结构划分为由各种单元组成的计算模型。 9、有限元法基本近似性------几何近似。

10、弹性力学的任务:分析弹性体在受外力作用并处于平衡状态下产生的应力、应变和位移状态及其相互关系等。 11、弹性力学假设所研究的物体是连续的、完全弹性的、均匀的、各向同性的、微小变形的和无初应力的 12、外力:体力(分布在物体体积内的力---重力、惯性力、电磁力面力(分布在物体表面上的力---流体压力、接触力、风力 13、应力:物体受外力作用,或由于温度有所改变,其内部发生的内力。σ={ σx σy σz τx τy τz } = [σx σy σz τx τy τz ]T 14、应变:物体受到外力作用时,其形状发生改变时的形变。---长度和角度。 ε={ εx εy εz γx γy γz } = [εx εy εz γx γy γz ]T 15、位移:弹性体在载荷作用下,不仅会发生形变,还将产生位移,即弹性体位置 的移动。 δ={u v w }=[u v w ]T 16:、变形协调条件:设想在变形前,把弹性体分为许多微小立方单元体。变形后,每个单元体都产生任意变形而变成一些六面体。可能发生这样的情况,这些六面体

液压机工艺标准

液压机安装施工工艺标准 QB—CNCEC J21303-2006 1 适用范围 本施工工艺标准适用于锻造液压机、模锻液压机类设备的安装施工。 2 施工准备 2.1技术准备: 2.1.1 施工技术资料 现场施工图、设备制造厂的液压机制造设计图、装配图、安装、使用、维护说明书、设备制造厂的企业标准 2.1.2现行施工标准规范 《机械设备安装工程施工及验收通用规范》 GB50231 《锻压设备安装工程施工及验收规范》 GB50272 《钢筋混凝土基础工程施工及验收规范》 GB50204 《工业金属管道工程施工及验收规范》 GB50235 《现场设备、工业管道焊接工程施工及验收规范》 GB50236 《化工设备安装工程质量检验评定标准》 HG20236 《工业安装工程质量检验评定统一标准》 GB50252 2.1.3 施工方案 编制《液压机安装施工方案》 2.2作业人员 2.3 设备、材料的验收及保管 2.3.1 设备的验收、保管 液压机设备进场时,须建设、设计、施工、制造、监理等有关单位参加,并按设备的名称、型号、规格、数量清单逐一检查验收。

2.3.1.1 整体到场设备的验收、保管 (1)设备开箱:机械设备从制造厂出厂时,都经过良好的包装。对于整体到场设备的开箱应注意以下几点: a) 设备开箱前,应查明设备的名称、型号和规格,检查设备的箱号及包装情况,防止错开。 b) 设备开箱前,应将设备吊运到安装地点附近,以减少开箱后的搬运和不方便。 c) 开箱前,应将顶板的尘土扫除干净,以防开箱时,尘土、赃物散落在设备表面。 d) 开箱一般应从顶板开始,拆除顶板查明情况后再行拆除其它部位箱板;如顶板不便拆除, 可选择适当部位拆除侧箱板,观察内部情况后再开箱。 (2) 设备清点:设备开箱后,安装单位应会同有关部门人员对设备进行清点检查。清点检查的目的 是查清设备有无损坏,并填写“设备开箱检查记录表”,设备交安装单位进行保管。设备清点应注意以下几点: a) 设备清点应根据制造厂提供的装箱清单进行。首先应核对设备的名称、型号和规格与技术 文件是否相符。 b) 检查设备的外观和保护包装有无缺陷、损坏情况,并作出记录。 c) 出厂合格证和技术文件是否齐全,并作出记录。 d) 设备的转动件和滑动件,在防锈油未清除前不要转动和滑动。由于检查而出去的防锈油, 在检查后重新涂上。 设备外表应良好,随机文件和配件应齐全;设备的地脚螺栓孔与基础的位置相符,管口方位与施工图相符,管口方位与施工图相符。 2.3.1.2 解体到场设备的验收、保管 (1)设备开箱:解体到场设备的检查验收除应按整体到场设备开箱要求外,还应注意设备开箱前,应检查设备的箱数、箱号以及包装情况,查明设备名称、型号和规格,防止数量不够或开错。 (2)设备清点:设备开箱后,安装单位应会同有关部门人员对设备进行清点检查。清点检查的目的是查清设备零部件、附件有无缺陷,并填写“设备开箱检查记录表”,设备交安装单位进 行保管。设备清点应注意以下几点: a) 设备清点应根据制造厂提供的装箱清单进行。首先应核对设备的名称、型号和规格与技术 文件是否相符。 b) 检查设备的外观和保护包装有无缺陷、损坏或设备零部件锈蚀情况,并作出记录。 c) 按设备装箱清单清点零部件、工具、附件或附属材料、出厂合格证和技术文件是否齐全, 并作出记录。 d) 设备的转动件和滑动件,在防锈油未清除前不要转动和滑动。由于检查而出去的防锈油, 在检查后重新涂上。 e) 设备清点后,应重新进行保护包装,特别是连接部位和传动部位应有适当的防护措施,防 止碰损及锈蚀。 设备的地脚螺栓以及平、斜垫铁材质、规格和加工精度应满足设备安装要求。 2.3.2 材料的验收及保管 2.3.2.1 设备安装所用的辅材、焊材、液压系统的油管及阀门,机械传动系统皮带齿轮等使用前均应进行外观检查,且符合设计规定和产品标准,并有出厂合格证和质量证明书。

相关文档
最新文档