铁碳合金图

铁碳合金图
铁碳合金图

第三章铁碳合金状态图

一、填空题

1、合金是指由两种或两种以上化学元素组成的具有___________特性的物质。

2、合金中有两类基本相,分别是___________和__________。

3、铁碳合金室温时的基本组织有___________、__________、_________、珠光体和莱氏体。

4、铁碳合金状态图中,最大含碳量为__________。

5、纯铁的熔点是___________。

6、简化的铁碳合金状态图中有_________个单相区,_________个二相区。

二、单项选择题

7、组成合金最基本的、独立的物质称为()

A、组元

B、合金系

C、相

D、组织

8、金属材料的组织不同,其性能()

A、相同

B、不同

C、难以确定

D、与组织无关系

9、研究铁碳合金状态图时,图中最大含碳量为()

A、0.77%

B、2.11%

C、4.3%

D、6.69%

10、发生共晶转变的含碳量的范围是()

A、0.77%—4.3%

B、2.11%—4.3%

C、2.11%—6.69%

D、4.3%—6.69%

11、液态合金在平衡状态下冷却时结晶终止的温度线叫()

A、液相线

B、固相线

C、共晶线

D、共析线

12、共晶转变的产物是()

A、奥氏体

B、渗碳体

C、珠光体

D、莱氏体

13、珠光体是()

A、铁素体与渗碳体的层片状混合物

B、铁素体与奥氏体的层片状混合物

C、奥氏体与渗碳体的层片状混合物

D、铁素体与莱氏体的层片状混合物

14、共析转变的产物是()

A、奥氏体

B、渗碳体

C、珠光体

D、莱氏体

15、共析钢的含碳量为()

A、Wc=0.77%

B、Wc>0.77%

C、Wc<0.77%

D、Wc=2.11%

16、Wc<0.77%铁碳合金冷却至A3线时,将从奥氏体中析出()

A、铁素体

B、渗碳体

C、珠光体

D、莱氏体

17、Wc >4.3%的铁称为()

A、共晶白口铸铁

B、亚共晶白口铸铁

C、过共晶白口铸铁

D、共析白口铸铁

18、铁碳合金相图中,ACD线是()

A、液相线

B、固相线

C、共晶线

D、共析线

19、铁碳合金相图中的Acm线是()

A、共析转变线

B、共晶转变线

C、碳在奥氏体中的固溶线

D、铁碳合金在缓慢冷却时奥氏体转变为铁素体的开始线

20、工业上应用的碳钢,Wc一般不大于()

A、0.77%

B、1.3%—1.4%

C、2.11%—4.3%

D、6.69%

21、铁碳合金相图中,S点是()

A、纯铁熔点

B、共晶点

C、共析点

D、纯铁同素异构转变点

22、钢的含碳量一般在()

A、0.77%以下

B、2.11%以下

C、4.3%以下

D、6.69%以下

三、简答题

23、什么是金属的同素异构转变?以纯铁为例说明金属的同素异构转变。

24、含碳量对合金的组织和性能有什么影响?

四、综合题

25、画出简化的铁碳合金状态图,并分析40钢(Wc=0.40%)由液态缓冷至室温所得的平衡组织。

附:

参考答案:

一、填空题

1、金属

2、固溶体金属化合物

3、铁素体渗碳体奥氏体

4、6.69%

5、1538℃

6、3 5

二、选择题

7—11 ABDCB 12—16 DACAA 17—22 CACBCB

三、简答题

23、答:同一种金属在固态下随温度的变化由一种晶格类型转变为另外一种晶格类型的

转变过程称为金属的同素异构转变。

纯铁在912o C以下时为体心立方晶格,从912o C开始变为面心立方晶格,升温

到1394o C时又转变为体心立方晶格。

24、答:铁碳合金在室温的组织都是由铁素体和渗碳体两相组成,随着含碳量的增加,

铁素体不断减少,而渗碳体逐渐增加,并且由于形成条件不同,渗碳体的形态

和分布有所变化。随着钢中含碳量的增加,钢的强度、硬度升高,而塑性和韧

性下降,这是由于组织中渗碳体不断增多,铁素体不断减少的缘故。

四、综合题

25、答:略

金属材料教案-铁碳合金相图

广东省技工学校文化理论课教案 共3页第1页 科目金属 材料 四章一节课题合金的组织 授课 日期 9.1 6 课 时 1 班级12机电班 授 课方式讲授、分析、演示 作业 题数 1 拟 用 时 间 0.1 小 时 教学目的1、了解合金的概念 2、懂得合金的组织类型,及各类的组织成分。 选 用 教 具 挂 图 重 点合金的组织类型 难 点 合金的组织类型 教 学 回 顾 第一章的内容。 审阅签名:年月日

共3 页第 2 页新课 由日常生活所见金属材料引入合金概念 一、合金 合金是一种金属元素与其他金属元素或非金属元素通过熔炼成或其他方法结合而成的具有金属特性的材料。 组元:组成合金的最基本的独立物质成为组元,组元可以为金属元素,非金属元素,或稳定的化合物。 相:在合金中成分,结构及性能相同的组成部分称为相。 二、合金的组织 1、固溶体 2、金属化合物 3、混合物 1、固溶体 固溶体是一种组元的原子溶入另一组元的晶格中所形成的均匀固相。溶入元素成为溶质,而基本元素成为溶剂,固溶仍然保持溶剂的晶格。 固溶体分类 1、间隙固溶体:溶质原子分布于溶剂晶格间隙之中而形成 2、置换固溶体:溶质原子置换了溶剂晶格提点上某些原子而形成。 2、金属化合物 合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。(其晶格类型不同于任一组元) 具有熔点高,硬度高,脆性大的特点。

共 3 页第3页 3、混合物 两种或两种以上的相接一定质量分数组成的物质称为混合物(混和物中各相仍保持自己原来的晶格) 小结 1、合金的概念 2、合金的组织主要有哪几种? 作业 1、预习第四章三节内容。 2、P51 1

铁碳合金相图分析及应用

第五章铁碳合金相图及应用 [重点掌握] 1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌; 2、根据相图,分析各种典型成份的铁碳合金的结晶过程; 3、铁碳合金的成份、组织与性能之间的关系。 铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。 铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。 第一节铁碳合金基本相 一、铁素体 1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。 2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。 F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体 γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 三、渗碳体

Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。 渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 第二节 Fe-Fe3C相图分析 一、相图中的点、线、面 1.三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。 共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。 (3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe -石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体

铁碳合金状态图

图3-1 渗碳体的晶体结构 第三章 铁碳合金状态图 钢和铸铁是机械工业上广泛应用的金属材料,它主要由铁和碳两种元素组成,统称为铁碳合金。铁碳合金状态图就是研究铁碳合金的成分、温度和组织之间变化关系的图解。 第一节 铁碳合金的基本组织 铁碳合金在液态时,铁和碳可以无限互溶,在固态时碳能溶解于铁的晶格中,形成间隙固溶体。当含量超过铁的溶解度时,多余的碳与铁形成化合物(Fe 3C)。此外,还可以形成由固溶体与化合物组成机械混合物。铁碳合金的基本组织有以下五种。 一、铁素体(F) 铁素体是指碳溶于a-Fe 中而形成的间隙固溶体。碳在a-Fe 中溶解度极小,在727℃时最大溶解度为0.0218%,而在室温时只有0.008%。因此,铁素体强度、硬度较低(σb =l80~280MPa 。50~80HBS),塑性,韧性较好(δ=30%~500%、αkU =160—200J /cm 2)。 铁索体组织适于压力加工。 二、奥氏体(A) 奥氏体是指碳溶于γ-Fe 碳在γ—Fe 中而形成的间隙固溶体。溶解度较大,在1148℃时最大溶碳量为2.11%,在727℃时最大溶碳量为0.77%。因此,固溶强化效应较高,其强度、硬度较高(σb =400 MPa ,160—200HBS).而塑性、韧性也较好(δ=40%~50%)。奥氏体组织也适用于压力加工。 三、渗碳体(Fe 3C) 渗碳体是一种具有复杂晶体结构的间隙化合物,化学式近似于Fe 3C(碳化三铁)。 Fe 3C 的含碳量为6.69%,如图3—1所示。它无同素异构转变,熔点约为1227℃。其硬度极高(800HBW),塑性和韧性极低(δ≈0、αku ≈0),即硬而脆。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金Post By:2009-12-6 16:33:51 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, 3 Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图1)。Fe-Fe3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1 394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥

铁碳合金状态图

第三章铁碳合金状态图 一、填空题 1、合金是指由两种或两种以上化学元素组成的具有___________特性的物质。 2、合金中有两类基本相,分别是___________和__________。 3、铁碳合金室温时的基本组织有___________、__________、_________、珠光体和莱氏体。 4、铁碳合金状态图中,最大含碳量为__________。 5、纯铁的熔点是___________。 6、简化的铁碳合金状态图中有_________个单相区,_________个二相区。 二、单项选择题 7、组成合金最基本的、独立的物质称为() A、组元 B、合金系 C、相 D、组织 8、金属材料的组织不同,其性能() A、相同 B、不同 C、难以确定 D、与组织无关系 9、研究铁碳合金状态图时,图中最大含碳量为() A、0.77% B、2.11% C、4.3% D、6.69% 10、发生共晶转变的含碳量的范围是() A、0.77%—4.3% B、2.11%—4.3% C、2.11%—6.69% D、4.3%—6.69% 11、液态合金在平衡状态下冷却时结晶终止的温度线叫() A、液相线 B、固相线 C、共晶线 D、共析线 12、共晶转变的产物是() A、奥氏体 B、渗碳体 C、珠光体 D、莱氏体 13、珠光体是() A、铁素体与渗碳体的层片状混合物 B、铁素体与奥氏体的层片状混合物 C、奥氏体与渗碳体的层片状混合物 D、铁素体与莱氏体的层片状混合物 14、共析转变的产物是() A、奥氏体 B、渗碳体 C、珠光体 D、莱氏体 15、共析钢的含碳量为() A、Wc=0.77% B、Wc>0.77% C、Wc<0.77% D、Wc=2.11% 16、Wc<0.77%铁碳合金冷却至A3线时,将从奥氏体中析出() A、铁素体 B、渗碳体 C、珠光体 D、莱氏体 17、Wc >4.3%的铁称为() A、共晶白口铸铁 B、亚共晶白口铸铁 C、过共晶白口铸铁 D、共析白口铸铁 18、铁碳合金相图中,ACD线是() A、液相线 B、固相线 C、共晶线 D、共析线 19、铁碳合金相图中的Acm线是() A、共析转变线 B、共晶转变线 C、碳在奥氏体中的固溶线 D、铁碳合金在缓慢冷却时奥氏体转变为铁素体的开始线 20、工业上应用的碳钢,Wc一般不大于() A、0.77% B、1.3%—1.4% C、2.11%—4.3% D、6.69% 21、铁碳合金相图中,S点是() A、纯铁熔点 B、共晶点 C、共析点 D、纯铁同素异构转变点 22、钢的含碳量一般在()

铁碳合金教案

第三章铁碳合金 §3-1 合金及其组织 教学过程 一、复习提问: 金属的概念、常用金属 二、新课教学: 合金的基本概念 合金的组织 三、课后小结: 比较各类合金组织 四、作业安排: 练习册P10,一、1-5;二、1-3;三、1-3 五、板书设计(见下页): 六、教学后记: 第三章铁碳合金 合金组成:金属+金属,金属+非金属;(metal+nonmetal) 元素比例:可以调整,得到不同性能; 性能:物理、化学、力学、工艺、热处理性能。 §3-1 合金及其组织 1、组元:组成合金的最基本的独立物质,按组成元素的种类分为二元合金、三元合金 和多元合金。 例:碳素钢由Fe、C、Si、Mn、S、P组成,称铁碳合金, 多元合金;; 黄铜由Cu、Zn组成,称二元合金; 铝由Al、Cu、Mg组成,称三元合金。 2、相:合金中成分、结构及性能相同的组成部分为相,相与相之间以界面分开,固态 相有统一的晶格类型,是组元间的关系。 3、组织:数量、形态、大小和分布方式不同的各种相组成合金组织,是相之间的关系。

组织不同,性能不同。 液相:无晶格 单相组织固溶体 固相 单晶格金属化合物 多相组织:混合物 (多种晶格) 单相组织:一种晶格 单晶体:一个晶粒 一、合金的基本概念 1、液相组织:液态时,合金的组元相互溶解,形成均匀的液溶体。 2、固相组织:固态时,由于合金各组元之间相互作用不同,原子结合力不同,可出现固溶体、金属化合物、机械混合物。 二、合金的组织 1、固溶体 定义:一种组元溶入另一组元的晶格中形成的均匀固相。 属性:单相组织,显微镜下可观察到晶界。 溶剂:基体组元,保持自身晶格类型,溶解其它组元。 溶质:溶入溶剂的组元,自身晶格消失。例如:铁碳合金中铁为溶剂,碳为溶质。 分类: 间隙固溶体(有限) 按溶质与溶剂原子相对位置分: 置换固溶体(无限) 有限固溶体 按溶解度分: 无限固溶体 间隙固溶体—溶质原子分布于溶剂晶格中而形成的固溶体。 由于溶剂晶格的间隙尺寸很小,故溶质原子半径小于1埃,且形成有限固溶体。例如:铁碳合金。 置换固溶体—溶质原子置换了溶剂晶格结点上某些原子而形成的固溶体。 溶质与溶剂的原子半径差别小、晶格类型相同、电子结构相似、元素周期表中位置近,则形成无限固溶体。反之,形成有限固溶体。 例如:黄铜是锌溶入铜形成的置换固溶体。 固溶体性能:固溶强化 在固溶体中,由于溶质原子的溶入,使溶剂晶格畸变,合金对塑性变形的抗力增加,使金属材料强度、硬度升高,此现象为固溶强化。 表3-1 小结:强化金属材料的方法:

铁碳合金相图详解

第三章 铁碳合金相图 非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。本章将着重讨论铁碳相图及其应用方面的一些问题。 铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。相图的两个组元是Fe 和C Fe 3。 3.1 Fe -C Fe 3系合金的组元与基本相 3.l.l 组元 ⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为 2/m kg 3107.87?。纯铁在不同的温度区间有不同的晶体结构(同素异构转变) ,即: δ-Fe (体心) γ-Fe (面心) α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。 可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。 ⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。 3.1.2 基本相 Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相: ⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。 ⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。力学性能与工业纯铁相当。 ⑶奥氏体 碳溶于γ-Fe 的间隙固溶体,面心立方晶格,用符号γ或A 表示。奥氏体中碳的固溶度较大,在1148℃时最大达2.11%。奥氏体强度较低,硬度不高,易于塑性变形。 3.2 Fe -C Fe 3相图 3.2.1 Fe -C Fe 3相图中各点的温度、含碳量及含义 Fe -C Fe 3相图及相图中各点的温度、含碳量等见图3.1及表3.1所示。

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁碳状态图

图3-1 渗碳体的晶体结构 第三章 铁碳合金状态图 钢和铸铁是机械工业上广泛应用的金属材料,它主要由铁和碳两种元素组成,统称为铁碳合金。铁碳合金状态图就是研究铁碳合金的成分、温度和组织之间变化关系的图解。 第一节 铁碳合金的基本组织 铁碳合金在液态时,铁和碳可以无限互溶,在固态时碳能溶解于铁的晶格中,形成间隙固溶体。当含量超过铁的溶解度时,多余的碳与铁形成化合物(Fe 3C)。此外,还可以形成由固溶体与化合物组成机械混合物。铁碳合金的基本组织有以下五种。 一、铁素体(F) 铁素体是指碳溶于a-Fe 中而形成的间隙固溶体。碳在a-Fe 中溶解度极小,在727℃时最大溶解度为0.0218%,而在室温时只有0.008%。因此,铁素体强度、硬度较低(σb =l80~280MPa 。50~80HBS),塑性,韧性较好(δ=30%~500%、αkU =160—200J /cm 2)。 铁索体组织适于压力加工。 二、奥氏体(A) 奥氏体是指碳溶于γ-Fe 碳在γ—Fe 中而形成的 间隙固溶体。溶解度较大,在1148℃时最大溶碳量为 2.11%,在727℃时最大溶碳量为0.77%。因此,固 溶强化效应较高,其强度、硬度较高(σb =400 MPa , 160—200HBS).而塑性、韧性也较好(δ=40%~50%)。 奥氏体组织也适用于压力加工。 三、渗碳体(Fe 3C) 渗碳体是一种具有复杂晶体结构的间隙化合物,化学式近似于Fe 3C(碳化三铁)。 Fe 3C 的含碳量为6.69%,如图3—1所示。它无同素异构转变,熔点约为1227℃。其硬度极高(800HBW),塑性和韧性极低(δ≈0、αku ≈0),即硬而脆。

铁碳合金相图分析

第四章铁碳合金 第一节铁碳合金的相结构与性能 一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心面心体心 同素异晶转变——固态下,一种元素的晶体结构 随温度发生变化的现象。 特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构→ 性能 二、铁碳合金的基本相 第二节铁碳合金相图 一、相图分析 两组元:Fe、Fe3C 上半部分图形(二元共晶相图) 共晶转变: 1148℃727℃ L4.3 → A2.11+ Fe3C → P + Fe3C莱氏体Ld Ld′ 2、下半部分图形(共析相图) 两个基本相:F、Fe3C 共析转变: 727℃ A0.77→ F0.0218 + Fe3C 珠光体P 二、典型合金结晶过程 分类:

三条重要的特性曲线 ① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线. ② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线. ③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值0.0218%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于0.001%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ. 工业纯铁(<0.0218%C) 钢(0.0218-2.11%C)——亚共析钢、共析钢(0.77%C)、过共析钢 白口铸铁(2.11-6.69%C)——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁 L → L+A → A → P(F+Fe3C) L → L+A → A → A+F → P+F L → L+A → A → A+ Fe3CⅡ→ P+ Fe3CⅡ 4、共晶白口铸铁L → Ld(A+Fe3C) → Ld(A+Fe3C+ Fe3CⅡ) → Ld′(P+Fe3C+ Fe3CⅡ) 5、亚共晶白口铸铁L → Ld(A+Fe3C) + A → Ld+A+ Fe3CⅡ→ Ld′+P+ Fe3CⅡ 6、过共晶白口铸铁L → Ld(A+Fe3C) + Fe3C → Ld + Fe3C→ Ld′+ Fe3C

铁碳合金状态图教案

邻水县职业中学2015学年度下期 机械加工专业公开课教案 授课时间: 2015年11月5日上午第二节 授课班级:春招15级机械三班 授课内容:铁碳合金状态图 授课教师: 文杰 教学手段:课堂讲授,学生理解 教学目的:1、了解简化的Fe-Fe3C状态图特征线。 2、了解含碳量对铁碳合金性能影响。 重点:Fe-Fe3C状态图特征线。 难点: Fe-Fe3C状态图特征线。 授课形式:新课 所用学时:1学时 使用教材:高等教育版《机械基础》 复习引入 合金状态图就是用热分析法测得不同浓度的铁碳合金的冷却曲线,然后将其冷却曲线上各结晶温度转变点描绘在温度-成分坐标上,以得到铁碳合金金相组织、温度及合金成分间的关系。铁碳合金状态图除用于钢和铸铁的组织转变的研究,作为选择材料的依据外,还可作为制定铸造、锻造、焊接和热处理等工艺规范的重要工具,它将为学习本课程的其他部分奠定必要的基础。 教学过程 一、如图下图所示铁碳合金状态图。(抽学生回答组织符号名称) 1、铁素体:是溶解在a-Fe中形成的间隙固溶体。 2、渗碳体:是铁与碳形成的稳定化合物。 3、奥氏体:是碳溶解在r-Fe中形成的间隙固溶体。 4、珠光体:是铁素体和渗碳体组成的共析体。

5、莱氏体:是由奥氏体和渗碳体组成的共晶体。 二、铁碳合金状态图分析 1、各特性点的含义在铁碳合金状态图中用字母标出的点都表示一定的特性(成分和温度),所以称为特性点。各主要特性点的含义列于 点名温度含碳量含义 A点:1538℃0% 纯铁的熔点 C点:1148℃% 生铁的共晶点 D点:1227℃% 渗碳体的熔点 E点:1148℃% 碳在奥氏体中的最大溶解度 G点:912℃0% 纯铁的同素异构转变点 S点:727℃% 共析点 2、各主要线的含义 (1)ACD线——液相线,即液体合金冷却到此线时开始结晶,在此线以上的区域为液相。 (2)AECF线——固相线,即合金冷却到此线时金属液全部结晶为固相,在此线以下的区域为固相。 (3)GS线——铁素体析出开始线,通常用A3来表示。 (4)ES线——二次渗碳体析出开始线,通常用A cm来表示。在1148℃时奥氏体中溶碳量达到%,而在727℃时仅为%,所以含碳量大于%的奥氏体冷却到此线时,多余的碳以渗碳体的形式从奥氏体中析出。这种从奥氏体中析出的渗碳体称为二次渗碳体,用Fe3C II表示。在显微镜下观察时,Fe3C II呈网状,故又称网状Fe3C II。 (5)ECF线——共晶线,即含碳量在%~%的铁碳合金,当冷却到此线时(1148℃),都将发生共晶反应,从液相中同时结晶出两种不同的固相,如生成的共晶混合物称为莱氏体. (6)PSK线——共折线,即含碳量在%~%的铁碳合金,当冷却到此线时(727℃),都将发生共析反应,从一种固相同时转变为两种不同的固相,如形成的共析混合物称为珠光体。这条线通常用A1来表示。 (7) GP线:0<Wc<%的铁碳合金,缓冷时,由奥氏体中析出铁素体的终止线 (8)PQ线:碳在铁素体中溶解度曲线,在727℃时,Wc=%,溶碳量最大,在600℃时,Wc=%。 3、铁碳合金相图中的这几条线把相图分成了几个区域,称为相区。对每一个相区来说,不论温度怎么变,成分怎么变,只要在这个相区内,其组织种类就不会变,但相的成分和相对量可能变化。(单相区,双相区,三相区(课祥)). 4.钢含碳量小于%为工业纯铁,含碳量在%~%的铁碳合金,称为钢。它在高温时都要生成奥氏体。根据室温组织不同,将钢分为3种: 共析钢:%C; 亚共析钢:<%C; 过共析钢:>%C。 (3)白口铸铁%~%C的铁碳合金,称为白口铸铁。它在液相结晶时都将发生共晶反应,生成莱氏体。根据室温组织不同,将铁也分为3种: 共晶白口铸铁:%C; 亚共晶白口铸铁:<%C; 过共晶白口铸铁:>%C。 4、钢在结晶过程中的组织转变 (1)共析钢图中合金I是共析钢,含碳量为%。其冷却过程的组织转变为:L→L+A→A→P。室温平衡组织全部为珠光体。

铁碳合金状态图

第三章铁碳合金状态图 一、判断题 1.铁素体是碳溶于α-Fe的间隙固溶体,体心立方晶格。() 2.铁碳合金的基本组织是铁素体、奥氏体、渗碳体、珠光体、莱氏体。() 3.铁碳合金状态图是表示实际生产条件下,不同成分的铁碳合金,在不同温度时所具有的状态或组织的图形。() 4.简化的Fe-Fe3C状态图上的AECF线是液相线,表示加热到此温度线以上,就会有液相存在。()5.简化的Fe-Fe3C状态图上的PSK水平线,称为共折线,又称A线,表示Wc>0.0218%的铁碳合金,缓冷至该线(727℃)时,均发生共折反应,生成珠光体。() 6.任何成分的铁碳合金在室温时的平衡组织都由铁素体和渗碳体两相组成,随着碳含量增加,渗碳体相对量增多。() 7.机械零件需要强度、塑性及韧性较好的材料,应选用碳含量高(Wc=0.70%~1.2%)的钢材。()8.共晶成分的铸铁,结晶温度最低,结晶温度范围最小(为零),因而流动性好,铸件致密,因此生产上铸铁的成分总是接近共晶成分。() 9.白口铸铁在室温下很硬、很脆,把它加热到1000~1200℃高温,就会变软,可以进行锻造。()10.钢的锻轧温度一般选在单相奥氏体区,在固相线以下,始锻温度越高越好。() 二、选择题 1.奥氏体是碳溶于γ-Fe的间隙固溶体,面心立方晶格。γ-Fe中的溶碳量时为0.77%。 a.1148℃;b.912℃;c.727℃ 2.渗碳体是铁与碳形成的金属化合物,复杂的晶体结构。它的碳含量Wc= 。 a.6.69%;b.4.3%;c.2.11% 3.珠光体是由铁素体和渗碳体组成的机械混合物。铁素体与渗碳体片层状交替排列,碳含量平均为Wc= 。 a.0.0218%;b.0.77%;c.2.11%;d.4.3% 4.简化的Fe-Fe3C状态图上的S点是共折点,它的温度是,它的成分Wc= 。 a.1148℃;b.727℃c.0.77%;d.2.11%;e.4.3% 5.过共折钢的含碳量是。 a.0.77%≤Wc≤2.11%;b.0.77%<Wc<2.11%; c.0.77%<Wc≤2.11%;d.0.77%≤Wc<2.11% 6.当钢中含碳量Wc大于时,二次渗碳体沿晶界折出形成网状,使钢的脆性增加。 a.0.60%;b.0.77%;c.0.90%;d.1.4% 7.根据铁碳合金状态图,Wc=1.0%的碳钢,在700℃时的显微组织是,770℃时的显微组织是。 a.F+P;b.P+Fe3CⅡ;c.A+Fe3CⅡ;d.A 8.确定合金的浇注温度一般在液相线以上。 a.30~50℃;b.50~100℃;c.100~200℃ 答案 一、判断题 1.√2.√3.×4.×5.√6.√7.×8.√9.×10。× 二、选择题 1.c 2.a 3.b 4.b、c 5.c 6.c 7.b、c 8.b 1

铁碳合金状态图中主要特性点的含义

Fe-Fe3C状态图 特性点符号温度/℃含碳量/% 含义 A 1538 0 纯铁熔点 C 1148 共晶点LC→A E+Fe3C D 1227 渗碳体的熔点 E 1148 碳在γ-Fe中的最大溶解度 G 912 0 纯铁的同素异构转变点α-Fe→γ-Fe S 727 共析点As→Fp+Fe3C P 727 碳在α-Fe中的最大溶解度 Q 室温室温时碳在α-Fe中的溶解度ACD为液相线,此线以上的合金为液态,冷却到此线开始结晶。 AECF为固相线,此线以下的合金为固态,合金加热此线开始熔化。 GS是冷却时从不同含碳量的奥氏体中开始析出铁素体的温度线,又称A3线。ES是碳在奥氏体中的溶解度曲线,又称Acm线。

ECF线是共晶线,含碳量大于%的铁碳合金冷却至此温度线(1148℃),在恒温下发生共晶转变,即从液态合金中结晶奥氏体和渗碳体晶体的机械混合物,故此线是一条水平线。 PSK是共析线,又称A1线。Wc=%的奥氏体,冷却至此线(727℃),在恒温下同时析出铁素体和渗碳体晶体的机械混合物成为共析体,称为珠光体。 含量在%—%之间的所有铁碳合金,缓慢冷却到PSK线,都会在恒温下发生共析反应,生成一定数量的珠光体。 共晶转变 Wc=%的液相在1148℃温度下,同时结晶处含碳量为%的奥氏体和含碳量为%的渗碳体,这种转变叫做共晶转变。 共析转变 Wc=%的奥氏体,在727℃(723℃)温度下,同时析出铁素体与渗碳体,这种转变为共析转变。 平衡组织 根据常温下的平衡组织又可分为三类: (1)亚共析钢—含碳量%%之间的铁素体+珠光体; (2)共析钢—含碳量%的珠光体; (3)过共析钢—含碳量%之间的珠光体+渗碳体Ⅱ。 白口铸铁 含碳量%%,根据常温组织也可分为三种: (1)亚共晶白口铸铁(C<%):珠光体+渗碳体Ⅱ+莱氏体; (2)共晶白口铸铁(C=%):莱氏体; (3)过共晶白口铸铁(C>%):莱氏体+渗碳体Ⅰ。 发生相变转变的温度成为临界点: Ac1—加热时,珠光体转变为奥氏体温度; Ac3—加热时,铁素体转变为奥氏体的终了温度; Accm—加热时,二次渗碳体在奥氏体中溶解的终了温度; Ar1—冷却时,奥氏体转变为珠光体的温度;

铁碳合金相图分析应用

铁碳合金相图在实际生产中应用之我见 摘要:铁碳相图是研究钢和铸铁的基础,实际应用中对于钢铁材料的应用以及热加工和 热处理工艺的制订也具有重要的指导意义。铁和碳可以形成一系列化合物,如Fe 3C、Fe 2 C、 FeC等, 有实用意义并被深入研究的只是Fe-Fe 3C部分,通常称其为 Fe-Fe 3 C相图,相图中的 组元只有Fe和Fe 3 C。 关键词:相图分析结晶应用 一、铁碳合金基本相 1、铁素体δ相高温铁素体:C固溶到δ-Fe中,形成δ相。α相铁素体(用F表示):C固溶到α-Fe中,形成α相。F强度、硬度低、塑性好(室温:C%=0.0008%,727度: C%=0.0218%)。 2、奥氏体γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形 3、渗碳体 Fe 3 C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物,渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。 二、Fe-Fe 3 C相图分析 1、相图中的点、线、面 三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。1495摄氏度,C%=0.09-0.53% L+δ→A (2)共晶转变线ECF, C点为共晶点。冷却到1148℃时, C点成分的L发生共晶反应:L →A (2.11%C)+Fe 3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe 3 C三 相共存。共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。

(3)共析转变线PSK,S点为共析点。合金(在平衡结晶过程中冷)却到727℃时, S点成分 的A发生共析反应:A →F(0.0218%C)+Fe 3 C(6.69%C、共析渗碳体)—P(珠光体)。共析 反应在恒温下进行, 反应过程中, A、F、Fe 3 C三相共存。共析反应的产物是铁素体与渗碳体的共析混合物, 称珠光体, 以符号P表示。珠光体的强度较高, 塑性、韧性和硬度介于渗碳体和铁素体之间, 其机械性能如下:抗拉强度极限σb≈770MPa 冲击韧性ak≈3×105J/m2~4×105J/m2 延伸率δ≈20%~35% 硬度:180HB 液固相线:液相线ABCD 固相线AECF 2、Fe-C合金平衡结晶过程 工业纯铁(C%≤0.0218%):铁熔点或凝固点为1538℃, 相对密度是7.87g/cm3。纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。 L →L+A →A →A+F →F →F+Fe 3C III 相组成物:F+Fe 3 C (C%>0.0008%)或 F(C%<0.0008%) 相相对量:F%= Fe 3 C%= 组织组成物:F和Fe 3C III 工业纯铁的机械性能特点是强度低、硬度低、塑性好。共析钢(C%=0.77%): 相组成物:F和Fe 3 C 相相对量:F%= Fe 3 C%= 组织组成物:P L →L+A →A →A+P →P 亚共析钢(0.0218%<C%<0.77%): L →L+A →A →A+F →A+P+F →P+F

(完整版)铁碳合金相图(一).doc

理论课教案 课题铁碳合金状态图(一)课程机械加工 基础 授课教师专业课型新授教案序号授课时间教学方法 1、掌握合金的基本概念及合金的组织。 教学 2、掌握固溶解,金属化合物质、混合物。 目标 教学重点难点及解决办法 作业 布置 学生听课教 情况学 学生掌握后情况 3、掌握铁素体、奥氏体、渗碳体、珠光体、莱氏体的符号及性能特点。 掌握铁碳合金的基本组织、性能 习题册 存在的问 记 题 审查签字 年月日

教学过程 教师活 教学内容学生活动动 一、新课导入 利用多媒体效果观察 回顾上一次课的内容,以提问的形式检查上节课学生的掌握 情况,举实例有技巧得到如本次课要学习的内容。 二、新课讲授 1、合金及其组织 金属:是由单一元素构成的具有特殊光泽、延展性、导电性、导热性的物质,如铁、金、银、铜、铁、锰、锌、铝等。 合金:是由一种金属元素与其他金属元素或非金属元素通过 熔炼或其他方法合成的具有金属特性的物质。 金属材料:金属及其合金的总称 (1)合金组织 固熔体、金属化合物、混合物 1)固熔体 是一种组元的原子熔入另一种组元的晶格中所形成的均匀固相。 溶入的元素称为溶质,而基体元素称为溶剂。 固溶体仍然保持溶剂的晶格类型。 固熔体根据溶质原子在晶格(溶剂)所处的位置不同可以分为: 间隙固熔体 置换固熔体 间隙固熔体:溶质原子分布于溶剂晶格间隙之中而形成的 固熔体。 举例:碳、氮、硼等非金属元素熔入铁中 特点:由于熔剂的晶格空间有限,所以溶质原子量是有限的。

:溶质原子:溶质原子 :溶剂原子:溶剂原子 置换固熔体:溶质原子置换了熔剂晶格节点上某些原子而 形成的固熔体。 特点:原子半径相同或接近,周期位置接近,晶格类型差别小。 2)金属化合物: 定义;合金组元间发生相互作用而形成一种具有金属特性的物质。 特性:(1)可用化学式来表示。 (2)复杂的晶格结构“三高一稳”的性能,高熔点、高硬度、高脆性 3)混合物: 定义:两种或两种以上的相按一定质量分数组成的物质。 特征:保持自己原来地晶格类型 性能:取决于组成相的性能,分布形态及数量和大小。 固熔强化:通过溶入溶质元素形成固溶体而使金属材料强度、硬度提高的想象。学生复习总结三种合金组织

铁碳合金状态图中主要特性点的含义

Fe-Fe3C状态图 ACD为液相线,此线以上的合金为液态,冷却到此线开始结晶。 AECF为固相线,此线以下的合金为固态,合金加热此线开始熔化。 GS是冷却时从不同含碳量的奥氏体中开始析出铁素体的温度线,又称A3线。ES是碳在奥氏体中的溶解度曲线,又称Acm线。

ECF线是共晶线,含碳量大于2.11%的铁碳合金冷却至此温度线(1148℃),在恒温下发生共晶转变,即从液态合金中结晶奥氏体和渗碳体晶体的机械混合物,故此线是一条水平线。 PSK是共析线,又称A1线。Wc=0.77%的奥氏体,冷却至此线(727℃),在恒温下同时析出铁素体和渗碳体晶体的机械混合物成为共析体,称为珠光体。 含量在0.02%—6.69%之间的所有铁碳合金,缓慢冷却到PSK线,都会在恒温下发生共析反应,生成一定数量的珠光体。 共晶转变 Wc=4.3%的液相在1148℃温度下,同时结晶处含碳量为2.11%的奥氏体和含碳量为6.67%的渗碳体,这种转变叫做共晶转变。 共析转变 Wc=0.77%的奥氏体,在727℃(723℃)温度下,同时析出铁素体与渗碳体,这种转变为共析转变。 平衡组织 根据常温下的平衡组织又可分为三类: (1)亚共析钢—含碳量0.0218%-0.77%之间的铁素体+珠光体; (2)共析钢—含碳量0.77%的珠光体; (3)过共析钢—含碳量0.77%-2.11之间的珠光体+渗碳体Ⅱ。 白口铸铁 含碳量2.11%-6.69%,根据常温组织也可分为三种: (1)亚共晶白口铸铁(C<4.3%):珠光体+渗碳体Ⅱ+莱氏体; (2)共晶白口铸铁(C=4.3%):莱氏体; (3)过共晶白口铸铁(C>4.3%):莱氏体+渗碳体Ⅰ。 发生相变转变的温度成为临界点: Ac1—加热时,珠光体转变为奥氏体温度; Ac3—加热时,铁素体转变为奥氏体的终了温度; Accm—加热时,二次渗碳体在奥氏体中溶解的终了温度; Ar1—冷却时,奥氏体转变为珠光体的温度;

金属材料铁碳合金教案

一、教学目的: 1、了解合金的概念及组织的基本类型。 2、掌握铁碳合金的基本组织、性能及符号。 3、了解简化的Fe—Fe3C相图中特性点、特性线的含义及组织的分布情况。 4、了解相图的应用。 5、了解碳素钢的分类、牌号、性能及用途。 二、重点和难点 1、重点:铁碳合金的基本组织、性能及符号。 2、难点:铁碳合金相图及典型组织的结晶过程分析。 §3-1 合金及其组织 1、组元:组成合金的最基本的独立物质,按组成元素的种类分为二元合金、三元合金 和多元合金。 例:碳素钢由Fe、C、Si、Mn、S、P组成,称铁碳合金, 多元合金;; 黄铜由Cu、Zn组成,称二元合金; 铝由Al、Cu、Mg组成,称三元合金。 2、相:合金中成分、结构及性能相同的组成部分为相,相与相之间以界面分开,固态 相有统一的晶格类型,是组元间的关系。 3、组织:数量、形态、大小和分布方式不同的各种相组成合金组织,是相之间的关系。 组织不同,性能不同。 液相:无晶格 单相组织固溶体 固相 单晶格金属化合物 多相组织:混合物 (多种晶格) 单相组织:一种晶格 单晶体:一个晶粒 一、合金的基本概念 1、液相组织:液态时,合金的组元相互溶解,形成均匀的液溶体。 2、固相组织:固态时,由于合金各组元之间相互作用不同,原子结合力不同,可出现固溶体、金属化合物、机械混合物。 二、合金的组织 1、固溶体 定义:一种组元溶入另一组元的晶格中形成的均匀固相。

属性:单相组织,显微镜下可观察到晶界。 溶剂:基体组元,保持自身晶格类型,溶解其它组元。 溶质:溶入溶剂的组元,自身晶格消失。例如:铁碳合金中铁为溶剂,碳为溶质。 分类: 间隙固溶体(有限 ) 按溶质与溶剂原子相对位置分: 置换固溶体(无限) 有限固溶体 按溶解度分: 无限固溶体 间隙固溶体—溶质原子分布于溶剂晶格中而形成的固溶体。 由于溶剂晶格的间隙尺寸很小,故溶质原子半径小于1埃,且形成有限固溶体。例如:铁碳合金。 置换固溶体—溶质原子置换了溶剂晶格结点上某些原子而形成的固溶体。 溶质与溶剂的原子半径差别小、晶格类型相同、电子结构相似、元素周期表中位置近,则形成无限固溶体。反之,形成有限固溶体。 例如:黄铜是锌溶入铜形成的置换固溶体。 固溶体性能:固溶强化 在固溶体中,由于溶质原子的溶入,使溶剂晶格畸变,合金对塑性变形的抗力增加,使金属材料强度、硬度升高,此现象为固溶强化。 定义-在合金中,当溶质含量超过固溶体的溶解度时,除可形成固溶体外,还将出现新的相,其晶体结构不同于任一组元,而是组元之间相互作用形成一种具有金属特性的物质。 属性:单相组织,显微镜下可观察到晶界。 晶格:金属化合物的晶格不同于任一组元,一般具有复杂晶格。 性能:熔点高,硬度高,脆性大,耐磨性高。 3、混合物 定义:两种或两种以上的相按一定质量百分比组成的物质为混合物。 属性:多相组织,显微镜下可观察到多种相。

相关文档
最新文档