知识讲解 电磁感应 复习与巩固 基础

知识讲解 电磁感应 复习与巩固 基础
知识讲解 电磁感应 复习与巩固 基础

电磁感应 复习与巩固 编稿:张金虎 审稿:代洪

【学习目标】

1.电磁感应现象发生条件的探究与应用。

2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。

3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势sin E BLv θ=的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。

4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。

【知识网络】

【要点梳理】

要点一、关于磁通量?,磁通量的变化??、磁通量的变化率

t

??? 1、磁通量

磁通量cos B S BS BS ?θ⊥⊥===,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化

磁通量的变化21????=-. 要点诠释:

??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感

线垂直的位置转动180?的过程中21????=+. 3、磁通量的变化率 磁通量的变化率

t

?

??表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。

21

21

t t t ???-?=?-, 在回路面积和位置不变时

B S

t t ???=??(B

t

??叫磁感应强度的变化率); 在B 均匀不变时S

B

t t

???=??,与线圈的匝数无关。

要点二、关于楞次定律

(1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。

(2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。

(3)楞次定律适用范围:适用于所有电磁感应现象。

(4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。

(5)楞次定律是能的转化和守恒定律的必然结果。

要点三、法拉第电磁感应定律

电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即E t

??=?. 要点诠释:

对n 匝线圈有E n t

??=?. (1)E n t ??=?是t ?时间内的平均感应电动势,当0t ?→时,E n t

??=?转化为瞬时感应电动势。

(2)E n

t

?

?=?适应于任何感应电动势的计算,导体切割磁感线时sin E BLv θ=., 自感电动势I E L t ?=?都是应用E n t

?

?=?而获得的结果。

(3)感应电动势的计算B E n nS t t ???==??,其中B t

??是磁感强度的变化率,是B t -图线的斜率。

要点四、电磁感应中电路问题的解题方法

当闭合电路的磁通量发生变化或有部分导体切割磁感线运动时,闭合电路中出现感应电流,对连接在闭合电路中的各种用电器供电,求电流、电压、电阻、电功率等,是一种基本

的常见的习题类型——电磁感应中的电路问题。 解决这类问题的基本步骤是:

(1)明确哪一部分导体或电路产生感应电动势,则该导体或电路就是电源。 (2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。 (3)正确分析电路结构,并画出等效电路图。 (4)综合应用电路的知识、方法解题。

要点五、电磁感应中力学问题解题方法 电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起。解决此类问题要将电磁学知识和力学知识综合起来应用。

其解题一般思路是:

(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。 (2)根据欧姆定律求感应电流。

(3)分析导体受力情况(包含安培力,用左手定则确定其方向)。 (4)应用力学规律列方程求解。

电磁感应中的力学问题比纯力学问题多一个安培力,处理方法与纯力学问题基本相同,但应注意安培力的大小和方向的确定。

要点六、电磁感应中能量转化问题

1、电磁感应中涉及的功能关系有:

(1)克服安培力做功是将其他形式的能量转化为电能,且克服安培力做多少功,就有多少其他形式的能量转化为电能。

(2)感应电流通过电阻或者安培力做功,又可使电能转化为电阻的内能或机械能,且做多少功就转化多少能量。 2、主要解题方法有:

①运用功的定义求解;②运用功能关系求解;③运用能的转化及守恒定律求解。 3、在电磁感应现象的问题中,常碰到这样的问题:

外力克服安培力做功,就有其他形式的能量(如机械能)转化为电能,而电能又通过电路全部转化为内能(焦耳热),对这样的情形就有如下的关系:==W W E Q =?外克安电.

要点七、关于自感现象的研究

1、在断电自感中,灯泡更亮一下的条件是什么?

设开关闭合时,电源路端电压为U ,线圈的电阻为L R ,灯泡的电阻为A R ,则通过线圈的电流为L L

U

I R =

。当开关断开后,线圈和灯泡组成的回路中的电流从L I 开始减弱。 若A L R R >,有A L I I <,在断开开关的瞬间,通过灯泡的电流会瞬时增大,灯泡会更亮

一下。若A L R R ≤有A L I I ≥,断开开关后,通过灯泡的电流减小,灯泡不会更亮一下。

2、线圈对变化电流的阻碍作用与对稳定电流的阻碍作用有何不同?

①两种阻碍作用产生的原因不同。

线圈对稳定电流的阻碍作用,是由绕制线圈的导线的电阻决定的,对稳定电流阻碍作用的产生原因,是金属对定向运动电子的阻碍作用,具体可用金属导电理论理解。

线圈对变化电流的阻碍作用,是由线圈的自感现象引起的,当通过线圈中的电流变化时,穿过线圈的磁通量发生变化,产生自感电动势。

②两种阻碍作用产生的效果不同

E R,由此可知线圈的稳态电阻决定了电流的稳定值。

在通电线圈中,电流稳定值为/

L

而L越大,电流由零增大到稳定值0I的时间越长,也就是说,线圈对变化电流的阻碍作用越大,电流变化的越慢。总之,稳态电阻决定了电流所能达到的稳定值,对变化电流的阻碍作用决定了要达到稳定值所需的时间。

【典型例题】

类型一、安培定则、左手定则、右手定则的区别及楞次定律的另一种表述1.适用于不同现象

安培定则又叫右手螺旋定则,适用于运动电荷或电流产生的磁场;左手定则判定磁场对运动电荷或电流作用力的方向;右手定则判定部分导体切割磁感线产生的感应电流的方向。楞次定律判断电磁感应中感应电动势和感应电流的方向。

2.左手定则和右手定则的因果关系不同

左手定则是因为有电,结果是受力,即因电而动;右手定则是因为受力运动,而结果是有电,即因动而电。

3.记忆方法:左手定则与右手定则在使用时易混淆,可采用“字形记忆法”。“力”字最后一笔向左,用左手定则判断力,“电”字最后一笔向右,用右手定则,总之可简记为力“左”、电“右”。(也可以:手摇发电机习惯上使用右手摇的,发电时用右手判断)4.楞次定律的另一种表达为:感应电流的效果总是阻碍引起感应电流产生的原因。从感应电流所受安培力出发的分析方法,物理过程明确,但比较麻烦;若问题不涉及感应电流的方向,则从楞次定律的另一种表述出发的分析方法较为简便。

例1.如图所示,MN是一根固定的通电长直导线,电流方向向上,今将一金属线框abcd放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘,当导线中的电流突然增大时,线框整体受力情况为()

A.受力向右B.受力向左C.受力向上D.受力为零

【思路点拨】由安培安则判断出通电直导线周围磁场的特点,由楞次定律判断出感应电流的方向,再由左手定则判断出各边的受力情况,最后求合力。

【答案】A

【解析】本题综合考查运用安培定则、楞次定律、左手定则

等判断有关方向。解题思路是:由安培安则判断出通电直导线周围磁场的特点,由楞次定律判断出感应电流的方向,再由左手定则判断出各边的受力情况,最后求合力。

由安培定则可知通电直导线周围的磁场分布如图所示。当直导线上电流突然增大时,穿

过矩形回路的合磁通量(方向向外)增加,回路中产生顺时针方向的感应电流,因ad bc

、两边虽然通过的电流方向相反,但它们两边分布对称,所受的安培力合力为零,而ab cd

所处的磁场方向也相反,由左手定则可知它们所受的安培力均向右,所以线框整体受力向右。选项A正确。

【总结升华】本题还有另一种较为简单的解法:感应电流是由穿过线圈的磁通量增加引起的,只有线圈向右移动才能阻碍磁通量的增加,因此线框所受安培力的合力向右。

举一反三

【高清课堂:恒定电流复习与巩固例1】

【变式】现将电池组、滑线变阻器、带铁芯的线圈A、线圈B、电流计及开关如下图连接。在开关闭合、线圈A放在线圈B中的情况下,某同学发现当他将滑线变阻器的滑动端P向左加速滑动时,电流计指针向右偏转。由此可以判断()A.线圈A向上移动或滑动变阻器的滑动端P向右加速滑动都能引起电流计指针向左偏转

B.线圈A中铁芯向上拔出或断开开关,都能引起电流计指针向右偏转

C.滑动变阻器的滑动端P匀速向左或匀速向右滑动,都能使电流计指针静止在中央D.因为线圈A、线圈B的绕线方向未知,故无法判断电流计指针偏转的方向

【答案】B

类型二、电磁感应中的图象问题

电磁感应中常涉及磁感应强度B、磁通量Ф、感应电动势E和感应电流I随时间t变化的图象,即B t-图象、Фt-图象、E t-图象和I t-图象。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随线圈位移x变化的图象,即-图象。

E x

-图象和I x

图象问题大体可分两类:由给定的电磁感应过程选出或画出正确图象,或由给定的有关图象分析电磁感应过程,求解相应的物理量。不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决。

例2.一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图甲所示。设垂直于纸面向内的磁感应强度方向为正,垂直于纸面向外的磁感应强度方向为负。线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。已知圆形线圈中感应电流i随时间变化的i t-图象如图乙所示,则线圈所在处的磁场的磁感应强度随时间变化的B t-图象可能是选项中的()

【答案】CD

【解析】本题考查了楞次定律,由感应电流情况逆向推导磁感应强度B的变化规律。因为C、D中前0.5s磁感应强度B正向增加,感应电流的磁场向外,电流为逆时针,符合乙图前0.5s的情况,以后可以类推知,C、D正确。

【总结升华】图象问题既要注意物理量的大小,又要注意物理量的方向。

举一反三

【高清课堂:恒定电流复习与巩固 例2】

【变式】某学生设计了一个验证法拉第电磁感应定律的实验,实验装置如图甲所示。在大线圈Ⅰ中放置一个小线圈Ⅱ,大线圈Ⅰ与多功能电源连接。多功能电源输入到大线圈Ⅰ的电流1i 的周期为T ,且按图乙所示的规律变化,电流1i 将在大线圈Ⅰ的内部产生变化的磁场,该磁场磁感应强度B 与线圈中电流i 的关系为1B ki =(其中k 为常数)。小线圈Ⅱ与电流传感器连接,并可通过计算机处理数据后绘制出小线圈Ⅱ中感应电流2i 随时间t 变化的图象。若仅将多功能电源输出电流变化的频率适当增大,则图丙所示各图象中可能正确反映2i t -图象变化的是(图丙中分别以实线和虚线表示调整前、后的2i t -图象) ( )

【答案】D

例3.如图所示,在0x ≤的区域内存在匀强磁场,磁场的方向垂直于xOy 平面(纸面)向里。具有一定电阻的矩形线框abcd 位于xOy 平面内,线框的ab 边与y 轴重合。令线框从0t =的时刻起由静止开始沿x 轴正方向做匀加速运动,则线框中的感应电流I (取逆时针方向的电流为正)随时间t 变化的I t -图线可能是选项中的哪一个( )

【思路点拨】判定导体运动方式确定磁通量变化是否均匀,根据题意确定电流方向。 【答案】D

【解析】本题考查电磁感应中图象类问题,该题中线框向右匀加速运动,cd 棒切割磁感线产生一个感应电动势,由右手定则可判断感应电流为顺时针方向,则电流值为负值,大小为cd cd Bl v Bl at

E I R R R

=

==

,其中B 、cd l 、a 、R 为定值,则I 和t 为正比例函数,所以D 选项正确。

【总结升华】从题中导体运动方式确定磁通量变化是否均匀,从而确定电流变化是否均匀,结合题中正方向可很快得出答案。

举一反三

【高清课堂:恒定电流复习与巩固 例9】

【变式】图中A 是一底边宽为L 的闭合线框,其电阻为R 。现使线框以恒定的速度v 沿x 轴向右运动,并穿过图中所示的宽度为d 的匀强磁场区域,已知L d <,且在运动过程中线框平面始终与磁场方向垂直。若以x 轴正方向作为力的正方向,线框从图所示位置开始运动的时刻作为时间的零点,则在图所示的图像中,可能正确反映上述过程中磁场对线框的作用力F 随时间t 变化情况的是 ( )

【答案】D

类型三、用公式Ф

q n

R

?=计算电荷量 闭合电路中的磁通量发生变化时,电路中将产生感应电流。设回路电阻为R ,穿过回路的磁通量为Ф,回路中产生的感应电动势为E ,感应电流为I ,在t ?时间内通过导线截面的电荷量为q ,则:

E n ФФq I t t t n R R t R

??=??=

??=??=? 式中n 为线圈匝数,Ф?为磁通量的变化量,R 为闭合电路的总电阻。

若闭合电路为一个单匝线圈(1n =),则:Ф

q R

?=

由公式可以看出,电磁感应中t ?时间内通过导线横截面的电荷量q 仅由线圈匝数n 、磁通量变化量Ф?和闭合电路的总电阻R 决定,与时间t ?无关。

例4.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场。若第一次用0.3s 时间拉出,外力所做的功为1W ,通过导线截面的电荷量为1q ;第二次用0.9s 时间拉出,外力所做的功为2W ,通过导线截面的电荷量为2q ,则( )

A .12W W <,12q q <

B .12W W <,12q q =

C .12W W >,12q q =

D .12W W >,12q q >

【答案】C

【解析】设线框长为1l ,宽为2l ,第一次拉出速度为1v ,第二次拉出速度为2v ,则123v v =。匀速拉出磁场时,外力所做的功恰等于克服安培力所做的功,有

22111121211/W F l BI l l B l l v R =?==,同理222212/W B l l v R =,故12W W >;又由于线框两次拉

出过程中,磁通量的变化量相等,即12ФФ?=?,由/q ФR =?,得12q q =。

【总结升华】该题考查了电磁感应中电荷量的决定因素和安培力做的功。要快捷求得通过导体横截面积的电荷量Ф,关键是正确求得磁通量的变化量Ф?。

类型四、电磁感应与电路

电磁感应与电路的综合题是常见的类型,解答此类问题时应注意:

(1)切割磁感线的导体相当于电源,与导体相连的回路的其他部分相当于外电路。 (2)解答时应画出等效电路图,然后根据闭合电路欧姆定律进行分析和计算。

例5.半径为a 的圆形区域内有均匀磁场,磁感应强度为0.2T B =,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中0.4m a =,0.6m b =,金属环上分别接有灯1L 、2L ,两灯的电阻122ΩR R ==,一金属棒MN 与金属环接触良好,

棒与环的电阻均忽略不计。

(1)若棒05m/s v =的速度在环上向右匀速滑动,求棒滑过圆环直径OO '瞬时(如图所示)MN 中的电动势和通过灯1L 的电流。

(2)撤去中间的金属棒MN ,将右面的半圆环2OL O '以OO '为轴向上翻转90?,若此后磁场随时间均匀变化,其变化率为

4

T / s B t π

?=?,求1L 的功率。

【思路点拨】电动势的瞬时值,可用公式sin E Blv θ=求解;磁场变化产生电动势,可用法拉第电磁感应定律求解。搞清楚电路结构,画出等效电路图。

【答案】(1)0.8V 0.4A (2)2

1.2810W -?

【解析】本题考查用法拉第电琏感应定律和切割公式求电动势大小以及电路计算。关键要画好等效电路图。

(1)MN 切割磁感线,相当于一个电源,根据右手定则可判断出等效电路如图所示。

020.220.45V 0.8V E B a v =??=???=, 10.8A 0.4A 2

E I R =

==。 (2)将右侧上翻后则21

2

S a π=?,当穿过S 的磁通量发生变化时,根据楞次定律可判断出等效电路如图所示。

214

'

0.4V 0.32V 2ФS B E t t ππ

???=

==??=?? 2

2

2

1112'0.322W 1.2810W 4E P R R R -????=?=?=? ? ?+????

【总结升华】第(1)问求电动势的瞬时值,可用公式sin E Blv θ=求解,第(2)问

是磁场变化产生电动势,可用法拉第电磁感应定律求解。另外,搞清楚电路结构,画出等效电路图也很重要。

类型五、电磁感应与动力学的综合

电磁感应中产生的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问墅联系在一起,基本方法是:

(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。 (2)用闭合电路欧姆定律求回路中电流强度。 (3)分析研究导体受力情况。

(4)列动力学方程或平衡方程求解。

例6.如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为0.2m L =,在导轨的一端接有阻值为0.5ΩR =的电阻,在0x ≥处有一与水平面垂直的均匀磁场,磁感应强度0.5T B =。一质量为0.1kg m =的金属直杆垂直放置在导轨上,并以0=2m/s v 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的作用下做匀变速直线运动,加速度大小为2

2m/s a =,方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好,求:

(1)电流为零时金属杆所处的位置;

(2)电流为最大值的一半时,施加在金属杆上的外力F 的大小和方向;

(3)保持其他条件不变,而初速度0v 取不同值,求开始时F 的方向与初速度0v 取值的关系。

【答案】见解析 【解析】(1)感应电动势

E BLv =, 而E

I R

=,即0I =时,0v =,所以

201m 2v x a

==。

(2)最大电流

0max BLv I R =

,max 0

'22I BLv I R

==。 安培力

220

'0.02N 2B L v F I BL R

===安。

向右运动时:

F F ma +=安,所以0.18N F ma F ==安-,

方向与x 轴正方向相反。 向左运动时:

F F ma =安-,所以0.22N F ma F =+=安,

方向与x 轴正方向相反。 (3)开始时

0v v =,220

max B L v F I BL R

==安,

F F ma +=安,220

B L v F ma F ma R

=-=-安。

所以

当022

10m / s maR

v B L

<

=时, 0F >,方向与x 轴正方向相反。

当02210m / s maR

v B L

>=时,

0F <,方向与x 轴正方向相同。

举一反三

【高清课堂:恒定电流复习与巩固 例7】

【变式】如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为

00.10Ω/m r =,导轨的端点P Q 、用电阻可忽略的导线相连,两导轨间的距离0.20m l =.有

随时间变化的匀强磁场垂直于桌面,已知磁感强度B 与时间t 的关系为B kt =,比例系数0.020T/s k =,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在0t =时刻,金属杆紧靠在P Q 、端,在外力作用下,杆以恒定的加速度从静止开

始向导轨的另一端滑动,求在 6.0s t =时金属杆所受的安培力.

【答案】3

1.4410N -?

【解析】以a 表示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离

2

2

1at L =

, 此时杆的速度

at v =,

杆与导轨构成的回路的面积

S Ll =,

回路中的感应电动势

B

S

Blv t

ε?=+? 而B kt =,故

()B B t t B

k t t

?+?-?==?? 回路的总电阻

02Lr R =

回路中的感应电流

R

i ε=

作用于杆的安培力 Bli F =

联立以上各式解得

t r l k F 0

2

2123=,

代入数据得3

1.4410N F -=?.

例7.如图甲所示,在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置相距l 且足够长的平行金属导轨AB 、CD ,在导体的AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,导轨和金属棒的电阻及它们间的摩擦不计,若用恒力F 沿水平方向向右拉棒运动,求金属棒最大速度。

【思路点拨】这类题目的思路是“导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。”

【答案】

22

FR

B l 【解析】本题综合考查电磁感应和力学知识,关键要做好ab 棒的受力情况、运动情况的动态分析。

ab 棒受恒力F 作用向右加速运动产生感应电流,电流在

磁场中受安培力F 安,如图乙所示。随v E I F F a ↑→↑→↑→↑→↓→↓合安,当金属棒所受合力为零时,加速度为零,速度最大。 当金属棒所受合力为零时,速度最大,此时 0F F =安-, ① F BIl =安, ②

E

I R

=, ③ E Blv =, ④

由①②③④得:

22max

0B l v F F F R

-=-

=安, max 22

FR

v B l =

。 【总结升华】电磁感应力学问题中,要抓好受力情况、运动情况的动态分析,导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。

例8.如图所示,线圈abcd 每边长l =0.20 m ,线圈质量10.10kg m ,电阻0.10ΩR =,砝码质量20.14kg m 。线圈上方的匀强磁场磁感应强度0.5T B =,方向垂直线圈平面向里,磁场区域的宽度为0.20m h l ==。砝码从某一位置下降,使ab 进入磁场开始做匀速运动。求线圈做匀速运动的速度。

【答案】4m/s

【解析】该题考查电磁感应现象中的力学问题,解题的关键是找准研究对象是线圈。 该题的研究对象为线圈,线圈在匀速上升时受到安培力F 安、绳子的拉力F 和重力1m g 相互平衡,即:

1F F m g =+安, ① 砝码受力也平衡:

2F m g =, ②

线圈匀速上升,在线圈中产生的感应电流为:

Blv

I R

=

, ③ 因此线圈受到向下的安培力为:

F BIl =安, ④

联立①②③④式得2122

()m m gR

v B l -=

。代入数据得:4m/s v =.

举一反三

【高清课堂:恒定电流复习与巩固 例12】

【变式】近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.右图为飞缆系统的简化模型示意图,图中两个物体P Q 、的质量分别为p Q m m 、,柔性金属缆索长为l ,外有绝缘层,系统在近地轨道作圆周运动,运动过程中Q 距地面高为h .设缆索总保持指向地心,P 的速度为p v .已知地球半径为R ,地面的重力加速度为g .

(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为B ,方向垂直于纸面向外.设缆索中无电流,问缆索P Q 、哪端电势高?此问中可认为缆索各处的速度均近似等于p v ,求P Q 、两端的电势差;

(2)设缆索的电阻为1R ,如果缆索两端物体P Q 、通过周围的电离层放电形成电流,相应的电阻为2R ,求缆索所受的安培力多大;

(3)求缆索对Q 的拉力Q F .

【答案】(1)P Blv (2)2212P B l v R R + (3)2

2

22

()[]()()P Q R h v gR m R h R h l +-+++

【解析】(1)缆索的电动势

P E Blv =

P Q 、两点电势差

PQ P U Blv =,

P 点电势高.

(2)缆索电流

1212

P Blv E

I R R R R =

=++

安培力

2212

P

A B l v F IlB R R ==+

(3)Q 的速度设为Q v ,Q 受地球引力和缆索拉力Q F 作用

22

()

Q Q

Q Q

Mm v G

F m R h R h

-=++

P Q 、角速度相等,则

P Q v R h l v R h

++=+ 又2GM

g R

=

联立各式,解得

2

2

22

()[]()()P Q Q R h v gR F m R h R h l +=-+++.

例9.如图所示,两金属杆ab 和cd 长均为l ,电阻均为R ,质量分别为M 和m (M m >),用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。两金属杆都处在水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为B 。若金属杆ab 正好匀速向下运动,求其运动的速度。

【思路点拨】注意判断ab 、cd 切割磁感线产生的电动势的方向。

【答案】

22

()2M m gR

B l

- 【解析】本题综合考查电磁感应和力学知识,可采用隔离法或整体法等多种解法。 解法一:假设磁场B 的方向垂直纸面向里,ab 杆向下匀速运动的速度为v ,则ab 杆切割磁感线产生的感应电动势大小i E Blv =,方向a b →;cd 杆以速度v 向上切割磁感线运

动产生的感应电动势大小'

i E Blv =,方向d c →。

在闭合回路中产生a b d c a →→→→方向的感应电流I ,据闭合电路欧姆定律知,

'222i i E E Blv Blv

I R R R

+=

==,ab 杆受磁场作用的安培力1F 方向向上,cd 杆受安培力2F 方向向下,1F 、2F 的大小相等,有:

2212B l v

F F IlB R

===, ①

对ab 杆应有1F Mg F =-, ② 对cd 杆应有2F F mg =+, ⑧ 联立①②③解得22

()2M m gR

v B l -=

解法二:若把ab 、cd 和柔软导线视为一个整体,因M m >,故整体动力为()M m g -。 ab 向下、cd 向上运动时,穿过闭合回路的磁通量发生变化,据电磁感应定律判断回路中产生感应电流,据楞次定律知,I 感的磁场要阻碍原磁场的磁通量变化,即阻碍ab 向下、

cd 向上运动,即F 安为阻力。整体受的动力与安培力满足平衡条件,即:

22()2B l v M m g R

-=?,则可解得v 如上结果。

解法三:整个回路视为一整体系统,因其速度大小不变,故动能不变,ab 向下、cd 向上运动过程中,因Mg mg >,系统的重力势能减少,将转化为回路的电能,据能量守恒定律,重力的机械功率(单位时间系统减少的重力势能)要等于电功率(单位时间转化回路的电能)。

所以有:2

2

(2)2E Blv Mgv mgv R R

-==

总总,同样可解得v 为上值。 【总结升华】注意判断ab 、cd 切割磁感线产生的电动势同向,总电动势为

ab cd E E E =+,另外,题目结果和磁场垂直纸面向里、向外无关。

举一反三

【高清课堂:恒定电流复习与巩固 例11】

【变式】超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图所示的模型:在水平面上相距L 的两根平行直导轨间,有竖直方向等距离分布的匀强磁场1B 和2B ,且12B B B ==,每个磁场的宽都是l ,相间排列,所有这些磁场都以速度v 向右匀速运动.这时跨在两导轨间的长为L 宽为l 的金属框abcd (悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( )

A .2222m /v

B L v fR B L =

(-) B .2222m 2/2v B L v fR B L =(-) C .2222m 2/2v B L v fR B L =

(+) D .2222m 4/4v B L v fR B L =(-)

【答案】D

【解析】设金属框做匀速运动的速度为m v ,则线框的感应电动势

m 2(-)E BL v v =

安培力与阻力平衡 2E

B

L f R

?= 解得:

22m 22

4-=4B L v fR

v B L .

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

电磁感应 知识点总结

第16章:电磁感应 L 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量: $ =BS 如果该面积与磁场夹角为 a,则其投影面积为 Ssin a,则磁通量为 =BSsin a 。磁通量的单位: 韦伯,符号: Wb 、重、难点知识归纳 1. 法拉第电磁感应定律 (1) .产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两 个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过 该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。 这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2) .感应电动势产生的条件:穿过电路的磁通量发生变化。 、知识网络 产生感应电一 闭合电路中的部分导体在做切割磁感线运动 流的方法 闭合电路的磁通量发生变 感应电流方 _ 右手疋则, 向的判定 ? 楞次定律 E=BL v sin 0 感应电动势 A (h 的大小 ■ E - n A t 大小: 方向: 日光 构造 E 2 总是阻碍原电流的变化方向 灯管 镇流器 启动器 日光灯工作原理:自感现象 通电、断电自感实验 实验: 应用 自 感 自感电 动势

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。 这好比一个电源:不论外电路是否闭合, 电动势总是存在的。 但只有当外电路闭合时, 电路 中才会有电流。 (3) .引起某一回路磁通量变化的原因 a 磁感强度的变化 b 线圈面积的变化 c 线圈平面的法线方向与磁场方向夹角 的变化 (4) .电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能是从其它形式的能转化而来的。 在转化和转移中能的总量是保持不变的。 (5) .法拉第电磁感应定律: a 决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b 注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量, 一磁通量的变化量, c 定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的 变化率成正比。 (6 )在匀强磁场中, 磁诵量的变化 △① =①t -①o 有多种形式,主要有 ①S 、 a 不变, B 改变,这时 △①= △ B Ssin a ②B 、 a 不变, S 改变,这时 △①= △ S Bsin a ③B 、 S 不变, a 改变,这时 △①=BS(sin a 2-sin a 1) 在非匀强磁场中,磁通量变化比较复杂。有 几种情况需要特别注意: 形磁铁附近移动,穿过上边线圈的磁通量由方向向 上减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减 小到零,再变为方向向上增大。 ②如图16-2所示,环形导线 a 中有顺时针方向的电流, a 环外有 两个同心导线圈b 、c ,与环形导线a 在同一平面内。当 a 中的电流增 ①如图16-1所示,矩形线圈沿a T b T c 在条 a be 图 16-1 a 图 16-2

知识讲解电磁感应复习与巩固基础

电磁感应复习与巩固 编稿:张金虎审稿:李勇康 【学习目标】 1.电磁感应现象发生条件的探究与应用。 2.楞次定律的建立过程与应用:感应电流方向决定因素的探究,楞次定律的表述及意义。 3.法拉第电磁感应定律的运用,尤其是导体棒切割磁感线产生感应电动势 sin EBLv??的计算是感应电动势定量计算的重点所在。在应用此公式时要特别注意导体棒的有效切割速度和有效长度。 4.利用法拉第电磁感应定律、电路知识、牛顿运动定律、能的转化和守恒定律进行综合分析与计算。 【知识络】 【要点梳理】 要点一、关于磁通量?,磁通量的变化??、磁通量的变化率t??? 1、磁通量

磁通量cos BSBSBS???????,是一个标量,但有正、负之分。 可以形象地理解为穿过某面积磁感线的净条数。 2、磁通量的变化 磁通量的变化21??????. 要点诠释: ??的值可能是2?、1?绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感 线垂直的位置转动180?的过程中21??????. 3、磁通量的变化率 磁通量的变化率t???表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。 2121ttt????????, 在回路面积和位置不变时BStt??????(Bt??叫磁感应强度的变化率); 在B均匀不变时SBtt??????,与线圈的匝数无关。 要点二、关于楞次定律 (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。 (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。 (3)楞次定律适用范围:适用于所有电磁感应现象。 (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。 (5)楞次定律是能的转化和守恒定律的必然结果。 要点三、法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即Et????. 要点诠释: 对n匝线圈有Ent????. (1)Ent????是t?时间内的平均感应电动势,当0t??时,Ent????转化为瞬时感应电动势。

电磁感应理论基础

一、电磁感应现象 1、电生磁:(电流的磁效应) 1)通电直导线周围存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向; (奥斯特试验) 插入:磁场基础概念 磁感线:在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向。磁铁周围的磁感线都是从N极出来进入S 极或传向无穷远处,在磁体内部磁感线从S极到N极。 磁感线是为了形象地研究磁场而人为假想的曲线,并不是客观存在于磁场中的真实曲线。但可以根据磁感线的疏密,判断磁性的强弱。

磁感线密集,则磁性强,稀疏,则弱。 磁感应强度:与磁力线方向垂直的单位面积上所通过的磁力线数目, 又叫磁力线的密度,也叫磁通密度, 用B表示,单位为特斯拉(T)。 磁通量:磁通量是通过某一截面积 的磁力线总数,用Φ表示,单位为韦伯, 符号是Wb。通过一线圈的磁通的表达式为:Φ=B·S(其中B为磁感应强度,S为该线圈的面积。) 2)通电螺旋线圈两端存在磁场,磁场的方向与电流方向有关; 根据右手螺旋法则判断:用右手握住通电螺旋线圈,让四指指向电流的方向,那么大拇指的指向就是磁感线的方向; 3)电生磁的实际应用 ①发电机的转子线圈即励磁线圈;

②变压器(包括电压互感器、电流互感器)的一次线圈; ③交流电动机的定子线圈; 2、磁生电 磁生电的两个试验: 按产生原因的不同,感应电动势分为动生电动势和感生电动势两种。 1)动生电动势。原理:导体做切割磁力线运动时,在导体两端上就会产生电动势。闭合电路的一部分导体做切割磁感线运动时,在导体上就会产生电流的现象叫电磁感应现象,产生的电流叫做感应电流。

人教版高中物理选修3-2重点题型巩固练习] 电磁感应基础知识

人教版高中物理选修3-2 知识点梳理 重点题型(常考知识点)巩固练习 【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是( ) A .奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B .麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C .库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D .安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2. 1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是( ) A .新型直流发电机 B .直流电动机 C .交流电动机 D .交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的学科“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是( ) A .既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B .既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C .既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D .既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 4.如图所示,矩形线框abcd 放置在水平面内,磁场方向与水平方向成α角,已知4sin 5 α=,回路面积为S ,磁感应强度为B ,则通过线框的磁通量为 ( ) A .BS B . 45BS C .35BS D .34BS 5.如图所示,ab 是水平面上一个圆的直径,在过ab 的竖直平面内有一根通电导线ef 。已知ef 平行于ab ,当ef 竖直向上平移时,电流磁场穿过圆面积的磁通 量将( )

86知识讲解 电磁感应中的能量问题(基础)

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

大学物理(少学时)第9章电磁感应与电磁场课后习题答案

9-1两个半径分别为R 和r 的同轴圆形线圈相距x ,且R >>r ,x >>R .若大线圈通有电流I 而小线圈沿x 轴方向以速率v 运动,试求小线圈回路中产生的感应电动势的大小. 解:在轴线上的磁场 () ()2 2 003 3 2 2 2 22IR IR B x R x R x μμ= ≈ >>+ 3 2 202x r IR BS πμφ= = v x r IR dt dx x r IR dt d 4 22042202332πμπμφ ε=--=-= 9-2如图所示,有一弯成θ 角的金属架COD 放在磁场中,磁感强度B ? 的方向垂直于金属架 COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v ?向右滑动,v ? 与 MN 垂直.设t =0时,x = 0.求当磁场分布均匀,且B ? 不随时间改变,框架内的感应电动势i ε. 解:12m B S B xy Φ=?=?,θtg x y ?=,vt x = 22212/()/i d dt d Bv t tg dt Bv t tg ε?θθ=-=-=?,电动势方向:由M 指向N 9-3 真空中,一无限长直导线,通有电流I ,一个与之共面的直角三角形线圈ABC 放置在此长直导线右侧。已知AC 边长为b ,且与长直导线平行,BC 边长为a ,如图所示。若线圈以垂直于导线方向的速度v 向右平移,当B 点与直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和方向。 解:当线圈ABC 向右平移时,AB 和AC 边中会产 生动生电动势。当C 点与长直导线的距离为d 时,AC 边所在位置磁感应强度大小为:02() I B a d μπ= + AC 中产生的动生电动势大小为: x r I R x v C D O x M θ B ? v ?

巩固练习 电磁感应基础知识

【巩固练习】 一、选择题 1.在电磁学发展过程中,许多科学家做出了贡献,下列说法正确的是()A.奥斯特发现了电流磁效应;法拉第发现了电磁感应现象 B.麦克斯韦预言了电磁波;楞次用实验证实了电磁波的存在 C.库仑发现了点电荷的相互作用规律;密立根通过油滴实验测定了元电荷的数值 D.安培发现了磁场对运动电荷的作用规律;洛伦兹发现了磁场对电流的作用规律 2.1873年奥地利维也纳世博会上,比利时出生的法国工程师格拉姆在会展中偶然接错了导线,把另一直流发电机发出的电接到了他自己送展的直流发电机的电流输出端。由此而观察到的现象导致了他的一项重要发明,从而突破了人类在电能利用方面的一个瓶颈,此项发明是()A.新型直流发电机B.直流电动机C.交流电动机D.交流发电机 3.法拉第通过精心设计的一系列实验,发现了电磁感应定律,将历史上认为各自独立的“电学”和“磁学”联系起来,在下面几个典型的实验设计思想中,所做的推论后来被实验否定的是()A.既然磁铁可以使近旁的铁块带磁,静电荷也可以使近旁的导体表面感应出电荷,那么静止导线中的稳恒电流也可在近旁静止的线圈中感应出电流 B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流 C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势 D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可以在近旁的线圈中感应出电流 ?角,已知放置在水平面内,磁场方向与水平方向成.如图所示,矩形线框abcd44??sin,回路面积为S,磁感应强度为B,则通过线框的磁通量为5 )(BS33BS4BS.B A C.D..BS 455 。ef是水平面上一个圆的直径,在过ab的竖直平面内有一根通电导线5.如图所示,ab竖直向上平移时,电流磁场穿过圆面积的磁通efab,当已知ef平行于

80知识讲解 电磁感应现象 感应电流方向的判断(基础)

物理总复习:电磁感应现象 感应电流方向的判断 【考纲要求】 1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件; 2、理解楞次定律的基本含义与拓展形式; 3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。 【知识网络】 【考点梳理】 考点一、磁通量 1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。即 cos BS φθ'=。 2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。 3、磁通量的单位:Wb 21 1Wb T m =?。 要点诠释: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。另外,磁通量与线圈匝数无关。 磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。穿过某一面积的磁通量一般指合磁通量。 (2)磁通量的变化21φφφ?=-,它可由B 、S 或两者之间的夹角的变化引起。 4、磁通量的变化 要点诠释: (一)、磁通量改变的方式有以下几种 (1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。 (2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 (3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B 不变,而S 增大或减小。 (4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。

大学物理电磁学知识点汇总

稳恒电流 1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们 又涉及到了场的概念) 2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。 3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电 导率、电阻率、电阻温度系数、理解超导现象 4.电阻的计算(这是重点)。 5.金属导电的经典微观解释(了解)。 6.焦耳定律两种形式(积分、微分)。(这里要明白一点:微分型方程是 精确的,是强解。而积分方程是近似的,是弱解。) 7.电动势、电源的作用、电源做功。、 8.含源电路欧姆定律。 9.基尔霍夫定律(节点电流定律、环路电压定律。明白两者的物理基础。)习题:13.19;13.20 真空中的稳恒磁场 电磁学里面极为重要的一章 1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流 2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用) 3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律) 4. 毕奥-萨伐尔定律的应用(重点)。 5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本) 6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比) 7. 安培环路定理的应用(重要——求磁场强度) 8. 磁场对电流的作用(安培力、安培定律积分、微分形式)

9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功) 10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。 11. 三场作用叠加(霍尔效应、质谱仪、例14.4) 习题:14.20,14.22,14.27,14.32,14.46,14.47 磁介质(与电解质对比) 1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁 质、弱磁质、强磁质。(请自己阅读并绘制磁场和电场相关概念和公式 的对照表) 2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗 磁质的形成原理。 3.磁化强度、磁化电流、磁化面电流密度、束缚电流。 4.磁化强度和磁化电流的关系(微分关系、积分关系) 5.有磁介质存在时的磁场基本定理、磁场强度矢量H、有磁介质存在时的 安培环路定律(有电解质存在的安培环路定律)、磁化规律。 6.请比较B、H、M和E、D、P的关系。磁化率、相对磁导率、绝对磁导 率。 7.有磁介质存在的安培环路定理的应用(例15.1、例15.2)、有磁介质存 在的高斯定理。 8.铁磁质(起始磁化曲线、磁滞回线、饱和磁感应强度、起始磁导率、磁 滞效应、磁滞、剩磁、矫顽力、磁滞损耗、磁畴、居里点、软磁材料、 硬磁材料、矩磁材料)(了解) 习题: 15.11

电磁感应基础知识

电磁感应基础知识 知识网络 1 2、通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表

3 4、感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 a) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就 会产生感应电动势,它相当于一个电源 b) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感 应电动势,磁通量发生变化的那部分相当于电源。 5、公式 n E ?Φ =与E=BLvsin θ 的区别与联系

6、楞次定律 a)感应电流方向的判定方法 碍产生感应电流的原因 i.阻碍原磁通量的变化或原磁场的变化; ii.阻碍相对运动,可理解为“来拒去留”。 iii.使线圈面积有扩大或缩小趋势; iv.阻碍原电流的变化。

知识点一—磁通量 ▲知识梳理 磁通量 1.穿过某一面积的磁感线条数,在匀强磁场中, =BS,单位是韦伯,简称韦,符号是Wb.使用条件是B为匀强磁场,S为平面在磁场方向上的投影.磁通量虽然是标量,但有正负之分. 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:Wb 。 4.磁通密度 垂直穿过单位面积的磁感线条数,即磁感应强度的大小。 :如图所示,矩形线圈的面积为S (),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的 改变量:绕垂直磁场的轴转过(1);(2);(3)。 解析: 初位置时穿过线圈的磁通量 ;转过 时,; 转过时,;转过时,,负号表示穿过面积S的方向和以上情况相反,故: (1); (2); (3)。负号可理解为磁通量在减少。 变式练习: 1.如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由 此位置出发绕与B垂直的轴线转过60°时磁通量的变化为 ____________,转过180°时磁通量的变化量为____________。

大学物理知识题17电磁感应

班级______________学号____________姓名________________ 练习 十七 一、选择题 1. 如图所示,有一边长为1m 的立方体,处于沿y 轴指向的强度为0.2T 的均匀磁场中,导线a 、b 、c 都以50cm/s 的速度沿图中所示方向运动,则 ( ) (A)导线a 内等效非静电性场强的大小为0.1V/m ; (B)导线b 内等效非静电性场强的大小为零; (C)导线c 内等效非静电性场强的大小为0.2V/m ; (D)导线c 内等效非静电性场强的大小为0.1V/m 。 2. 如图所示,导线AB 在均匀磁场中作下列四种运动,(1)垂直于磁场作平动;(2)绕固定端A 作垂直于磁场转动;(3)绕其中心点O 作垂直于磁场转动;(4)绕通过中心 点O 的水平轴作平行于磁场的转动。关于导线AB 的感应电动势哪个结论是错误的? ( ) (A)(1)有感应电动势,A 端为高电势; (B)(2)有感应电动势,B 端为高电势; (C)(3)无感应电动势; (D)(4)无感应电动势。 (1) (2) (3) (4)

3. 一“探测线圈”由50匝导线组成,截面积S =4cm 2,电阻R =25 。若把探测线 圈在磁场中迅速翻转?90,测得通过线圈的电荷量为C 1045 -?=?q ,则磁感应强度B 的大小为 ( ) (A)0.01T ; (B)0.05T ; (C)0.1T ; (D)0.5T 。 4. 如图所示,一根长为1m 的细直棒ab ,绕垂直于棒且过其一端a 的轴以每秒2转的角速度旋转,棒的旋转平面垂直于0.5T 的均匀磁场,则在棒的中点,等效非静电性场强的大小和方向为( ) (A)314V/m ,方向由a 指向b ; (B)6.28 V/m ,方向由a 指向b ; (C)3.14 V/m ,方向由b 指向a ; (D)628 V/m ,方向由b 指向a 。 二、填空题 1. 电阻R =2Ω的闭合导体回路置于变化磁场中,通过回路包围面的磁通量与时间的关 系为)Wb (10)285(3 2-?-+=Φt t m ,则在t =2s 至t =3s 的时间内,流过回路导体横截 面的感应电荷=i q C 。 2. 半径为a 的无限长密绕螺线管,单位长度上的匝数为n ,螺线管导线中通过交变电流t I i ωsin 0=,则围在管外的同轴圆形回路(半径为r )上的感生电动势为 V 。 a b

tk电磁感应基础知识专题

高考综合复习——电磁感应(一)电磁感应基础知识、自感专题 ● 知识网络 ● 高考考点 考纲要求: 复习指导: 本章以电场及磁场等知识为基础,研究了电磁感应的一系列现象,通过实验总结出了产生感应电流的条件和判定感应电流方向的一般方法——楞次定律,给出了确定感应电动势大小的一般规律——法拉第电磁感应定律。感应电流的产生和感应电流的方向的判定和感应电动势的计算是电磁感应的基本的内容,纵观近年高考题可以看出题型主要为选择,在物理单科考试中应用较多,在理科综合试题中单独的涉及本考点的题目很少,大多是和电学知识相结合的综合性试题,且可以肯定本考点一定会在高考中出现。 通过对近年高考题目的分析比较可以看出,2006年的高考如果是物理单科有可能感应电流的产生和感应电流的方向的判定方面出题,而如果是理综考试试题,由于命题的要求的限制,单独考查的可能性很小,还应注意本考点与其它考点的结合而出现的综合性题目。还可以看出,矩形线框穿越有界匀强磁场问题,涉及到楞次定律(或右手定则)、法拉第电磁感应定律、磁场对电路的作用力、含电源电路的计算等知识,综合性强,能力要求高,这也是命题热点。2006年的高考,感应电动势的计算问题是肯定会出现的一个计算点,如果在选择题中出现,则应以基本计算为主,如果在计算题中出现则应当是一个综合性较强的题目。 ● 要点精析 ☆磁通量相关:

1. 磁通量: 穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁通量。磁通量简称磁通,符号为Φ,单位是韦伯(Wb)。 2. 磁通量的计算 (1)公式Φ=BS 此式的适用条件是:①匀强磁场,②磁感线与平面垂直。 (2)如果磁感线与平面不垂直上式中的S为平面在垂直于磁感线方向上的投影面积。 Φ=B·Ssinθ,其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”。 (3)磁通量的“方向性” 磁感线正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同,求合磁通时应注意相反方向抵消以后所剩余的磁通量。 注意:磁通量是标量。 (4)磁通量的变化(量):△Φ=Φ2-Φ1 △Φ可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起,在确定磁通量的变化时应注意。 (5)磁通量的变化率△Φ/△t:指磁通量的变化快慢。 ☆电磁感应现象的产生条件: 1.产生感应电流的条件: 穿过闭合电路的磁通量发生变化,若电路不闭合,即使有感应电动势产生,也没有感应电流。 2.感应电动势的产生条件: 无论电路是否闭合只要穿过电路的磁通量发生变化,这部分电路就会产生感应电动势.这部分电路或导体相当于电源。 ☆感应电流的方向: 1.右手定则 右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向。 说明: ①伸直四指指向还有另外的一些说法:A.感应电动势的方向;B.导体的高电势处

电磁感应基础训练

一 选择题 1.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针 指向为电流正方向,且不计线圈的自感)? [ ] D t I 0 I t I 0 I (A) (B) (C) (D)

2. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通 过其一端O 的定轴旋转着, B 的 方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成 θ 角(b 为铜棒转动的平面上的一个固定点),则 在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos( 2 θωω+t B L . (B) t B L ωωcos 2 12 . (C) )cos( 22 θωω+t B L . (D) B L 2 ω. (E) B L 2 2 1ω. [ ] E B

3. 如图,长度为l的直导线ab在均匀磁场B 中以速度v 移动,直导线ab中的电动势为 (A) Bl v. (B) Bl v sinα. (C) Bl v cosα.(D) 0. [] D

4.如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与 B 同方 向),BC 的长度为棒长的31 , 则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ A ]

5. 如图所示的电路中,A、B 阻r >>R,L是一个自感系数相当 大的线圈,其电阻与R相等.当 开关K接通和断开时,关于灯泡 A和B的情况下面哪一种说法正确? (A) K接通时,I A >I B. (B) K接通时,I A =I B. (C) K断开时,两灯同时熄灭. (D) K断开时,I A =I B. [ A ]

高考物理最新电磁学知识点之电磁感应基础测试题含答案解析(2)

高考物理最新电磁学知识点之电磁感应基础测试题含答案解析(2) 一、选择题 1.如图所示,一个边长为2L的等腰直角三角形ABC区域内,有垂直纸面向里的匀强磁场,其左侧有一个用金属丝制成的边长为L的正方形线框abcd,线框以水平速度v匀速通过整个匀强磁场区域,设电流逆时针方向为正。则在线框通过磁场的过程中,线框中感应电流i随时间t变化的规律正确的是 A.B. C.D. 2.如图所示,用粗细均匀的铜导线制成半径为r、电阻为4R的圆环,PQ为圆环的直径,在PQ的左右两侧均存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,一根长为2r、电阻为R的金属棒MN绕着圆心O以角速度ω顺时针匀速转动,金属棒与圆环紧密接触。下列说法正确的是() A.金属棒MN两端的电压大小为2 B r ω B.金属棒MN中的电流大小为 2 2 B r R ω C.图示位置金属棒中电流方向为从N到M D.金属棒MN转动一周的过程中,其电流方向不变 3.如图所示,A、B是相同的白炽灯,L是自感系数很大、电阻可忽略的自感线圈。下面说法正确的是()

A .闭合开关S 瞬间,A 、 B 灯同时亮,且达到正常 B .闭合开关S 瞬间,A 灯比B 灯先亮,最后一样亮 C .断开开关S 瞬间,P 点电势比Q 点电势低 D .断开开关S 瞬间,通过A 灯的电流方向向左 4.如图所示,两块水平放置的金属板间距离为d ,用导线与一个n 匝线圈连接,线圈置于方向竖直向上的磁场B 中。两板间有一个质量为m 、电荷量为+q 的油滴恰好处于平衡状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A .正在增强;t φ??dmg q = B .正在减弱; dmg t nq φ?=? C .正在减弱; dmg t q φ?=? D .正在增强;dmg t nq φ?=? 5.如图所示,一闭合直角三角形线框abc 以速度v 匀速向右穿过匀强磁场区域,磁场宽度大于ac 边的长度.从bc 边进入磁场区,到a 点离开磁场区的过程中,线框内感应电流的情况(以逆时针方向为电流的正方向)是下图中的( ) A . B .

关于电磁感应的几个基本问题

关于电磁感应的几个基本问题 (1)电磁感应现象 利用磁场产生电流(或电动势)的现象,叫电磁感应现象。 所产生的电流叫感应电流,所产生的电动势叫感应电动势。 所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场; 如周围空间中有导体存在,一般导体中将激起感应电动势; 如导体构成闭合回路,则回路程还将产生感应电流。 (2)发生电磁感应现象,产生感应电流的条件: 发生电磁感应现象,产生感应电流的条件通常有如下两种表述。 ①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。如线圈闭合,则线圈子里就将产生感应电流。 ②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势,如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。产生感应电动势的那部分导体相当于电源。 这里注意一点事啊 闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。所以上述两个条件从根本上还应归结磁通量的变化。但如果矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。 (3)发生电磁感应现象的两种基本方式及其理论解释 ①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激起感应电动势。这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。 ②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。 引起磁通量变化的常见情况 (1)线圈在磁场中转动; (2)线圈在磁场中面积发生变化; (3)线圈中磁感应强度发生变化; (4)通电线圈中电流发生变化。 感应电流方向的判断 (1)右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。 四指指向还可以理解为:感应电动势的方向、该部分导体的高电势处。 用右手定则时应注意:

相关文档
最新文档