西南交大线性代数习题参考答案

西南交大线性代数习题参考答案
西南交大线性代数习题参考答案

第一章 行列式

§1 行列式的概念

1. 填空

(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的

n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含

324314516625a a a a a a 的项的符号为 。

2. 用行列式的定义计算下列行列式的值 (1) 11

22

2332330000

a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,2

1,11,12,100

000

0n n n n n n n n n n n n nn

a a a a a a a a a a ------L L M

M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排

列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2

多,则此行列式为0,为什么?

5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?

(提示:利用3题的结果)

6. 利用对角线法则计算下列三阶行列式 (1)2

11411

83---

(2)2

221

11a b

c a b c

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数习题3答案(高等教育出版社)

习题3 1.11101134032αβγαβαβγ ===-+-设(,,),(,,),(,,),求和 1110111003231112011340015αβαβγ-=-=+-=+-=解:(,,)(,,)(,,) (,,)(,,)(,,)(,,) 1231232.32525131015104111αααααααααα -++=+===-设()()(),其中(,,,) (,,,),(,,,),求1231233251 32561 [32513210151054111] 6 1234ααααααααααα-++=+=+-=+--=解:因为()()(),所以(), 所以(,,,)(,,,)(,,,)(,,,) 123412343.12111111111111111111,,,βααααβαααα===--=--=--设有(,,,),(,,,),(,,,), (,,,),(,,,)试将表示成的线性组合。 123412341234123412341234 1211 5111 ,,,; 4444 5111 4444 x x x x x x x x x x x x x x x x x x x x βαααα+++=??+--=? ?-+-=??--+=?===-=-=+--解:因为线性方程组的解为 所以得: 1234.111112313) t ααα===设讨论下面向量组的线性的相关性 ()(,,),(,,),(,, 111 1235, 1355t t t t =-=≠解:因为所以,当时,向量组线性相关,当时线性无关。 . 323232.5213132321321的线性相关性, ,线性无关,讨论,,设αααααααααααα++++++ . 0)23()32()23(.0)32()32()32(332123211321213313223211=++++++++=++++++++ααααααααααααx x x x x x x x x x x x 整理得:解:设

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

线性代数考试题库及答案(六)

线性代数考试题库及答案 第一部分 客观题(共30分) 一、单项选择题(共 10小题,每小题2分,共20分) 1. 若行列式11 121321 222331 32 33 a a a a a a d a a a =,则212223 11 121331 32 33 232323a a a a a a a a a 等于 ( ) (A) 2d (B) 3d (C) 6d (D) 6d - 2. 设123010111A ?? ? =- ? ??? ,ij M 是A 中元素ij a 的余子式,则313233M M M -+=( ) (A) 0 (B) 1 (C) 2 (D) 3 3. 设A 为n 阶可逆矩阵,则下列各式恒成立的是( ) (A) |2|2||T A A = (B) 11(2)2A A --= (C) *1A A -= (D) 11[()][()]T T T T A A --= 4. 初等矩阵满足( ) (A) 任两个之乘积仍是初等矩阵 (B) 任两个之和仍是初等矩阵 (C) 都是可逆矩阵 (D) 所对应的行列式的值为1 5. 下列不是..n 阶矩阵A 可逆的充要条件为( ) (A) 0≠A (B) A 可以表示成有限个初等阵的乘积 (C) 伴随矩阵存在 (D) A 的等价标准型为单位矩阵 6. 设A 为m n ?矩阵,C 为n 阶可逆矩阵,B AC =,则 ( )。 (A) 秩(A )> 秩(B ) (B) 秩(A )= 秩(B )

(C) 秩(A )< 秩(B ) (D) 秩(A )与秩(B )的关系依C 而定 7. 如果向量β可由向量组12,, ,s ααα线性表示,则下列结论中正确的是( ) (A) 存在一组不全为零的数12,,s k k k ,使得1122s s k k k βααα=+++ 成立 (B) 存在一组全为零的数12,,s k k k ,使得1122s s k k k βααα=++ + 成立 (C) 存在一组数12,, s k k k ,使得1122s s k k k βααα=+++ 成立 (D) 对β的线性表达式唯一 8. 设12,ξξ是齐次线性方程组0AX =的解,12,ηη是非齐次线性方程组AX b =的解,则( ) (A) 112ξη+为0AX =的解 (B) 12ηη+为AX b =的解 (C) 12ξξ+为0AX =的解 (D) 12ηη-为AX b =的解 9. 设110101011A ?? ? = ? ??? ,则A 的特征值是( )。 (A) 0,1,1 (B) 1,1,2 (C) 1,1,2- (D) 1,1,1- 10. 若n 阶方阵A 与某对角阵相似,则 ( )。 (A) ()r A n = (B) A 有n 个互不相同的特征值 (C) A 有n 个线性无关的特征向量 (D) A 必为对称矩阵 二、判断题(共 10小题,每小题1分,共10分 )注:正确选择A,错误选择B. 11. 设A 和B 为n 阶方阵,则有22()()A B A B A B +-=-。( ) 12. 当n 为奇数时,n 阶反对称矩阵A 是奇异矩阵。( )

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

2010-2011-2线性代数试卷及答案

东 北 大 学 考 试 试 卷(A 卷) 2010 — 2011学年 第二学期 课程名称:线性代数 (共2页) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ (15分) 设三阶矩阵()321,,ααα=A , ()3323214,3,32αααααα+-+=B , 且A 的行列式1||=A ,求矩阵B 的行列式||B . 解 因为()3323214,3,32αααααα+-+=B =? ???? ??-413031002),,(321ααα, 所以,24413031002||||=-=A B 分) 设向量组????? ??-=2111α,????? ??=1122α,????? ??=a 213α线性相关,向量 ???? ? ??=b 13β可由向量组321,,ααα线性表示,求b a ,的值。 解 由于 ????? ??-=b a 1212113121),,,(321βααα????? ??---→62304330312 1b a ? ???? ??-+→210043303121b a 所以,.2,1=-=b a 三分) 证明所有二阶实对称矩阵组成的集合V 是R 2? 2 的子空间,试在 V 上定义内积运算,使V 成为欧几里得空间,并给出V 的一组正交基. 解 由于任意两个二阶实对称矩阵的和还是二阶实对称矩阵,数乘二阶实对称矩阵还是 二阶实对称矩阵,即V 对线性运算封闭,所以V 是R 2? 2 的子空间。 对任意V b b b b B a a a a A ∈??? ? ??=???? ??=2212121122121211,,定义内积:[A,B]=222212121111b a b a b a ++, 显然满足:[A,B]=[B,A], [kA,B]=k[A,B], [A,A]≥0且[A,A]=0当且仅当A=0. ???? ??=00011A ,???? ??=01102A ,???? ??=10003A 就是V 的一组正交基. 注:内积和正交基都是不唯一的. 2-1

工程力学教程(西南交通大学应用力学与工程系著)课后答案下载

工程力学教程(西南交通大学应用力学与工程系著)课后答 案下载 《工程力学教程》是xx年07月高等教育出版社出版的一本图书,作者是西南交通大学应用力学与工程系。以下是由关于工程力学教程(西南交通大学应用力学与工程系著)课后答案下载地址,希望大家喜欢! 点击进入:工程力学教程(西南交通大学应用力学与工程系著)课后答案下载地址 本书是教育科学“十五”国家规划课题研究成果,根据“高等学校工科本科工程力学基本要求”编写而成,涵盖了理论力学和材料力学的主要内容。 本书共18章,包括静力学基础、平面汇交力系、力矩与平面力偶系、平面一般力系、重心和形心、内力和内力图、拉伸和压缩、扭转、弯曲、应力状态分析和强度理论、压杆的稳定性、点的运动、刚体的基本运动、点的复合运动、刚体的平面运动、质点的运动微分方程、动力学普遍定理、动静法。本书在讲述某些概念和方法的同时,给出了相关的思考题,供课堂讨论之用。本书具有很强的教学适用性,有助于培养工程应用型人才。 本书可作为高等学校工科本科非机、非土类各专业中、少学时工程力学课程的教材,也可供高职高专与成人高校师生及有关工程技术人员参考。 第1章静力学基础

1-1静力学中的基本概念 1-2静力学公理 1-3约束和约束力 1-4研究对象和受力图 习题 第2章平面汇交力系 2-1平面汇交力系合成与平衡的几何法 2-2平面汇交力系合成与平衡的解析法 习题 第3章力矩与平面力偶系 3-1关于力矩的概念及其计算 3-2关于力偶的概念 3-3平面力偶系的合成与平衡 习题 第4章平面一般力量 4-1力线平移定理 4-2平面一般力系向一点简化 4-3分布荷载 4-4平面一般力系的 看过“工程力学教程(西南交通大学应用力学与工程系著)课后答案下载”的人还看了: 1.水力学教程第三版黄儒钦主编课后习题答案西南交大出版社

西南交通大学《运筹学IA》考试题

班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线

三判断对错(在括号内打×或√,在横线上说明错误原因,每题3分, 共18分,不说明错误原因不得分。) 1.线性规划模型如果有最优解,则只能在可行域D极点上达到。 (×)如果存在多重解,其它点也能使目标函数达到最优。 2.把线性规划模型加入松弛变量或多余变量,目的是为了确定基本可行解 而构造单位矩阵。(×) 目的是把约束条件方程的不等式变换为等式。 3.原问题最优解也可以从对偶问题的最优单纯形表中读出来。(√) 4.用单纯形法求解时,检验数为零的变量一定是基变量。(×) 如果模型存在多重最优解时,也存在非基变量的检验数为零。 5.运输问题的解可能会有唯一解、多重解、无界解、不可行解。(×) 运输问题必定有最优解,有可能是唯一最优解,也有可能出现多重解。 6.对整数规划模型的非整数解用凑整方法处理后得到的解一定也是模型 的最优解(×) 凑整得到的解有时不是可行解,有时既使是可行解但不一定是最优解。四简答题(共12分) 1.线性规划模型中所谓的“线性”主要指的是?(4分) 答:(1)目标函数是线性的函数形式,有可能是求最大值,如追求利润 最大,也有可能是求最小值,如追求成本最低。(2分) (2)约束条件方程组由线性的等式或线性的不等式组成,有≤、=、≥ 三种形式。(2分) 2.线性规划模型的c j灵敏度分析中,如果c j在允许的范围内变动时,目 标函数值是否也会发生改变?为什么?(8分) 答:(1)当c j 对应的变量x j 为非基变量时,最优解不会改变,目标函数值也不会改变, 因为尽管c j 发生了变动,但作为非基变量x j 的取值为0,所以目标函数中c j x j 项的取值仍然为0。(4分) (2)当c j 对应的变量x j 为基变量时,最优解不会改变,但目标函数值可能会发生

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

教材:线性代数(DOC)

2013届钻石卡学员学习计划---数学三第十五单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第一章行列式 第1章第1节二阶与三阶行列式(P1——P4) 第1章第2节全排列及其逆序数(P4——P5) 第1章第3节n阶行列式的定义(P5——P8) 第1章第4节对换(P8——P9) 第1章第5节行列式的性质(P9——P15) 第1章第6节行列式按行(列)展开(P16——P21) 第1章第7节克拉默法则(P21——P25) 本单元中我们应当学习—— 1.行列式的概念和性质,行列式按行(列)展开定理. 2.用行列式的性质和行列式按行(列)展开定理计算行列式. 3.用克莱姆法则解齐次线性方程组.

2013届钻石卡学员学习计划---数学三 第十六单元(课前或课后学习内容) 计划对应教材:工程数学线性代数同济大学数学系编高等教育出版社第五版 线性代数第二章矩阵及其运算 第2章第1节矩阵(P29——P32) 第2章第2节矩阵的运算(P33——P42) 第2章第3节逆矩阵(P42——P47) 第2章第4节矩阵分块法(P47——P54)

2013届钻石卡学员学习计划---数学三线性代数第三章矩阵的初等变换与线性方程组 第3章第1节矩阵的初等变换(P57——P65) 本单元中我们应当学习—— 1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质. 2.矩阵的线性运算、乘法运算、转置以及它们的运算规律. 3. 方阵的幂与方阵乘积的行列式的性质. 4.逆矩阵的概念和性质,矩阵可逆的充分必要条件. 5. 伴随矩阵的概念,用伴随矩阵求逆矩阵. 6.分块矩阵及其运算.

西南交通大学管理运筹学929 2018年试题和解析

机密★启用前 西南交通大学2018年硕士研究生 招生入学考试试卷 试题代码:929 试题名称:管理运筹学一 考试时间:2017年12月 考生注意: 1.本试题共三大题,共3页,满分150分,请认真检查; 2.答题时,请直接将答题内容写在考场提供的答题纸上,答在试卷上的内容无效; 3.请在答题纸上按要求填写试题代码和试题名称; 4.试卷不得拆开,否则遗失后果自负。 一、 问答题(60分,共10小题,每小题6分)(答在试卷上的内容无效) 1、线性规划模型中,何谓自由变量?自由变量和决策变量是什么关系? 解答: 用设定的未知数来表示线性规划问题问题中的未知量,这个设定的未知量就叫做决策变量,决策变量没有非负约束即为自由变量;自由变量一定是决策变量,但决策变量不一定是自由变量。 2、 请分别解释无可行解、无界解、最优解的概念。 解答: 无可行解:约束方程组没有公共解,造成线性规划模型无解的解。 无界解:没有任何一个可行解能使得目标函数达到最优,即目标函数没有上界或下界。 最优解:在线性规划模型的所有可行解中,使得目标函数达到最优的解。 3、 说明下面的数学模型不符合线性规划模型的什么特点? 1233 1223 21312643230 18 ..3()249,0 z x x x x x x x x s t x x x x =+++≠??+≥?+≤?≥? 解答: (1) 此模型不符合线性规划模型目标函数应该是线性函数的特点;

(2) 此模型不符合线性规划模型目标函数求最大值最小值的特点; (3) 此模型不符合线性规划模型约束条件方程组由线性的等式或线性的不等 式的特点。 4、 以目标函数Min 型为例,从基本可行解、求检验数以及基本可行解改进三个方面说明单纯形法和表上作业法的区别。 解答: (1) 基本可行解:单纯形法是通过构造单位矩阵来确定初始基本可行解,而表 上作业法是通过另外的西北角法、最小元素法或差值法来确定初始基本可行解。 (2) 检验数:单纯形法是算出机会费用j z 以后,直接计算检验数的代数式 j j c z -,而表上作业法是通过另外的闭回路法或者位势法来计算检验数。 (3) 基本可行解改进:单纯形法和表上作业法均是在当0j j c z -≤的情况下进 一步改进基本可行解,即若基本可行解不是最小值,那么需要迭代调整。二者在确定换入变量和换出变量的原则是一样的,但是方法不同,表上作业法是通过闭回路的方法来确定换入变量和换出变量;单纯形法通过行运算进行迭代。 5、 用表上作业法求运输问题的检验数的方法有闭回路法和位势法,位势法的思路是针对基变量ij x 给定系数i u 和j v ,建立方程i j ij u v c +=。请利用闭回路法的思路及以下图形的回路,证明位势法求非基变量检验数的公式ij ij i j c u v λ=--。 非基变量 基变量 基变量 基变量 证明: 因为'''',,ij i j i j x x x 是基变量,由已知条件有以下方程: '''''''',,i j j ij i j i j i i j u v c u v c u v c +=+=+= 根据闭回路法,非基变量的检验数为''''''''()()ij ij ij i j ij i j ij i j i j c c c c c c c c λ=+-+=-+- 即:''''ij ij i j ij i j j i j i c u v u v u v c u v λ=--++--=-- 故证得ij ij i j c u v λ=--。 6、 针对整数规划的分枝定界法: (1) 先使用什么方法求出不考虑整数约束的最优解?(3分) (2) 在整数规划模型中,设定决策变量k x 取值为整数,但用分支定界算法

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

轨道线路安全性评价分析

北京城市学院信息学部 2013-2014-2学期 轨道线路安全性评价分析报告 专业:交通工程(城市轨道交通) 班级:11交通本一 学生姓名:李江 学号:11111611135 二○一四年六月

目录 1.绪论 (1) 1.1线路的作用 (1) 1.2线路安全的意义 (1) 2.线路安全影响因素分析 (1) 2.1目的层分析 (1) 2.2准则层分析 (1) 2.3方案层分析 (1) 3.指标评价方法 (3) 3.1层次分析法评价各指标 (3) 3.2各指标结果分析和评价 (4) 4.总结 (6) 参考文献 (7)

1.绪论 1.1线路的作用 线路是行车的主要的基础设备,因为线路问题可能会导致许多安全事故,如:列车脱轨、列车追尾等重大安全事故的发生,从而影响乘客的财产安全和人身安全。 线路是城市轨道交通的主要技术设备之一,是行车的基础。线路由钢轨、轨枕、道床、道岔、连接零件及防爬设备几部分组成,它的作用是引导机车车辆运行,直接承受由车轮传来的载荷,并把它传给路基。所以它必须具有坚固稳定性,并具有正确的几何形状,线路的平面和纵断面符合规范,才能确保机车车辆的安全、平稳、不间断的运行。 1.2线路安全的意义 由于线路的上述作用,所以线路安全的研究对列车的运行具有重要的意义。保证线路安全可以有效提高列车安全、平稳、舒适和不间断的运行。对线路安全性指标的评价可以容易地知道线路的安全性,从而提高列车运行的安全高效性。 2.线路安全影响因素分析 2.1目的层分析 线路安全是列车运行安全的重要组成部分,确保线路的安全,可以是列车的运行安全、平稳、高效运行。 2.2准则层分析 线路的安全可以用很多的准则去描述线路安全,在本文中,主要以线路的坚固稳定性,符合规定的线路铺设形式两个准则作为分析的主要对象,针对这两个准则本文会利用层次分析法提出一系列的解决方案,将线路安全的定性描述变成定量描述,使线路安全的描述更加方便、可行。 2.3方案层分析 针对线路的坚固稳定性本文主要从提高路基坚固稳定性和增加钢轨坚固稳定性两方面提高线路的坚固稳定性。路基作为线路建设的基础,对道床、钢轨的铺设提供坚固稳定的环境,钢轨坚固稳定的提高能轨道的承受能力,减少钢轨的磨损程度,提高钢轨的使用寿命。 针对符合规定的线路铺设形式主要从轨道不平顺方面进行提高。轨道不平顺指两根钢轨在高低和左右方向与钢轨理想位置集合尺寸的偏差。轨道不平顺对机

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

基于矩阵分析的公共交通网络最优路径算法

第42卷 第3期 2007年6月 西 南 交 通 大 学 学 报J OURNAL OF SOUTHW EST JI A OTONG UN I VERSI T Y V o.l 42 N o .3 Jun .2007收稿日期:2005 05 31 作者简介:何迪(1980-),女,博士研究生,主要研究方向为城市交通,电话:028 ********,E m a i :l hel u cy_1980@yeah .net 通讯作者:严余松(1963-),男,教授,博士,电话:028 ********,E m ai:l yanyu s ong @https://www.360docs.net/doc/e215057997.html, 文章编号:0258 2724(2007)03 0315 05 基于矩阵分析的公共交通 网络最优路径算法 何 迪1 , 严余松1 , 郭守儆2 , 郝 光 1 (1.西南交通大学交通运输学院,四川成都610031;2.西南交通大学土木工程学院,四川成都610031)摘 要:为了更符合实际情况,即充分考虑换乘次数是乘客选择公共交通网络的决定因素,运行时间是其重要因素,分析了乘客心理特征,用G IS 技术建立了公共交通网络模型,构建了适合公共交通分析的直达矩阵和最小换乘矩阵.在此基础上,结合路段、节点运行时间,提出了公共交通网络最优路径算法,并用一个简单的算例对算法进行了说明. 关键词:公共交通网络;地理信息系统;最佳路径中图分类号:U 491 文献标识码:A Opti m al R outi ng A l gorith m for Public Traffic N et work Based onM atrix Anal ysis HE D i 1 , Y AN Yusong 1 , GUO Shoujing 2 , HAO Guang 1 (1.Schoo l o f T raffi c and T ransportation ,South w est Ji aotong U niversity ,Chengdu 610031,Ch i na ;2.Schoo l o f C i v il Eng .,South w est Jiao tong U niversity ,Chengdu 610031,Chi na) Abst ract :In order to ta ll y w ith the actua l sit u ation further ,.i e .,transfer ti m es are a deter m i n i n g facto r and travel ti m e is an i m portant facto r i n passengers cho ice o f a route in a pub lic tra ffic net w or k,the psycho log ical characteristics of passengers w ere ana l y zed ,a public traffic ne t w ork m ode l based on GIS (geog raph i c al i n f o r m ation syste m )w as established ,and the pa t h p lann i n g m atri x and the least transfer m atrix used to the ana l y sis of public traffic w ere constructed .On the basis o f t h e above w orks ,an opti m al routi n g a l g orith m fo r public traffic net w orks w as proposed by consi d er i n g the link travel ti m e and the ti m e at bus stops .Fina ll y ,a si m ple exa mp le w as g iven to sho w th is a l g orit h m.K ey w ords :public tra ffi c net w ork ;G I S (geog raphical i n for m ation syste m );opti m al rou te 目前应用较广泛的公路网络最短路径算法有D ij k stra 算法、Floyd 算法和M oo re Pape 算法.由于城市公交线网的特殊性,公交网络与公路网络最优出行路径算法有很大不同,文献[1]中就指出了公路网络的最优算法应用到公交网络的不足.常见的公交网络最短路径算法是采取对初始和终止站点线路集合向外扩展,逐渐逼近的搜索算法 [2] ,该模式以换乘次数最少为目标,需要进行集合的逐步扩展、排序、求交等, 具有搜索速度慢和目标单一的缺点. 笔者在分析乘客心理和对公交网络G I S (geog raph ical infor m ati o n syste m )描述的基础上,引入特殊矩阵,并将时间因素引入到模型的计算当中,得到最优出行路径.该算法较以往将出行距离作为权重的算法更符合乘客选择出行路径的实际情况,同时结合G I S 技术和特殊矩阵的应用,避免了大量的重复计算,一方面提高了搜索速度,另一方面也简化了算法.

相关文档
最新文档