随机过程及其统计描述

注意: 这是第一稿(存在一些错误) 第四章概率论习题__偶数.doc 2方案一:平均年薪为3万 方案二:记年薪为X ,则( 1.2)0.2p X ==,( 4.2)0.8p X == 1.20.2 4.20.8 3.63EX =?+?=> 故应采用方案二 4()1228p X == ,()1314p X ==,()3428p X ==,()157p X ==,()5628p X ==,()3714p X ==,()1 24p X ==, 1131531 23456786281428728144 EX =?+?+?+?+?+?+?=。 6不会 8()()22002,2x x x x X f x f x y dy e dy e x --= ==?? ,0x <<+∞ (1)()200122 x X EX xf x dx xe dx ∞∞-===?? (2)()1 31312 E X EX -=-= (3)()()20021 ,,4 x x E X Y xyf x y dxdy xy e dydx x ∞∞∞--∞-∞===????。 10()8,9X U ,()8,9Y U ()()99 8 8 1 ,3 E X Y x y f x y dxdy -=-= ?? 小时 即先到的人等待的平均时间为20分钟。 12,0, ()0,0.t e t f t t λλ-?>=?≤? 88 8 18t t e ET t e dt e dt λ λλλλλ -∞ ---=+= ??。 14(1)1a =时,()2142150n C p C ξ==,()11 114 2 151n C C p C ξ== 11 11421524153 n C C E C ξ==≠ 2a ≥时,()21522150a C p C ξ-==,()111522 151a a C C p C ξ-==,()2 2215 2a C p C ξ==

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

概率统计与随机过程 课程编号:H0600071S学分: 4 开课学院:理学院课内学时:64 课程类别:学科基础课课程性质:必修 一、课程的性质和目的 课程性质:本课程是我校有关专业的学科基础课 目的:通过本课程的学习,使学生系统地掌握概率论、数理统计和随机过程的基本理论和基本方法,为后续各专业基础课和专业课的学习提供必要的数学理论基础。另外,通过本课程的系统教学,特别是讲授如何提出新问题、思考分析问题,培养学生的抽象思维能力、逻辑推理能力以及解决实际问题的能力,从而逐步培养学生的创新思维能力和创新精神。 二、课程教学内容及基本要求 (一)课程教学内容及知识模块顺序 第一章概率论的基本概念 8学时 (1)随机试验 (2)样本空间、随机事件 (3)频率与概率 (4)等可能概型(古典概型) (5)条件概率 (6)独立性 教学基本要求: 了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,熟练掌握事件之间的关系与运算。了解事件频率的概念,理解概率的统计定义。了解概率的古典定义,会计算简单的古典概率。了解概率的公理化定义,熟练掌握概率的基本性质,会运用这些性质进行概率计算。理解条件概率的概念、概率的乘法定理与全概率公式,会应用贝叶斯(Bayes)公式解决比较简单的问题。理解事件的独立性概念。理解伯努利(Bernoulli)概型和二项概率的计算方法。 第二章随机变量及其分布 6 学时 (1)随机变量 (2)离散型随机变量及其分布律 (3)随机变量的分布函数 (4)连续型随机变量及其概率密度 (5)随机变量的函数的分布 教学基本要求: 理解随机变量的概念,了解分布函数的概念和性质,会计算与随机变量相联系的事件的概率。理解离散型随机变量及其分布律的概念,熟练掌握0-1分布、二项分布和泊松(Poisson)分布。理解连续型随机变量及其概率密度的概念,熟练掌握正态分布、均匀分布和指数分布。会根据自变量的概率分布求简单随机变量函数的概率分布。

北京工业大学2007-2008学年第一学期期末 数理统计与随机过程(研) 课程试题 学号 姓名 成绩 注意:试卷共七道大题,请将答案写在答题本上并写明题号与详细解题过程。 考试时间120分钟。考试日期:2008年1月10日 一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布 ),(254σN ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 问:该日生产的零件的平均重量是否正常(取显著性水平050.=α)? 二、 (15分)在数 14159263.=π的前800位小数中, 数字93210,,,,, 各出现的次数记录如下 检验这10个数字的出现是否是等概率的?(取显著性水平050.=α) 三、(15分)下表给出了在悬挂不同重量(单位:克)时弹簧的长度(单位:厘米) 求y 关于x 的一元线性回归方程,并进行显著性检验. 取显著性水平050.=α, 计算结果保留三位小数. 四、(15分)三个工厂生产某种型号的产品,为评比质量,分别从各厂生产的产品中随机抽取5只作为样品,测得其寿命(小时)如下:

在单因素试验方差分析模型下,检验各厂生产的产品的平均寿命有无显著差异?取显著性水平050.=α, 计算结果保留三位小数. 五、(15分)设}),({0≥t t N 是强度为3的泊松过程, 求(1)})(,)(,)({654321===N N N P ; (2)})(|)({4365==N N P ; (3)求协方差函数),(t s C N ,写出推导过程。 六、(15分)设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,一步 转移概率矩阵为 121414201335250P ?? ? = ? ??? (1)求}|,,,,{202021054321======X X X X X X P ; (2)求}|{122==+n n X X P ; (3)证明此链具有遍历性(不必求其极限分布)。 七、(15分)设有随机过程 )sin()cos()(t B t A t X ππ+=,其中A 与B 相 互独立且都是均值为零,方差为2σ的正态随机变量, (1)分别求)(1X 和)(4 1 X 的一维概率密度; (2)问)(t X 是否是平稳随机过程? 标准答案(仅供参考) 一、(10分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布 ),(254σN ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 如果标准差不变,该日生产的零件的平均重量是否有显著差异(取05.0=α)? 解:按题意,要检验的假设是 54:0=μH ,因2σ未知,故用-t 检验法,由05.0=α,查t 分布表得临界 值2622290250.)(.=t ,由样本值算得 382514654.,.==t x

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C ==? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞ ==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2 ==k X D k σ, 则0∈>?,有

北京工业大学2009-20010学年第一学期期末数理统计与随机过程(研) 课程试卷一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平)?050.=α解:这是单个正态总体),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0μ-=已知80=x ,8=s ,n =28,850=μ,计算得n s x T /0μ-=31.328/88580=-=查t 分布表,05.0=α,自由度27,临界值.052.2)27(025.0=t 由于,故拒绝0H ,即在显著水平05.0=α下不能认为该班的英语 052.2>T 2622.2>成绩为85分.二、某图书馆每分钟借出的图书数有如下记录:借出图书数 k 0 1 2 3 4 5 6≥7频数 f 8 16 17 10 6 2 1 0试检验每分钟内借出的图书数是否服从泊松分布? (取显著性水平) 050.=α解:由极大似然估计得.2?==x λ在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。则有估计 }{k X P ==i p ? ,7,0,!2}{?2===-k k e k X P k =0?p 三、某公司在为期10年内的年利润表如下: 年份 1 2 3 4 5 6 7 8910利润 1.89 2.19 2.06 2.31 2.26 2.39 2.61 2.58 2.82 2.9 通过管线敷设技术,不仅可以解决有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电力保护装置调试技术,电力保护高中资料试卷配置技术是指机

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

一、(10分)某工程部队的工程师向领导建议,他提出的一项新工艺在不降低工程质量和影响工程进度的同时,还将节省机器运转的开支。假如采用旧工艺时机器每星期运转开支平均是1000元,又假定新旧工艺机器每星期运转开支X 都是服从正态分布,且具有标准差250元。使用新工艺后观察了9个星期,其机器运转开支平均每星期是750元。试在01.0=α的水平下,检验工程师所述是否符合实际,即新工艺是否能节省开支。 (3554.3)8(005.0=t ,8965.2)8(01.0=t ,57.2005.0=u ,33.201.0=u ) 二、(12分)设母体 X 服从正态分布),(2σμN ,X 是子样),,,(21n X X X Λ的平均数, ∑=-=n i i n X X n S 1 2___ 2 )1(是子样方差,又设),(~21σμN X n +,且与n X X X ,,,21Λ独立,求: (1)X E ,X D ,2 n ES ,2n DS ;(2)统计量 1 1 1+--+n n S X X n n 的分布。 三、(13分)一个罐中装有黑球和白球,其中黑球、白球的个数均未知,如何用统计的方法估计其中黑球与白球的比例。(建立模型并给出两种估计方法) 四、(15分)以下为温度对某个化学过程的生产量的影响的数据: 已知 X 和Y 之间具有线性依赖关系。 (1)写出其线性回归模型,并估计参数βα,; (2)讨论回归系数的性质(分布)。 五、(10分)设有一随机过程)( t X ,它的样本函数为周期性的锯齿波。下图(a )、(b )画出了二个样本函数图。各样本函数具有同一形式的波形,其区别仅在于锯齿波的起点位置不同。设在0=t 后的第一个零值点位于0τ,0τ是一个随机变量,它在) , 0 ( T 内均匀分布,即 ?????≤≤=其它值 00 1 )( 0T t T t f τ

05-06概率论与随机过程试题(A ) 一、选择题 1.设0

2. 设随机变量X 的密度函数为, 0 1, ()0, .ax x f x <

北京工业大学2009-20010学年第一学期期末 数理统计与随机过程(研) 课程试卷 学号 姓名 成绩 注意:试卷共七道大题,请写明详细解题过程。 考试方式:半开卷,考试时只允许看教材《概率论与数理统计》 浙江大学 盛 骤等编第三版(或第二版)高等教育出版社。可以看笔记、作业,但不允许看其它任何打印或复印的资料。考试时允许使用计算器。考试时间120分钟。考试日期:2009年12月31日 一、随机抽取某班28名学生的英语考试成绩,算得平均分数为80=x 分,样本标准差8=s 分,若全年级的英语成绩服从正态分布,且平均成绩为85分,问:能否认为该班的英语成绩与全年级学生的英语平均成绩有显著差异(取显著性水平050.=α)? 解:这是单个正态总体 ),(~2σμN X ,方差2σ未知时关于均值μ的假设检验问题,用T 检验法. 解 85:0=μH ,85:1≠μH 选统计量 n s x T /0 μ-= 已知80=x ,8=s ,n =28,850=μ, 计算得n s x T /0μ-= 31 .328/885 80=-= 查t 分布表,05.0=α,自由度27,临界值052.2)27(025.0=t . 由于052.2>T 2622.2>,故拒绝 0H ,即在显著水平05.0=α下不能认为 该班的英语成绩为85分.

050.= 解:由极大似然估计得.2?==x λ 在X 服从泊松分布的假设下,X 的所有可能的取值对应分成两两不相交的子集A 0, A 1,…, A 8。 则}{k X P =有估计 =i p ?ΛΛ,7,0, !2}{?2 ===-k k e k X P k =0?p

概率论与随机过程习题 答案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ?? ????=n n n n S 100, ,1 ,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品 都取出,记录抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: {} ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职 务),观察选举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其 中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几 种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如 连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为 正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装 一只球,观察装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示 球a 放在盒子A 中,余者类推。 (10)测量一汽车通过给定点的速度。 解:{}0>=v v S (11)将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段, 第三段的长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C B A (2) A 与B 都发生,而C 不发生。 解: C AB

注意: 这是第一稿(存在一些错误) 第七章数理统计习题__奇数.doc 1、解 由θ θθμθ 2 ),()(0 1===? d x xf X E ,204103)(2 221θθθ=-==X D v ,可得θ的矩估计量为X 2^ =θ,这时θθ==)(2)(^X E E ,n n X D D 5204)2()(2 2 ^ θθθ= ? ==。 3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为: 3 2 62121^ =-=- =X θ。 建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L 令014 8))1ln(4ln 8()(ln =--=?-+?=??θ θθθθθθL , 得到θ的极大似然估计值:32^=θ 5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为 ^ 32p = = 建立关于p 的似然函数:32 10)1()2 )1(3()()2)1(( )(22n n n n p p p p p p p L ---= 令0)(ln =??p p L ,求得到θ的极大似然估计值:n n n n p 222 10^++= 7、解 (1)记}4{<=X P p ,由题意有}4{}4{}4{-≤-<=<=X P X P X P p 根据极大似然估计的不变性可得概率}4{<=X P p 的极大似然估计为: 4484.05.0)6 4 ()64( 5.0)25 /2444( )25 /2444( 22^ =-Φ=-Φ-=--Φ--Φ=s s p (2)由题意得:)6 24 ( )25 /244( }{}{105.012-Φ=-Φ=≤=>-=-A s A A X P A X P ,于是经查表可求得A 的极大似然估计为0588.12^ =A

数理统计与随机过程复习资料第1章抽样与抽样分布 1. 设母体,是来自母体的一个子样,若 问C为何值时,CY服从t分布,并给出其自由度。 2. 设母体,是来自母体的一个容量为6的子样,设 ,求常数C,使CY服从分布。

3. 设是来自总体的简单样本,记为前个样本的均值和方差,试求 证:。 第2章参数估计 1. 设母体(二项分布),其中:N已知,p是未知参数。求p的最大似 然估计量。并确定所得估计量的无偏性和相合性。

2. 设母体(二项分布),求参数N,p的矩估计量。 3. 设为母体的一个子样,,当为何值时,Y为的无偏估计量且方差最 小。 4. 设为母体的一个子样,,当满足什么条件时,Y为的无偏估计量, 并求方差。

5. 设为母体的一个子样,求常数C,使为的无偏估计。 6. 设母体X的密度函数为 a与b为参数,求a与b的矩估计。

7. 设母体(正态分布),其中:和为参数。求和的最大似然估计量。 并确定所得估计量的无偏性;若是有偏,进行修正。 8.设母体X的分布密度为 ,其中,求参数的最大似然估计量。 9. 设母体(均匀分布),为参数,为母体的一个子样,,求参数的置 信概率的置信区间。

10. 设母体(正态分布),其中为未知参数,为母体的一个子样,求母 体平均数的置信概率为的置信区间。 11. 两台机床加工同一种零件,分别抽取6个和9个零件,测量其长度计 算得到.。假定各台机床零件长度服从正态分布。求两个母体方差比的置信区间(=0.95)。 12.设是取自总体的一个样本,总体X的密度函数为 (1)求的矩估计和极大似然估计; (2)的矩估计和极大似然估计是否为无偏的。

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解: ? ??????=n n n n S 100 , ,1,0 ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 解:{}18,,4,3 =S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 解: {}10,,4,3 =S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 解: { } ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 解: {}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解: {}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 解: {}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解: {}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 解: {}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放 在盒子A 中,余者类推。 (10) 测量一汽车通过给定点的速度。 解:{}0>=v v S (11) 将一尺之棰折成三段,观察各段的长度。 解: (){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三段的 长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 解:C A (2) A 与B 都发生,而C 不发生。 解: C AB (3) A ,B ,C 都发生。 解: ABC (4) A ,B ,C 中至少有一个发生。 解: C B A ?? (5) A ,B ,C 都不发生。 解: C B A (6) A ,B ,C 中至多于一个发生。 解: A C C A ?? (7) A ,B ,C 中至多于二个发生。 解: C B A ?? (8) A ,B ,C 中至少有二个发生。 解: CA BC AB ??. # 3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 解: {}5=B A ; (2)B A ?。 解: { }10,9,8,7,6,5,4,3,1=?B A ; (3)B A 。 解:{}5,4,3,2=B A ;

第四章 假设检验 假设检验是一种重要应用价值的统计推断形式,是数理统计的分支。从发展历史上有重要的节点为 1 :Pearson 的拟合优度的2χ检验 1900 2:Fisher 的显著性检验 1920 3:Neyman-Pearson 一致最优检验 1928 4:Wald 的判决理论 1950 5:Bayes 方法 (二战之后发展的学派) §4.1 基本术语 关于随机变量的分布、数字特征等,每一种论断都称为统计假设,分为参数假设和非参数假设,例如),(~2σu N X ,假设1,1:==σu H 就称为参数假设;给定一组样本值,假设:H ~X 正态分布,对于分布进行论断,为非参数假设。 无论上面那种假设,都是给出一个对立的假设,比如),(~2σu N X ,那么假设1,1:0==σu H 的对立假设就是1,1:1≠≠σu H ,我们就把0H 称为基本假设,或者原假设,而1H 就称为对立(备选)假设。 为了分别那个假设是对的,需要判断假设真伪,就是对假设做出“否”还是“是”的程序就是检验,这个检验常用否定域形式给出,按照一定规则把样本值集合分成两个部分V V ?,当样本值落入子集V 认为0H 不真,那么V 是0H 的否定域,V 为0H 的接受域。 那么这样就产生了两种错误: 第一类错误α :本来0H 是真,但是却否定了,弃真; 第二类错误β :本来0H 不真,但是却接受为真,叫取伪。 选定一种检验方法,我们希望上述两种错误概率都小。但是给定样本容量,使得两种错误任意小是不可能的,我们主要研究两大类检验方法:

1:样本容量给定,控制第一类错误,使得错误概率有一个上界α,叫做检验的显著性水平,根据这种原则建立的检验就是α水平显著性检验; 2:样本容量给定,控制第一类错误α水平固定,还使得第二类错误最小,就是接受不真实假设的概率最小,否定不真实假设的概率就称为检验功效1-β,使得功效最大,,根据这种原则建立的检验就是α水平最大功效检验,或者最佳检验。 §4.2参数假设检验 设X 符合分布),(θx F ,未知参数θΘ∈参数空间,空间分成两部分0Θ和 Θ-0Θ,二者交集为空。 主要对于正态分布参数的统计假设的显著性检验方法。 1)针对不同问题,提出基本假设与备选假设 0H :θ0Θ∈ 1H :θ0Θ-Θ∈ 如果参数空间仅仅是由0θθ=和1θθ=两个点组成的,那么我们称简单假设,否则是复合假设。 2)给定检验的显著性水平α,其大小依据不同问题不同,比如火箭、飞机等可靠性问题,α要越小越好,对于一般生产问题,太小了则意味着生产时间和成本的增加; 3)建立对于基本假设的统计量和否定域; 4)取样,计算统计量值,落入否定域则判读0H 为假,否则为真。 例子:某种药片制剂中国家规定成分A 的含量X 必须为10%,现在抽取5个片剂试样,测得A 的含量为 10.9% 9.45% 10.38% 9.61% 9.92% 假设)%,10(~20σ=u N X ,按照显著性水平α=0.05进行检验是否与规定10%相符? 解:建立基本假设0H :0u u =,这里显著性水平α=0.05,样本容量为5,样本值如上。 如何确定统计量呢?样本均值X 可以求出,但是这里方差未知,用无偏估 计量* 2n S 来代替2σ,那么统计量 = t )1(~/* 20--n t n S u X n

《概率论与随机过程》第一章习题答案 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 解:? ?? ????=n n n n S 100, ,1 ,0Λ,其中n 为小班人数。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。解:{}18,,4,3Λ=S 。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只 次品都取出,记录抽取的次数。解:{}10,,4,3Λ=S 。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。解:{}Λ,11,10=S 。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个 职务),观察选举的结果。 解:{}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表 示A 为正组长,B 为副组长,余类推。 (6) 甲乙二人下棋一局,观察棋赛的结果。 解:{}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有 哪几种颜色。 解:{}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次 品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 解:{}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1 为正品。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子 装一只球,观察装球的情况。 解:{}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放在盒子A 中,余者类推。 (10)测量一汽车通过给定点的速度。解:{}0>=v v S (11)将一尺之棰折成三段,观察各段的长度。 解:(){}1,0,0,0,,=++>>>=z y x z y x z y x S 其中,z y x ,,分别表示第一段,第二段,第三 段的长度。# 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。解:C B A

相关文档
最新文档