手性有机化学

手性有机化学
手性有机化学

手性有机化学常识

导致旋光异构现象的原因有两种:

①分子中含有一个或多个手性原子(见手性特征)。含有一个手性碳原子时,有两个旋光异构体,它们具有互为实物和镜像的关系,故也称对映体。对映异构体具有相等的旋光能力,但旋转方向相反,其物理和化学性质极为相似,如甘油醛(如对图片说明中“菲舍尔投影式”有疑问,见菲舍尔投影式):

甘油醛菲舍尔投影式

含有两个相同属性碳原子的分子,有3个旋光异构体,如酒石酸:

酒石酸菲舍尔投影式

其中a和b为对映异构体,c与d也好像是对映体。但实际上c与d是同一种分

子,因为它们可以互相叠合。只要把c以通过C(2)-C(3)键中点,与读者的显示器荧

屏(设荧屏竖直)垂直的线为轴旋转180°,就可以看出来它是可以与d叠合的。也就是说,c和d是相同的。

c的旋光能力由于分子内的两个结构相同但构型(见分子构型)相反的手性原子的存在而互相抵消,称为内消旋体。它与a或b在分子中既有构型相同的部分,又有构型相互对映的部分,这种关系称为非对映异构。非对映异构体不仅旋光性不同,物理和化学性质也不尽相同。环状化合物中含有手性原子时,也可出现以上旋光异构现象。分子中当含有几个不同的手性原子时,其旋光异构体的数目为2^n,n为不同手性原子的个数。旋光异构体可用D-、L-法标记其构型(见单糖),也可用R-、S-法标记其分子中每个原子的构型(见顺序规则)。

②某些分子虽然不含手性原子,但由于分子中的内旋转受阻碍,也可以引起旋光异构现象,例如丙二烯型或联苯型旋光化合物是通过分子中的一个轴来区别左右手征

性;又如旋光性提篮型化合物分子是就一个平面来区别手征性的等。

作为生命的基本结构单元,氨基酸也有手性之分。也就是说,生命最基本的东

西也有左右之分。

手性拆分胺类化合物

外消旋体与另一手性化合物作用生成非对映异构体混合物,利用非对映异构体的物理性质差异较大的特点,可以通过结晶的方法分离,这样的手性化合物称为拆分剂。对于胺类化合物,一般用手性酸拆分。常见的手性酸拆分剂有:酒石酸,苹果酸,樟

脑酸,樟脑磺酸,双丙酮-L-古龙酸,扁桃酸,苯氧丙酸,氢化阿托酸及它们的衍生物等。

通常的拆分方法是把待拆胺类外消旋物和酸拆分剂按照一定比例(1:1,1:0.5等)分别在适当的溶剂中溶清后通过滴加或倾倒的方式混合在一起,在一定温度,搅拌或静止或其他状态下析晶,然后过滤出晶体,加水和碱溶液解离,提取得单一构型产物。拆分剂可回收套用。具体的析晶条件受拆分剂种类,加入的配比,溶剂等多方面的影响。

消旋体

由等量对映体构成的光学不活性的物体。结晶时有右旋微结晶和左旋微结晶的单纯混合物的状态,以及在结晶的单位格子中对映体分子各以相同数目存在的情况。

外消旋体

一种具有旋光性的手性分子与其对映体的等摩尔混合物。它由旋光方向相反、旋光能力相同的分子等量混合而成,其旋光性因这些分子间的作用而相互抵消,因而是不旋光的。并且,虽然对映体的物理性质一般相同,但外消旋体的物理性质如熔点、溶解度等与对应的对映体性质常常是不相同的。外消旋体常用D,L-标记,外消旋体的两种分子除旋光方向相反外,其他物理、化学性质相同,外消旋体是由一个具有潜手性中心的分子在生成一个手性中心时的必然产物。根据药物的不同,有些药物是其多个对映体之一,而有些药物则为外消旋体。事前必须就药物对映体的药理学效果作验证,以减少危险发生。外消旋体还可细分为: 1、外消旋化合物:左旋体与右旋体分子之间有较大亲和力,两种分子在晶胞中配对,形成计量学上的化合物晶体。它们熔点多数高于纯旋光体,溶解度则低于纯旋光体。 2、外消旋混合物:纯旋光体之间的亲和力更大,左旋体与右旋体分别形成晶体。它们熔点通常低于纯旋光体,溶解度则高于纯旋光体。 3、外消旋固体溶液:纯旋光体之间,与对映体之间的亲和力比较接近,两种构型分子排列混乱。熔点、溶解度和纯旋光体比较接近。

制备过程中的确可能会导致消旋,影响的因素很多,强酸、强碱、高温都有可能导致消旋!

网友建议:

这种事情很难说,消旋是常有的事,比如,越是靠近手性碳原子(或是手性碳原子的的邻位有如碳氧双键)等情况,反应将是容易发生消旋,如是无电子转移等条件的情况下要好一些;有些要消旋的化合物也是很难,需在绝对无水无氧的条件下用强碱或强酸下进行消旋。我做的十几种手性化合物的合成或拆分中遇到的楼主所说情况确实有,但按照上述思路都可予以解决。

手性物质消旋很常见,最好是在低温反应下进行,要用手性体系进行反应

消旋受到溶液酸碱性及极性和温度都有影响,所以要先限定条件,在找对照

旋光酒石酸,旋光甲基苄氨都分别是很好的廉价拆碱、拆酸的拆分剂

酶也可以试过用氨基酰化酶拆分DL-N-乙酰氨基酸

不知道你说的是不是对映异构体,如果对映异构体一般只能用拆分方法,如果这个化合物是非对映异构体,柱分离也是可以做到的,而且在TLC板子上一般也能够爬出两个点来。

你那个物质能结晶吗?用结晶的方法也可以拆分!化学拆分,便宜的有LD酒石酸,扁桃酸,猪肝酯酶!贵的可以用手性的柱子,方便快捷!!

第22卷 第4期大学化学2007年8 月 手性化合物的命名 王永梅 张文昊 翟玉平 (南开大学材料化学系 天津300071) 摘要 在总结各种手性化合物命名的基础上,加入了硅,氮,磷,硫,砷手性化合物的命名,着重阐述了新型手性分子的命名法则,并配以实例说明。 随着不对称合成的快速发展,手性化合物的结构和类型日渐丰富。手性碳化合物绝对构型的命名已为人们熟知,而新的手性化合物,如平面手性、螺手性的命名成为需要解决的问题。本文在总结前人工作的基础上,较全面地归纳了各种手性化合物的命名。 1 手性化合物的分类 分子存在手性的条件是分子实物和镜像不能重合。 分子结构是整个命名系统的基础,是命名法的根据。按分子结构可以把手性分子分为6类。 1.1 中心手性 图1显示了几种不同的手性中心,以手性中心为特征的分子称为中心手性化合物。特点是中心原子连有4个不同的基团(或孤对电子)。中心原子可以是主族的C,Si,N,P,A s,S,Ge 等,也可是副族的Mn,Cu,B i,Zn 等 。 图1 不同的手性中心    图2 轴手性化合物(丙二烯) 1.2 轴手性 轴手性在结构上可看作中心手性的衍生。分子中的4个 基团分为两对排列在手性轴的两端。当每对中的两个基团都不相同时,分子有手性。这类化合物包括:丙二烯型, 环己烷 图3 平面手性化合物 型,螺环型和联芳型(图2)。 1.3 平面手性 分子中某一平面两侧的结构不对称,这类化合物称为平 面手性化合物。图3分子中苯环所在平面为手性平面。

1.4 螺手性[1] 螺手性化合物是化合物中比较特殊的情况,分子成右手螺旋或左手螺旋。分子不在一个平面上,产生手性(图4)。 1.5 八面体结构 八面体结构多出现在配位化合物中,配体结构差异与空间排列顺序可以产生手性(图5)。 1.6 其他手性结构 其他结构的化合物也可能有手性,比如手性二茂铁(图6) 。 图5 八面体结构金属配合物  图4 螺手性化合物  图6 手性二茂铁化合物  2 手性化合物的命名 2.1 中心手性 当Cxyz w 系统(图7)中的x,y,z,w 是互不相同的基团时,为中心手性系统 。 图7 Cxyzw 系统 假定根据C I P 顺序规则,取代基x,y,z,w 的顺序为 x >y >z >w 。现在从w 基团的对面看手性中心,x →y →z 是顺时针 方向,定义手性中心为R 构型,否则定义手性中心为S 构型。图7 的Cxyz w 系统为R 构型。 对于金刚烷类化合物[1],可以在4个叔碳上连接4个取代基形 成4个季碳原子。若取代基选择合适,则成为手性中心。可以分别描述这些季碳原子的构型,也可以将整个金刚烷型化合物作为一个整体。通常把金刚烷框架的中心看作整个化合物的手性中心,整体描述其构型(图8) 。 图8 金刚烷型化合物   2.2 轴手性 轴手性化合物的命名遵循与中心手性系统命名类似的规则。从沿轴的方向看,离观察者近的两个基团优先于远离观察者的两个基团,同侧基团的顺序遵循顺序规则。命名时从轴的任一方向观察分子不影响命名结果(图9)。 以图9丙二烯型分子为例,从分子左侧观察,基团顺序为a →b →c,顺时针方向,分子为R 构型。同理,从右侧观察,基团顺序为c →d →a,也是R 构型。

超材料行业行动计划产业投资建设规划

超材料指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料,是21世纪以来出现的一类新材料,具备天然材料所不具备的特殊性质。其在声学、电学、磁学或光学等方面的材料特性是由基体和基体中的微结构共同决定的,而且微结构在其中起到了决定性的作用。超常的物理特性使得超材料的应用前景十分广泛,其应用范围覆盖了工业、军事、生活等各个方面。例如,电磁超材料可以用于隐身衣、电磁黑洞、慢波结构等元器件的制作,适用于吸波材料、智能蒙皮、雷达天线、通信天线,对未来的雷达、通信、光电子/微电子、先进制造产业以及隐身、探测、核磁、强磁场、太阳能及微波能利用等技术将产生深远的影响。 当前我国正处于全面建设小康社会的关键发展阶段,国内国际环境总体上都有利于我国加快发展。相关产业作与国民经济关联度比较高,随着推进工业化和城镇化进程,都将拉动相关产业的快速发展。 为加快区域产业结构调整和优化升级,依据国家和xx省产业发展规划,结合区域产业xx年发展情况,制定该规划,请结合实际情况认真贯彻执行。 第一部分规划思路

以产业转型升级为发展主线;以质量效率型、集约增长型为主要 发展方式;以创新驱动为主要发展途径。促进区域产业总体保持中高 速增长,产业迈向中高端水平,实现产业发展质量和效益全面提升。 第二部分原则 1、坚持融合发展。推进业态和模式创新,促进信息技术与产业深 度融合,强化产业与上下游产业跨界互动,加快产业跨越式发展。 2、协同发展,实现互利共赢。加强区域产业集中谋划,统筹产业 协同发展。创新产业合作模式,打破市场壁垒,推动要素自由流动, 构建多层次、宽领域的产业融合发展机制,实现优势互补、互利共赢。 3、因地制宜,示范引领。着眼区域实际,充分考虑经济社会发展 水平,逐步研究制定适合区域特点的能效标准。制定合理技术路线, 采用适宜技术、产品和体系,总结经验,开展多种示范。 第三部分产业发展分析 超材料指的是一些具有人工设计的结构并呈现出天然材料所不具 备的超常物理性质的复合材料,是21世纪以来出现的一类新材料,具 备天然材料所不具备的特殊性质。其在声学、电学、磁学或光学等方 面的材料特性是由基体和基体中的微结构共同决定的,而且微结构在 其中起到了决定性的作用。

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

探索新型手性配体是不对称合成研究的重点内容。人们在探索新型手性配体的过程中发现,三种类型的手性骨架的不对称诱导效果一般是比较优异的:联萘骨架、螺二氢茚骨架以及二茂铁骨架。 其中二茂铁骨架相比起其它两种骨架的不同之处在于它独特的平面手性。平面手性的二茂铁衍生物作为配体在现代不对称合成中占有十分重要的地位,大到工业化应用,小到新型反应探索,都有它们的用武之地。以二茂铁配体家族中最有名的Josiphos类配体为例,根据取代基的不同,目前已制备出150多种衍生物,其中有40种被选出来组成配体套装用于条件筛选以及公斤级规模的产品生产。值得一提的是,目前已知最大规模的对映选择性工业生产程序用到的正是二茂铁配体家族中赫赫有名的Josiphos类配体。 鉴于平面手性二茂铁无论是在学术界亦或是工业界的重要应用价值,如何高效地构建结构多样的平面手性二茂铁衍生物是一个特别重要的研究方向。目前合成平面手性二茂铁的策略主要有如下四种:手性辅基诱导的非对映选择性邻位金属化、手性配体控制的对映选择性邻位金属化、催化不对称C-H官能化以及催化动力学拆分。下面将一一介绍。 手性辅基诱导的非对映选择性邻位金属化 在合成平面手性二茂铁的策略中,较早报道并且至今已发展德比较成熟的是手性辅基诱导的非对映选择性邻位金属化。 首例二茂铁衍生物的非对映选择性邻位金属化报道于1969年。Aratani等选择2-甲基哌

啶为导向基,用正丁基锂和干冰处理得到氨基酸中间体,再通过季铵盐化、钠汞齐还原以及重氮甲烷甲基化三步,可以最终94%的光学纯度得到产物2-甲基二茂铁甲酸甲酯。虽然不久后Ugi等重复此实验只得到67%的光学纯度,并就此提出质疑,但是该报道作为非对映选择性邻位金属化的首例是没有争议的。 随后的一年,Ugi等以N,N-二甲基-二茂铁乙基胺为底物进行非对映选择性邻位金属化。他们从二茂铁乙醇3出发,先后与光气和二甲胺反应得消旋产物rac-4,再用酒石酸进行拆分可以十克级的规模高收率得到N,N-二甲基-二茂铁乙基胺(的两个对映异构体(R)-4与(S)-4。 对该中心手性底物(R)-4进行邻位锂化,其中的一个非对映异构中间体因为空间位阻而占优,非对映选择性达到优秀水平,最后用亲电试剂淬灭锂化中间体可以得到平面手性的1,2-二取代二茂铁氨基化合物(R, S p)-5,氨基季铵盐化后,可以进一步发生消除反应或者亲核取代反应,从而转化为多种平面手性的1,2-二取代二茂铁衍生物。 Ugi等报道的这个手性底物在二茂铁衍生物的非对映选择性邻位金属化上取得了巨大的成功,从此为该领域奠定了坚实的基础,并在日后平面手性二茂铁的合成中得到了广泛的应用。为纪念Ugi所做的贡献,这个底物(R)-4又叫做Ugi胺。

DO I :10.3724/S P.J .1096.2010.01011 点击化学制备新型手性配体交换色谱固定相 付春梅1 石宏宇2 李章万1 钱广生 *1 1 (四川大学华西药学院,成都610041) 2 (北京东西分析仪器有限公司,北京102308) 摘 要 采用点击化学反应制备了一种新型L 脯氨酰胺衍生物键合手性配体交换色谱固定相。硅胶与 氯丙基三乙氧基硅烷反应后,再与叠氮化钠反应制备得到叠氮化硅胶。在甲醇溶液中,以溴化亚铜为催化剂,叠氮化硅胶与合成的手性选择子N 炔丙基脯氨酰胺,室温反应48h ,而键合上手性官能团。手性选择子的键合量达0.47mmo l/g ,操作简单,反应条件温和。制备的手性固定相以0.2mm o l/L Cu(A c)2水溶液为流动相,在配体交换模式下拆分了8种D,L 氨基酸,对映体选择因子 在1.14~2.42之间。手性分离能力和稳定性研究表明,点击化学在手性配体交换色谱固定相的制备中具有极大潜力。关键词 点击化学;手性配体交换色谱固定相;L 脯氨酰胺;D,L 氨基酸 2009 10 16收稿;2009 11 23接受*E m ai:l s cu001@163.co m 1 引 言 点击化学(C lick che m istry)是近年发展起来的一种快速合成大量化合物的新方法。自诺贝尔化学奖获得者美国化学家Sharpless 等提出点击化学的概念 [1] ,点击化学在众多研究领域得到迅速发展 [2] 。 点击化学形象地把化学反应过程描述为像点击鼠标一样简单、高效、通用。该方法主要具有以下特征:反应原料易得,反应简单可靠,对氧气、水不敏感,产物立体选择性好、产率高,反应后处理及产物分离简 单方便,反应副产物对环境友好。目前,得到广泛应用的点击化学反应是通过Cu + 催化,炔基与叠氮基反应生成单一的反式三氮唑分子 [3,4] ,该反应属于1,3 双偶极H u isgen 环加成反应。目前,点击化学反 应已成功用于色谱固定相的制备,例如文献[5~7]利用点击化学反应制备了多种反相H PLC 固定相和环糊精键合硅胶手性固定相;Kacprzak 等 [8] 利用该反应制备了金鸡纳生物碱键合硅胶手性固定相; S later 等[9] 利用该反应制备了刷型手性固定相。 本研究利用Cu + 催化的点击化学反应将L 脯氨酰胺衍生物键合到叠氮化改性硅胶上,制备了一种新型手性配体交换色谱固定相(C li c k CSP)。研究表明,合成的C lick CSP 能有效拆分D,L 氨基酸。 2 实验部分 2.1 仪器与试剂 高效液相色谱系统,由W aters 6000A 输液泵、W aters 440紫外检测器、Rheodyne 7725i 进样阀、Pho toelectron CBL M odel 100柱温箱和四川知本ZB 2010色谱工作站组成;A lltech 1666匀浆装柱机(美国A lltech 公司);Carlo E rba 110b 元素分析仪(意大利M ilaro 公司)。无定形硅胶(5 m ,天津市化学试剂二厂);CuB r 、五甲基二乙撑三胺(化学纯,国药集团化学试剂有限公司);所有氨基酸均为生化纯(上海生化试剂厂);水为超纯水;其余试剂均为分析纯。2.2 色谱固定相的制备 手性键合固定相的制备路线如图1所示。2.2.1 N 炔丙基脯氨酰胺的合成 在100mL 圆底烧瓶中分别加入1.14g L 脯氨酰胺、0.4g N a OH 、3 4mL 氯丙炔(60%甲苯溶液)、50mL 乙醇,搅拌,室温反应8h ,减压蒸干得淡黄色粗产物,经硅胶柱分离得1.22g N 炔丙基脯氨酰胺,产率81%。 2.2.2 氯丙基硅胶的制备 在100m L 圆底烧瓶中加入2.0g 无定形硅胶、2.0mL 氯丙基三乙氧基 第38卷2010年7月 分析化学(FENX I HUAXUE ) 研究简报Ch i nese Journal o fA na l y ti ca l Che m istry 第7期1011~1014

第27卷第10期强激光与粒子束V o l.27,N o.10 2015年10月H I G H P OW E R L A S E R A N D P A R T I C L E B E AM S O c t.,2015 光学超材料的制备方法与参数提取* 李克训1,赵亚丽1,4,江波1,王东红1,王军梅2,3 (1.中国电子科技集团公司第三十三研究所电磁防护材料及技术山西省重点实验室,太原030006; 2.中国科学院山西煤炭化学研究所煤转化国家重点实验室,太原030001; 3.中国科学院大学,北京100049; 4.山西大学化学化工学院,太原030006) 摘要:在光学超材料研究过程中,其微观结构的控制制备技术至关重要三综述了国内外在光学超材料制备方法方面的大致发展历程三重点介绍了二维光学超材料的制备技术,并分析对比了各种经典制备方法的 优缺点三在二维光学超材料制备方法基础上,进一步叙述了三维光学超材料的传统制备和新的研究制备方法三 简要介绍了均匀介质光学超材料的介电常数二磁导率二折射率和阻抗等有效电磁参数的提取过程三 关键词:光学超材料;实验;有效参数;刻蚀;自组装 中图分类号: O436文献标志码: A d o i:10.11884/H P L P B201527.103233光学超材料是由亚波长结构单元或具有特异电磁特性的超原子组成的人工微纳结构材料三随着各个相关领域的发展,包括光磁学[1],光负折射率材料[2],巨大的人工手性[3],超材料非线性光学[4]和电磁隐身斗篷[5]等在内的光学超材料的诸多研究领域受到广泛关注三正如材料科学的许多分支一样,光学超材料的研究重点不仅仅是理论分析二设计与性能检测,还包括其具体微纳结构的制备技术与结构实现三在理论预测和仿真模拟方面,无论具有多么奇特的物理现象,都只有当其结构能够真正得以实现时,才能真正去验证理论推测和模拟结果三近年来,随着纳米加工技术的发展,特别是激光器[6]二飞秒激光[7]以及先进光学制造技术[8]的出现,使得光学超材料的制备技术得以快速发展三由于其结构单元需要控制在光波长范围,即几百纳米,所以相比微波频段的超材料结构,光学超材料的制备更富有挑战性三本文将分别叙述二维(2D)和三维(3D)光学超材料的制备方法,并简要介绍光学参数的提取,这将有利于光学超材料的模拟仿真和设计制备三 12D光学超材料制备 2D光学超材料的制备方法,主要包括电子束刻蚀(E B L)[9-11]二聚焦离子束(F I B)[12]二干涉刻蚀(I L)[13-14]和纳米压印刻蚀(N I L)技术[15-16]等方法三 1.1电子束刻蚀 电子束刻蚀是以电子聚焦束来代替光刻蚀中的光束,通过曝光在样品表面形成所需要的图案[9]三在光学超材料领域,大多数具有里程碑意义的研究结果,如负折射现象[10]二显著的磁响应[11]和巨大的手性效应[3]等都是通过电子束刻蚀来实现的三由于高能电子的德布罗意波长要远小于光波长,可以明显改变E B L系统中由于光的衍射极限造成的斑点,使其可以小到几个纳米,以便得到精细到纳米级别的图案三由于E B L为无掩模工艺,图形可以通过软件来控制,使其成为制备平面纳米结构最为普遍的工具三其主要缺点是效率低,时间长,价格高三因此,不适合制作大面积或批量制备光学超材料结构三 1.2聚焦离子束 与E B L不同,该法是用镓离子聚焦束来实现图形化,加速离子具有几十k e V的能量,足以溅射出样品表面的金属或电介质原子,其离子束聚焦光斑约为10n m,使其成为制造光学超材料的一种替代技术三与电子束刻蚀相比,不涉及后处理过程,且操作过程相对比较简单,能在短短20m i n内,制备出面积为16μm?16μm 的开口谐振环纳米图形结构[12]三虽然F I B法在时间上效率比较高,但其并不是制造高品质光学超材料的首选三该过程在本质上是一种破坏和污染过程,过程中高能离子束可以注入到样品表面,导致超材料结构的单元成分和形状发生改变,并进一步造成超材料性能预测与实际观测之间的差异三因此,该法在特定设计中可以快速图形化,但不作为2D光学超材料结构的一般性制备方法三 *收稿日期:2015-05-01;修订日期:2015-07-17 基金项目:山西省青年科学基金项目(2014021020-1);预研项目(201262401090404);国家重点基础研究发展计划(2013C B A01700) 作者简介:李克训(1982 ),男,硕士,主要从事电磁防护研究;l i k e x u n c c@126.c o m三 通信作者:王军梅(1986 ),女,博士,主要从事发光与光催化研究;j u n m e i_88@126.c o m三 103233-1

手性超材料研究进展 钟柯松2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov 等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang 等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电流回

1超材料 1.1概述 超材料(Metamaterials)指的是一种特种复合材料或结构,通过在材料关键物理尺寸上进行有序结构设计,使其获得常规材料所不具备的超常物理性质。超材料由自然材料制成的“积木块”(尺寸为微毫米级)构成。这些“积木块”称为人工原子(meta-atoms),当不同的人工原子组合在一起时,会形成单个人工原子所没有的材料属性和功能特征。 一般情况下,常规自然材料的物理属性取决于构成材料的基本单元及其结构,例如原子、分子、电子、价键、晶格等。这些基元与显微结构之间存在关联影响。因此,在材料设计中需要考虑多种复杂的物性因素,而这些因素的相互影响也往往限定了材料性能固有极限。为此,超材料设计从根本上摒弃了自然原子设计所囿,利用人工构筑的几何结构单元,在不违背物理学基本定律的前提下,以期获得与自然材料迥然不同的超常物理性质的新材料。 简言之,超材料是一大类型人工设计的周期性或非周期性的微结构功能材料,具有超越天然材料属性的超常物理性能。超材料借助人工功能基元构筑的结构设计源起于(但不限于)对自然材料微结构的模仿,从而获得为人类所希冀的负折射、热隐身、负刚度、轻质超强等天然材料所不能呈现的光、热、声、力学等奇异性能。从这个角度讲,超材料的结构设计理念具有方法论的意义,解除了天然材料属性对创造设计的束缚。尽管这一理念早在上个世纪就已在电磁领域初具雏形,不过直至近十年来,方才开启研发电磁波的调控,以实现负折射、完美成像、完美隐身等新颖功能。随着先进制造技术的进步,具有更多样化、更新奇力学特性的力学超材料物理模型也相继不断展现。尤其是当超材料的个性化独特微结构设计与3D

手性分子绝对构型的确定 手性分子可以分为下面几种类型:中心手性分子,轴手性分子,平面手性分子及螺旋手性分子。 下面用R/S 命名法依次对它们进行命名。 中心手性分子: 如果一个原子连接四个不同的基团,则称这个原子具有手性。常见的有C, N, P, S, Si, As 等原子。 判断方法:先将与手性原子相连的四个原子(团)按次序规则进行排列,然后将次序最小的原子(团)放在距观察者最远的位置,再观察其他3个原子(团)的排列次序,若由大到小的排列次序为顺时针方向,则R 为型,若为逆时针方向,则为S 型. e a 假定原子的优先次序为a >b > d >e b d 为顺时针方向,R 型 b d 为逆时针方向,S 型 轴手性分子:四个基团围绕一根轴排列在平面之外的体系,当每对基团不同时,有可能是不对称的。轴手性分子可分为以下几种类型: 丙二烯型分子:螺环型分子: 环外双键型分子: 联苯型分子: C 3 3 H 3 3 H 3 (远端) 逆时针方向,R 型 顺时针方向,R 型 (近端)逆时针方向,S 型 (近端)逆时针方向,S 型 从左向右看: 从左向右看: (远端) 判断方法:从左向右看,先看到的基团为近端,用实线表示,后看到的基团为远端,用虚线 表示,然后从近端的大基团看到近端的小基团再看到远端的大基团(不看远端的小基团),若为顺时针方向,则为则R 为型,若为逆时针方向,则为S 型. 平面手性分子:平面手性通过对称平面的失对称作用而产生,其手性取决与平面的一边与另

一边的差别,还取决与三个基团的种类。判断方法:第一步是选择手性平面,第二步是确定平面的优先边,这个优先边可以通过按标准的顺序规则在直接连接到平面原子的原子中找到哪一个是最优先的来确定。连接到平面的一套原子中的最优先原子,即先导原子或导向原子标记了平面的优先边(标记为1号),第二优先(标记为2号)给予手性平面直接与1号基团成轴连接的原子,等等,对于1-2-3为顺时针方向,则为R p 为型,若为逆时针方向,则为S p 型. 例如: S p 型R p 型 螺旋手性分子:螺旋性是手性的一个特例,其中分子的形状就像右的或左的螺杆或盘旋扶梯,从旋转轴的上面观察,看到的螺旋是顺时针方向的定为P 构型,而逆时针方向的定为M 构型. 例如: M 型 几个例子: 22 3 从上往下看: 顺时针方向,R 构型 近端 远端 从左向右看: R S 参考文献 《有机结构理论》,图书馆藏书

“超材料(metamaterial)”指的是一些具有人工设计的结构并呈现出天然材料所不具备的超常物理性质的复合材料。“超材料”(Metamaterial)是21世纪以来出现的一类新材料,其具备天然材料所不具备的特殊性质,而且这些性质主要来自人工的特殊结构。 超材料的设计思想是新颖的,这一思想的基础是通过在多种物理结构上的设计来突破某些表观自然规律的限制,从而获得超常的材料功能。超材料的设计思想昭示人们可以在不违背基本的物理学规律的前提下,人工获得与自然界中的物质具有迥然不同的超常物理性质的“新物质”,把功能材料的设计和开发带入一个崭新的天地。 典型的“超材料”有:“左手材料”、光子晶体、“超磁性材料”、“金属水”。 六类超材料及用途 1、自我修复材料——仿生塑料 伊利诺伊大学的Scott White研发出了一种具备自我修复能力的仿生塑料。这种聚合物内嵌有一种由液体构成的“血管系统”,当出现破损时,液体就可像血液一样渗出并结块。相比其他那些只能修复微小裂痕的材料,这种仿生塑料可以修复最大4毫米宽的裂缝。 2、热电材料 一家名为Alphabet Energy的公司开发出了一种热电发电机,它可被直接插入普通发电机的排气管,从而把废热转换成可用的电力。这种发电机使用了一种相对便宜和天然的热电材料,名为黝铜矿,据称可达到5-10%的能效。科学家们已经在研究能效更高的热电材料,名为

方钴矿,一种含钴的矿物。 热电材料目前已经开始了小规模的应用——比如在太空飞船上——但方钴矿具备廉价和能效高的特点,可以用来包裹汽车、冰箱或任何机器的排气管。 3、钙钛矿 除晶体硅外,钙钛矿也可可用来制作太阳能电池的替代材料。在2009年,使用钙钛矿制作的太阳能电池具备着 3.8%的太阳能转化率。到了2014年,这一数字已经提升到了19.3%。相比传统晶体硅电池超过20%的能效。科学家认为,这种材料的性能依然有提升的可能。钙钛矿是由特定晶体结构所定义的一种材料类别,它们可以包含任意数量的元素,用在太阳能电池当中的一般是铅和锡。相比晶体硅,这些原材料要便宜得多,且能被喷涂在玻璃上,无需在清洁的房间当中精心组装。 4、气凝胶 气凝胶可由任意数量的物质所制成,包括二氧化硅、金属氧化物和石墨烯。由于空气占了绝大部分比重,气凝胶还是一种绝佳的绝缘体。它的结构也赋予其超高的强韧性。 NASA的科学家已经在实验一种由聚合物所制成的柔性气凝胶,作为太空飞船在穿过大气层时的绝缘材料。 5、Stanene——导电率100%的材料 和石墨烯一样,Stanene也是一种由单原子层所制作的材料。但由于使用了锡原子而非碳原子,这使其具备了石墨烯所无法实现的特性:

2018年第26卷 第1期,66~76 合成化学 Chinese Journal of Synthetic Chemistry V o l.26, 2018 No. 1,66-76 ?综合评述? 以联萘酚$binol)为骨架的轴手性化合物 在不对称催化中的研究进展 朱广乾,王鹏! (山东科技大学化学与环境工程学院,山东青岛266590) 摘要:具有C!对称轴的1,r-联二萘酚(B IN0L)具有非手性碳的手性旋光构型,此类分子的独特立体结构决定 了分子兼具刚性和高的立体控制能力,以联萘酚为骨架衍生的一系列新颖的化合物以其优越的手性控制性能和 手性催化剂方面的优良应用而备受关注。本文以有机合成中深具研究前景的不对称催化为切人点,综述了具有 手性联萘酚结构的磷酸化合物、联萘酸金属磷酸盐化合物、联萘酚膦化合物以及相关衍生物在不对称催化反应 中的研究进展。参考文献36篇。 关键词:联萘酚;金属磷酸盐;联萘酚膦配体;不对称催化;综述 中图分类号:0621.3文献标志码:A D O I:10. 15952/j. cnki. cjsc. 1005-1511.2018.01. 17099 P r o g r e s s i n C h i r a l C o m p o u n d s D e r i'^e d f r o m B i n a p h t h o l(B I N O L)S k e l e t o n i n A s y m m e t r i c C a t a l y s i s ZHUGuang-qian,WANG Peng* (College of Chemistry and Environmental Engineering,Shandong University of Science and Technology,Qingdao 266590,China) A b s tra c t: 1,1^-EJinaphthol!^BIN0L)w itli C2symmetry w as chiral optical configuration which has none chiral carbon.The unique spatial structure l eads this type of molecule has high trol a bility.A series of novel chiral compounds derived from B I1N0L structure have provided their supe-rior performance based on stereo control ability and the use of asymmetric cataly introduce the applications of the BIN0L based complexes w itii optical activi chiral phosj^horic acid,binaphthol metal phosj^hate,binaphthol phosj^horus li g ands and related deriva-tives in asymmetric catalytic reactions,were reviewed w it!i 36 references. K e yw o rd s:binaphthol(BIN0L); binaphthol metal phosphate;binaphthol phosphorus ligand;asym-metric catalytic reaction;review 自然界的基本生命现象和相关定律都是由手 性(或称为不对称性)产生的,手性是自然界尤其是生命体的一个基本属性。生命物质如蛋白质、核酸、多糖等都是手性的,这些物质在生命体内均以某特定的单一构型存在,完成相关的催化等特定任务。手性化合物的对映异构体虽然在结构上 很相似,但对生物体而言,许多手性化合物的对映 异构体会表现出不同的特性。因此在进行不对称 收稿日期:2017-05-02;修订日期:2017-12-05 基金项目:国家自然科学基金资助项目(21101099) 作者简介:朱广乾(1993 -),男,汉族,山东章丘人,硕士研究生,主要从事不对称有机合成研究。E-mail: 1015376970@qq.c m 通信联系人:王鹏,副教授,Tel. 0532-********,E-mail:pengwang@https://www.360docs.net/doc/e217732838.html,

相关文档
最新文档