双馈感应风电机组建模控制仿真

双馈感应风电机组建模控制仿真
双馈感应风电机组建模控制仿真

双馈异步发电机原理

双馈异步发电机 双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。 双馈异步发电机变速恒频风力发电机的核心部件。此类发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。当双馈发电

机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。当发电机的转速高于气 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知

直驱型风力发电机组建模

直驱型风力发电机组建模 H56-850直驱型感应风力发电机组模型结构如图7所示,包括风力机、齿轮箱、六相同步发电机、励磁控制器、不可控整流器、PWM 逆变器等。风力机中风轮将风能转化为机械能,再通过风力机的转轴把机械能输入到发电机的转子轴上,经由发电机将机械能转变电能,最后通过发电机变流器控制,实现风电系统的变速恒频发电。由于H56-850直驱型风力发电系统控制变流器系统电机侧采用不可控整流,为此须同步发电机励磁控制维持直流母线电压,同时网侧逆变器用以控制有功功率或转速实现最佳风能跟踪控制。 图7 直驱型风力发电系统 2.1 风力机模型 风力机用于截获流动空气所具有的动能,并将其转化为有用的机械能,再驱动发电机旋转生产电能。由风力机的空气动力学特性可以得到,风力机的输出功率, 3 1(,)2 w w w P w P T AC v ωρλβ== (1) 叶尖速比λ为, w w R v ωλ?= (2) 风力机的输出转矩, 2331 (,)2w w w P w P R T AC ωρλβωλ == (3)

式中P w 为风机输出功率,ωw 为风力机转子转速,T w 为风力机输出转矩,ρ为风电场的空气密度,A=πR 2为叶片面积,C p (λ, β)为风能利用系数,β为桨距控制角,v w 为风电场风速,R 为叶片半径。下图为Matlab/Simulink 中风力机的模块结构框图。 图8 风力机模块结构 图8中风力机输入的风力机转子转速为标幺值,以风能利用系数Cp 为最大值Cpmax 时(此时桨距角β=0)的额定风速和转速为基准值,可由下式得到叶尖速比λ实际值, _max _max _1 __w pu Cp w Cp w pu w w pu rated w v K v v ωλωλω== ? (4) 风力机的风能利用系数(,)P C λβ与桨距角β和叶尖速比λ有关,可采用下式作为Cp 的近似表达式为(来源于1998年Heier 文章,系数须根据武隆的实际数据进行修正), []{} 5()1643283 7(2.5)e 1 (2.5)1(2.5)C p C C C C C C C C λβλββ-Λ=+--++ΛΛ=- ++++ (5) 由于风能利用系数Cp 为最大值Cpmax 且转子转速为ωw_pu_rated 时,风力机的输出功率标幺值P w_pu_Cpmax_rated 小于1,可得风力机输出功率为, ___max_3323 _max max w rated w pu Cp rated w p w p w w Cp p P P P K C v C v v C == (6)

双馈发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位臵上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。 一、双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的 n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速 1

三相感应电机仿真

三相感应电动机起动动态过程仿真软件的开发及应用

摘 要:本文利用MATLAB 语言强大的计算功能和计算结果可视化功能,对电动机起动动态过程进行仿真软件的开发,通过对一台投入使用中的电机进行起动动态过程的仿真,并对其结果进行分析。 关键词:感应电动机,软件开发,动态仿真 Abstract : Using the calculating and consequence visualization functions of MATLAB ,this article developed a simulation softwares for start dynamic processes of motor ,simulated dynamic processes for one working motors and analysised the consequences. Key words : Induction Motor ,Software Development , Dynamic Analysis 随着科学技术的不断发展,电机已成为提高生活效率和科技水平以及提高生活质量的主要载体之一,这就要求我们对电机的运行特性有进一步的了解与掌握。本文主要针对感应电动机的起动动态过程进行仿真软件开发及仿真。 1 仿真软件开发 将电机的数学模型与MATLAB 语言的功能相结合,来编制电机在起动工况下的动态仿真软件。在simulink 中建立感应电机的仿真模型,随后在MATLAB 的工作空间调用龙格-库塔函数,即可得到电机在起动条件下的仿真结果,再应用plot( )命令,得到感应电机的起动仿真曲线。仿真程序流程图如图1所示。 对仿真软件的开发,主要可分为以下几个步骤: 1.1参数的选定 为了编制程序的方便(包括界面可视性效果)及验证程序的正确性,首先选定一台由我公司制造的已知电机作为原型机,用其参数进行仿真软件的开发及模拟。 输入的参数包括:额定功率1800=N P KW ,额定转速1491/min N n r =,定子绕组接线系数0=k (星接),定子绕组相电 阻Ω=08999.0s R ,转子绕组相电阻Ω=10999.0r R ,定子绕组相漏抗Ω=0858.0ls X ,转 子 绕 组 相 漏 抗 Ω=1405.0lr X ,定 子 绕 组 激 磁 电 抗 Ω=2895.3m X ,转子外径m D 65.02=,铁芯 长m L t 83.0=,转动惯量24.113m Kg J m ?=,旋转阻力系数rad s m N Roma /0225.0??=,定子绕组每相串联匝数1801=ω,定子绕组系数936.01=ωK ,转子槽数472=Z ,电机极对数 2=p ,额定电压V U N 6000=,频率Hz f 50=。 输出的数据包括:不同的时间t 时,定、转子的三相电流A i 、B i 、C i 、a i 、b i 、c i ; 转子导条电流、电机转速及电磁转矩等数据。

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

双馈式感应发电机(DFIG)说明

双馈式感应发电机(DFIG)简介 大明 双馈电机(或称为交流励磁电机),它早在四十年代就已经出现。随着电力电子技术和数字控制技术的发展,双馈电机在电气性能方面所具有的一系列优点和巨大的潜力,已经引起国外的高度重视。双馈式感应发电机(Doubly-Fed Induction Generator, DFIG) 使用绕线式转子,由于电力可经由转子侧之电力转换器双向流动,因此发电机馈入电力系统的界面同时包括定子侧(Line side)及转子侧(Rotor side),其电力转换器功率仅为发电机额定功率之20~30%,故成本较低,而且发电机可变速围可达同步转速之±30%,因此性能/价格比值最高,为目前大型风力发电机中最普遍采用之组态。全球前10大风力发电机制造商的产品中有六成以上的变速风力发电机采用双馈式感应发电机,本文将介绍双馈式感应发电机的基本原理与特性。 一、双馈式感应发电机(DFIG)基本原理 双馈式感应发电机(DFIG)是在同步发电机和异步发电机的基础上发展起来的一种新型发电机,其转子具有三相励磁绕组结构。当通以某一频率(转差频率)的交流电时,就会产生一个相对转子旋转的磁场,转子的实际转速加上交流励磁产生的旋转磁场所对应的转速等于同步转速,则在电机气隙中形成一个同步旋转磁场,在定子侧感应出同步频率的感应电势。从定子侧看,这与同步发电机直流励磁的转子以同步转速旋转时,在电机气隙中形成一个同步旋转的磁场是等效的。 双馈式感应发电机与一般感应发电机不同之处在于联接其转子侧之PWM脉宽调变电力转换器具有四象限之运转能力,电力转换器提供低频(转差频率)的交流电流(或电压)进行励磁,调节励磁电流(或电压)的幅值、频率、相位,来实现定子恒频恒压输出,其定子输出特性与同步发电机十分类似,所以有一些文献指出,双馈式感应发电机可以视为同步发电机与感应发电机之综合体。 从能量流动的特性来看,与采用直流励磁的同步发电机相比,同步发电机励磁的可调量只有直流励磁电流的幅值一个,所以同步发电机励磁一般只能对无效功率进行调节,而双馈式感应发电机,其励磁的可调量除了励磁电流的幅值外,还有励磁电流的频率和相位。通过改变励磁电流的频率可以改变发电机的转速,达到调速的目的;通过改变励磁电流的相位,来改变发电机的空载电势与电力系统电压向量之间的相对位置,从而改变发电机的功率角,可以调节发电机的有效功率。 一般感应电机(异步电机) : (1)在转子转速低于同步转速时,处于电动工作状态, (2)当转子转速高于同步转速时,处于发电工作状态,而对于双馈式电机来说,除了上述两种工作状态之外,还具有另外两种工作状态 : (3)欠同步发电工作状态, (4)过同步电动工作状态。双馈式感应发电机之欠同步与过同步转速发电时之功率流向分别如图一(a)及图一(b)所示。其中,s为转差率,Ps为DFIG定子输出功率,Pg为DFIG输出至电力系统之功率。

风电机组结构及选型

第一节风电机组结构 1.外部条件 根据最大抗风能力和工作环境的恶劣程度,按强度变化的程度对风电机组进行分级。根据IEC61400设计标准,共分为4级。 一类风场I:参考风速为50m/s,年平均风速为10m/s,50年一遇极限风速为70m/s,一年一遇极限风速为s; 二类风场II:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 三类风场III:参考风速为s,年平均风速为s,50年一遇极限风速为s,一年一遇极限风速为s; 四类风场IV:低于三类风场风速,属低风速区,鲜有商业风电场开发。 对电网的要求:电压波动为额定值±10%,频率波动为额定值±5%。2.机械结构 总体描述 整机是建立在钢结构底座上,该结构应具有很大的强韧度,底部由坚固底法兰组成,风电机组所有的主要部件都连接于其上。 发电机固定位置与机舱轴线偏离,以使得风电机组在满载运行时,整机质心与塔架和基础中心相一致。 偏航机构直接安装在机舱底部,机舱通过偏航轴承与偏航机构连

接,并安装在塔架上,整个机舱底部对叶轮转子到塔架造成的动力负载和疲劳负荷有很强的吸收作用。 机舱座上覆盖有机舱罩,材料是玻璃钢,具有轻质高强的特点,有效地密封,以防止外界侵蚀,如雨、潮湿、盐雾、风砂等。产品生产采用多种工艺,包括:滚涂、轻质RTM、真空灌注等,机舱罩主体部分设置PVC泡沫夹层,以增加强度。内层设置消音海绵,以降低主机噪声。 机舱上安装有散热器,用于齿轮箱和发电机的冷却;同时,在机舱内还安装有加热器,使得风电机组在冬季寒冷的环境下,机舱内保持在10℃以上的温度。 载荷情况 - 启动:从任一静止位置或空转状态到发电过渡期间,对风电机组产生的载荷。 - 发电:风电机组处于运行状态,有电负荷。 - 正常关机:从发电工况到静止或空转状态的正常过渡期间,对风电机组产生的载荷。 - 紧急关机:突发事件(如故障、电网波动等),引起的停机。 - 停机:停机后的风电机组叶轮处于静止状态,采用极端风况对其进行设计。 - 运输/安装/维护:整体装配结构便于运输,安装、维护易于实施。 叶片

双馈电机调速

双馈电机调速 科学技术的迅猛发展,人类社会已进入到一个飞速发展的时期,能源、材料、信息的发展在其中起到了举足轻重的作用。纵观人类历史文明的每次进步与更迭都与能源与材料的开发应用密切相关。中国是世界最大的发展中国家,同时也是世界第二大能源消费国, 正确认识中国能源消费状况与能源消费结构,实现能源、经济和社会之间的协调发展,是中国所面临和必须解决的重要课题。上世纪70年代,石油危机给工业国家的经济带来了沉重的打击,这大大促进了全球范围内对可再生能源的开发及节能技术的研究。尤其是近年来,随着石油价格的节节攀升,世界上许多国家一方面把可再生能源作为常规矿物能源的一种补充、替代能源,将可再生能源作为其能源发展战略的重要组成部分,另一方面积极开发和推广低功耗、高效率的节能技术。作为世界上第二大能源消费国,我国一直把节能减排当成一个重要的战略来选择,并在十一五规划中提出了具体的目标和要求。电能是能量的一种形式。与其它形式的能源相比,电能具有明显的优越性,它适于大量生产、集中管理、远距离传输和自动控制。故电能在工农业及人类生活中获得广泛的应用。作为与电能生产、输送和应用有关的能量转换装置——电机,在电力工业、工矿企业、农业、交通运输业、国防、科学文化及日常生活等方面都是十分重要的设备。目前,风机、水泵等机械设备的耗电量几占整个工业耗电量的一半,众所周知,采用变频调速技术后,风机和泵类负载可节约大量电能,平均30%左右。因此开发高效率的交流调速系统,经济地利用好这一部分电能,对应对当前能源紧张和实践国家节能要求都有着很好的现实意义。 交流调速系统的应用与成熟是与电力电子技术,微电子技术以及控制技术的发展密切相关的。20世纪上半页,鉴于直流拖动系统优越的调速性能,高性能可调速拖动都采用直流电动机,而当时约占电力拖动容量80%以上的不变速拖动都采用交流电动机,这种分工在一定的时间内已成为一种公认的格局。那时,交流调速系统的多种方案虽然已经问世,并已获得应用,但其性能却始终不能与直流调速系统相匹敌。但直流调系统也并不是那样的完美,直流电机由于具有电刷和换向器等机械结构,存在着固有的―换向这一理论和技术上的实际困难,限制了其应用范围,特别是在大功率和高电压条件下的应用;另外,直流电机维护困难,易产生火花也使得提高电机转速和极限容量受到了限制。20世纪60~70年代,随着电力电子技术的发展,使得采用电力电子变换器的交流调速系统得以实现,特别是大规模集成电路和计算机控制的出现,高性能交流调速系统应运而生,交直流拖动按调速性能分工的格局终于被打破了。交流电动机较之直流电动机结构简单、成本低廉、工作可靠、维护方便、惯量小、效率高的优势得到了充分的发挥,其在国民工业生产和生活的各个方面得到了广泛的应用。随着交流电动机的广泛应用,以电力电子器件、微电子器件技术和控制技术等为基础的变频调速技术,有了突破性的进展,生产出满足变频调速要求的变频器,从此标志着交流调速进入了一个崭新的时代。在变频器出现后的近三十年里,其被广泛的应用在纺织、冶金、印刷、化工、工矿、石油、医药、造纸卷烟等行业,从工业环境,到家居电器到处都能看到它的身影。以应用广泛的交-直-交变频器为例,未来变频技术的发展主要有以下几个趋势: 1、开关损耗降低:低压小容量变频器普遍采用的功率开/关器件是功率MOSFET、IGBT(绝缘栅双极型晶体管)和IPM(智能功率模块)。中压大容量变频器采用的功率开关器件有:GTO(门极可关断晶闸管)、IGCT(集成门极换流晶

东汽1.5MW风电机组定期维护指导书

东方汽轮机有限公司1500KW风电机组定期维护指导书 编号:版本号: FD70B-000303ASM B 风电服务处 2012年5月

本文件换版记录

1.目的及适用范围 为了统一规范定期维护工作的操作方法及维护要求,确保定期维护质量符合产品要求,特编制本文件。本文件适用于东方汽轮机有限公司1500KW风电机组的定期维护工作,维护的所有项目均包含在本手册中。 2.维护基本要求 2.1只有经过严格培训的人员才能实施服务工作,同时,东方汽轮机有限公司提 供适当的技术条件和指导。 2.2服务人员应阅读并熟悉东方汽轮机有限公司相关风场安全管理要求,并在维 护作业中严格执行。 2.3服务人员应阅读并熟悉所维护风场机组的润滑油脂清单、螺栓力矩表,熟知 高湿/盐雾地区金属件的防护要求。 2.4服务工作完成后,服务人员必须在服务报告上签字、确认。 3.维护工作内容 3.1叶片 3.2变桨轴承 3.3轮毂 3.4导流罩 3.5变桨控制机构 3.6变桨润滑系统 3.7主轴及轴承 3.8主轴润滑系统 3.9齿轮箱 3.10通讯滑环 3.11联轴器 3.12紧急刹车 3.13发电机 3.14发电机润滑系统

3.15液压系统 3.16偏航刹车系统 3.17偏航轴承 3.18偏航控制驱动机构 3.19机舱及主控柜 3.20机舱吊车 3.21机舱加热系统(低温型机组) 3.22塔筒 3.23动力、控制电缆、定转子电缆及导电轨 3.24塔基 3.25螺栓防锈处理 3.26变频器 3.27机组启动测试 3.28记录与消缺报告处理 4.维护工具 液压力矩扳手、1型扳手头、力矩扳手、套筒、测量仪表等。详见工具清单表。 5.维护注意事项 5.1所有维护工作都要严格按照有关维护要求进行。 5.2在进行维护工作时,工具、零件必须手到手传递,不得空中抛接。工具、零 件必须摆放有序,维护结束后必须清点工具及零件,不得遗留在机组内。5.3登机作业时风机必须停止运行,登机前应将远程控制系统锁定,防止误操作。 5.4不得一个人在维护现场作业。 5.5在机组维护过程中,严禁使用火源,如禁止抽烟、使用打火机等。 5.6使用机舱吊车时,应注意观察风速,必要时需使用揽风绳,必要时需手动偏 航,让吊链远离高压线路及变压器,起吊时塔基人员应远离吊物,防止吊物坠落造成人员伤害。 5.7所有旋转部件维护时,注意安全操作,小心旋转部件伤人。 5.8所有电气部件维护时,必须使用万用表测量,确认不带电后方可进行维护作

实验一 风力发电机组得建模与仿真

实验一 :风力发电机组得建模与仿真 姓名:樊姗学号:031240521 一、实验目得: 1掌握风力发电机组得数学模型 2掌握在MATLAB/Simulink环境下对风力发电机组得建模、仿真与分析; 二、实验内容: 对风速模型、风力机模型、传动模型与发电机模型建模,并研究各自控制方法及控制策略;如对风力发电基本系统,包括风速、风轮、传动系统、各种发电机得数学模型进行全面分析,探索风力发电系统各个部风最通用得模型、包括了可供电网分析得各系统得简单数学模型,对各个数学模型,应用 MATLAB 软件进行了仿真。 三、实验原理: 3、1风速模型得建立 自然风就是风力发电系统能量得来源,其在流动过程中,速度与方向就是不断变化得,具有很强得随机性与突变性。本课题不考虑风向问题,仅从其变化特点出发,着重描述其随机性与间歇性,认为其时空模型由以下四种成分构成:基本风速、阵风风速、渐变风速与噪声风速。即模拟风速得模型为: (1-1) (1)基本风速在风力机正常运行过程中一直存在,基本反映了风电场平均风速得变化。一般认为,基本风速可由风电场测风所得得韦尔分布参数近似确定,且其不随时间变化,因而取为常数 (2)阵风用来描述风速突然变化得特点,其在该段时间内具有余弦特性,其具体数学公式为: (1-2) 式中: (1-3) t 为时间,单位 s;T为阵风得周期,单位 s;,为阵风风速,单位m /s;为阵风开始时间,单位 s ;为阵风得最大值,单位 m/s。 (3)渐变风用来描述风速缓慢变化得特点,其具体数学公式如下:

(1-4) 式中: (1-5) 为渐变风开始时间,单位 s;为渐变风终止时间,单位 s ;,为不同时刻渐变风风速,单位 m/s;为渐变风得最大值,单位 m/s 。 (4)随机噪声风用来描述相对高度上风速变化得特点,此处不再描述。 3、2风力机模型得建立 风力机从自然风中所索取得能量就是有限得,其功率损失部分可以解释为留在尾流中得旋转动能。能量得转化将导致功率得下降,它随所采用得风力机与发电机得型式而异,因此,风力机得实际风能利用系数 <0、593。风力机实际得到得有用功率为: (2-6) 而风轮获得得气动扭矩为: (2-7) 其中: 表示有用功率,单位为w;表示空气密度,单位为Kg/m;R表示风轮转动半径,单位为m;表示风速,单位为m/s;表示风能利用系数;表示气动转矩系数; 并且有: (2-8) (2-9) 称为叶尖速比;为风轮角速度,单位为 rad/s。 3、3传动系统模型得建立 本实验在分析传动系统机理得基础上,建立系统得刚性轴模型。刚性轴模型认为传动系统就是刚性得,即低速轴,增速齿轮箱传动轴,高速轴都就是刚性得。忽略风轮与发电机部分得传动阻尼,最后可得传动系统得简化运动方程为: (3-10) 其中: 为风轮转动惯量,单位;n 为传动比;为发电机转动惯量,单位;

基于SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真 随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投

影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于α轴固定在定子A相绕组轴线上,所以α-β坐标系也是静止坐标系。 3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。 矢量控制中用到的变换有:将三相平面坐标系向两相平面直角坐标系的转换(Clarke 变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park变换)。 1.1.2 由三项平面坐标系向两相平面坐标系(Clarke变换) 三相同步电动机的集中绕组U、V、W的轴线在与转子垂直的平面分布如上图所示,轴线依次相差120°,可将每相绕组在气隙中产生的磁势分别记为:Fu、Fv、Fw。由于Fu、Fv、Fw不会在轴向上产生分量,所以可以把气隙的磁场简化为一个二维的平面场。简单起见,可以U为α轴,由α起逆时针旋转90°作β轴,建立起二维坐标系,用此两相坐标系(α-β)产生的磁动势来等效三相静止坐标系(U-V-W)产生的磁动势。如图1.1所示。

无刷双馈电机控制原理

无刷双馈电机控制原理 一、设备名称 1250KW无刷双馈电机低压变频控制系统 二、设备用途 本设备用于电机厂1250kw无刷双馈电机低压绕组测变频控制 三、现场技术条件及技术参数 1、环境条件 ·工作环境温度:0--40摄氏度 ·存储环境温度:-25-- 55摄氏度 ·相对湿度:<95%(无凝露) ·环境等级/ 有害化学物质:Class 3K3,符合标准 EN 60721-3-3 ·有机体 / 生物体影响因素:Class 3B1,符合标准 EN 60721-3-3 ·污染等级:2 (EN 61800-5-1) 2、电源 ·660 — 690 V 3 AC, ±10 % (-15 % < 1 min) ·不平衡度±5 % 3、无刷双馈同步电动机技术参数 3、1电机型号:TWS630-8 3、2额定功率:1250KW 3、3额定转速:743r/min 3、4满载效率:95、1% 3、5工频绕组额定电压:6kV 3、6工频绕组额定频率:50Hz 3、7工频绕组额定电流; 100A

3、8工频绕组功率因数:0、84 3、9变频绕组额定电压:690V 3、10变频绕组额定频率: 25Hz 3、11变频绕组额定电流; 528A 3、12变频绕组功率因数: 0、8 4.变频调速装置技术参数 4、1额定功率:450 kW 4、2额定输入电压: 690V 4、3额定输入电流:598 A 4、4额定输入频率:50 Hz 4、5额定输出电压:690 V 4、6额定输出电流:560 A 4、7额定输出频率:25 Hz 5、变频器供电变压器技术参数 5、1产品型号及名称_ZTSFG(H)-800-6__ 5、2额定容量___ _800______kVA 5、3高、低压额定电压___6___ / _0、69__ kV 5、4高压分接范围_____±2×2、5__ _% 5、5短路阻抗________6________% 5、6相数________3________ 5、7绕组数________3________ 5、8频率________50_______Hz 5、9使用条件 5、9、1海拔________1000_____m 5、9、2环境温度________-10~40__℃

双馈异步发电机

有刷双馈式异步发电机 有刷双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,双馈异步发电机通常为4极或6极,转速为1500r/min、1000r/min,如此高的转速是通过多级增速齿轮箱来实现的。这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、德国Fuhrl?nder等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。我国甘肃兰州电机有限责任公司、北车集团永济电机厂、四川东风电机厂有限公司也都先后研制成功了兆瓦级双馈式异步发电机。 双馈式电机分鼠笼式和绕线式两种。但是,鼠笼式感应发电机因其无法最大限度地利用风能,在风力发电机组中没有得到广泛应用。在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。 双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。其原理图如图1所示。 双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。风力机的机械速度是允许随着风速而变化的。通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。 双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电

风力发电机组的建模与仿真

实验一:风力发电机组的建模与仿真 姓名:文福西学号:171440138 班级:0314405 一、实验目标: 1. 掌握风速模型建立实现方法; 2. 掌握风力机模型建立实现方法; 3. 掌握发电机模型建立实现方法; 二、实验内容: 在MATLAB 下的simulink 中,建立风力发电机组的仿真模型,并进行仿真研究,对仿真的结果进行分析。 三、实验原理: 本实验分四个模块分别是风速的设计,风力机模型的建立,传动系统模型的建立,发电机模型的建立。 1.风速的设计 本文不考虑风向问题,仅从其变化特点出发,着重描述其随机性和间歇性,认为其时空模型由以下四种成分构成:基本风速b V 、阵风风速g V 、渐变风速r V 和噪声风速n V 。即模拟风速的模型为: V=b V +g V +r V +n V 2.风力机模型的建立 风力机是将风能转化为机械能的重要器件。能量的转化将导致功率的下降,它随所采用的风力机和发电机的形式而异,因此,风力机的实际风能利用系数。 风力机实际得到的有用功率为: 而风轮获得的气动转矩为: 为方便定量计算,通过有关研究资料的查找,风能利用系数的值可以近似的表示: 3.传动模型的建立 传动系统的简化运动方程为: Jr 为风轮转动惯量,单位 kgm 2;n 为传动比;Jg 为发电机转动惯量,单位 kgm 2;

Tg 为发电机的反转矩,单位 Nm 。 4.发电机模型的建立 发电机的反扭矩方程为: 四.实验结果和分析: 1.基本风速 模型如下: 仿真的时候假设初始风速为10m/s ,那么它的仿真图为: 分析:基本风速是作用于叶轮上的一个平均风速,是不随时间的变化而变化,可以看见输出的风速也是10m/s 。 2.阵风风速 模型如下: 仿真图为: 分析:通过仿真图可以看出阵风最大风速在6m/s ,并且在3s 左右的时候开始起风,大约在9s 左右停止。 9 9.2 9.49.69.81010.2 10.410.610.8 11

双馈电机矢量控制系统的研究

双馈电机矢量控制系统的研究 交流调速双馈电机矢量控制仿真 1引言 近十年来,随着电力电子技术、微电子技术以及现代控制理论的发展,电气传动领域已出现交流电机调速取代直流电机调速的发展趋势。对于一些高电压、大功率且调速范围不大的场合,采用绕线型异步电机双馈控制系统,其装置可靠性高、造价低廉。此外,双馈电机矢量控制系统还具有快速动态响应,低谐波污染,高效及能调节电网功率因数等高性能控制特点。因此,双馈电机控制系统具有非常广阔的应用前景。本文给出了一种按定子磁链定向的双馈电机矢量控制系统,并通过仿真验证了该系统的正确性。 2矢量控制技术 由于电动机的控制主要是对转矩的控制,交流电动机又是多变量、强耦合的非线性系统,与直流电动机相比,转矩控制要困难得多[1]。而以前的控制系统都是采用单变量控制系统的概念,没有考虑交流电机的非线性、多变量的本质,因而其动态性能不甚理想。许多专家学者对此进行了潜心研究,终于提出了两项研究成果:德国西门子公司F.Blaschke等提出了“感应电机磁场定向的控制原理”和美国P.C.Custman和A.A.Clark申请专利的“感应电机定子电压的坐标变换控制原理”。在以后的实践中经过不断的改进,形成了现已得到普遍应用的矢量控制变频调速系统。 由于交流电动机三相定子电流经过三相/两相坐标变换,可以等效成两相静止坐标下的交流电流,在通过按定子磁场定向的旋转变换,可以等效成同步旋转坐标系下直流电流。由此可以将交流电动机等效成直流电动机,按照直流电动机的控制方法来控制经过变换的直流电流,在通过坐标的反变换,即可实现对交流电动机的控制。 3 定子磁链定向双馈电机的矢量控制的基本原理 3.1 双馈调速的基本原理 所谓调速,就是将电能分别馈入感应电动机的定子绕组和转子绕组。通常将定子绕组接入工频电源,将转子绕组接入频率、幅值、相位和相序都可以调节的独立的交流电源。双馈调速的基本思想是,在绕线式感应电机的转子回路串入附加电势,调节附加电势的大小、相位和相序,就可以调节感应电机的转矩、转速和定子侧的无功功率。 3.2 双馈感应电机的数学模型 双馈电机的数学模型建立在转子dq坐标系中比较方便[1]。其基本方程如下: (1) (2) (3)

风力发电及双馈电机控制系统

风力发电及双馈电机控 制系统 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

风力发电及双馈电机控制系统 摘要:文章首先指出了风力发电技术的巨大潜能。然后分析了风力发电的发展现状和趋势,由分析可知风力发电在未来具有广阔的前景,但是同样存在较大的技术挑战。接着根据风力发电系统技术向变速恒频发展的趋势比较了现有的鼠笼型感应电机、电励磁同步电机、永磁同步电机、双馈感应电机和无刷双馈电机几种变速恒频风力发电机组,从比较中总结了双馈发电机的优势。之后将重点放在目前应用较广的双馈感应电机主要控制问题研究现状分析。对双馈风力发电机组的最大风能跟踪问题、同步并网控制问题、转矩和功率控制问题以及低电压穿越问题研究情况进行了详细分析。最后分析了比双馈感应电机更加可靠但是目前技术尚未成熟的无刷双馈电机的控制方法的国内外研究现状。 关键词:风力发电;变速恒频;双馈感应电机;无刷双馈电机 0引言 全球的可利用的风能约为2×107MW,比地球上可开发的水能总量大10倍,相当于1000一10000座100万瓦量级的原子能发电站。我国的风能资源比较丰富,全国可利用的风能资源为亿kW,风能丰富地区的风能密度为200一300W/m2,有效风力出现时间概率为70%左右,风速大于而s的全年累计时数在5000一7000h[1]。风能作为一种清洁的新能源,已经成为了具有广阔应用前景的发电方式之一。与其它一些新能源相比,风能的投资建设回报周期相对较短。与核能相比风能更加安全,与水力发电相比风力发电具有更大的开发潜能,与光伏发电相比风力发电的成本更低。经过多年的发展随着风力发电技术的进步产业化水平的提高风力发电产业已经逐渐成熟,使得风力发电技术有了大规模和商业化发展的巨大潜能[2]。 1风力发电的发展现状和趋势 持续增长的能源需求和化石能源消耗对环境的恶劣影响引起了全球范围内风能发电迅速增长。据全球风能理事会(GWEC)统计数据显示世界累计安装的风电机组容量从2001年的24GW增加到2014年的370GW,到2018年估计会正增长到596GW。亚洲连续17年成为全球最大的风电市场,2014年新增容量26GW。其中中国始终引领

基于Proteus的步进电机控制系统仿真设计-精品

计算机控制技术课程设计报告《基于Proteus的步进电机控制系统仿真设计》 专业及班级______ 09自动化(1)班_________ 姓名_____ 吴红田坤王林 指导老师_______ 丁健______________ 完成时间_______ _ 2012-6-17__________________

基于protues的步进电机控制系统设计 摘要:步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。人们用它来驱动时钟和其他采用指针的仪器,打印机、绘图仪,磁盘光盘驱动器、各种自动控制阀、各种工具,还有机器人等机械装置。此外作为执行元件,步进电机是机电一体化的关键产品之一,被广泛应用在各种自动化控制系统中,随着微电子和计算机技术的发展,它的需要量与日俱增,在各个国民经济领域都有应用。步进电机是机电数字控制系统中常用的执行元件,由于其精度高、体积小、控制方便灵活,因此在智能仪表和位置控制中得到了广泛的应用,大规模集成电路的发展以及单片机技术的迅速普及,为设计功能强,价格低的步进电机控制驱动器提供了先进的技术和充足的资源。

异步电动机的仿真

异步电动机的仿真 在课本中介绍的四种方式的状态方程,都是对异步电动机的数学描述,在进行异步电动机仿真时,没有必要对四种状态方程逐一进行,只要以其中一种作为内核,在外围加上坐标变换和状态变换,就可以得到在不同的坐标系下、不同状态量的仿真结果。因此,以异步电动机在αβ坐标系中ω?i s ?ψr 为状态变量的状态方程结构为核心,构建异步电动机仿真模型。 一、异步电动机仿真框图及参数 在αβ坐标系,状态变量为ω?i s ?ψr 的动态结构图如下图: 仿真电动机参数为: R s =1.85Ω,R r =2.658Ω,L s =0.2941H ,L r =0.2898H ,L m = 0.2838H ,J =0.1284Nm ?s 2,n p =2,U n =380V ,f N =50Hz 。 其中电动机漏磁系数 σ=1?L m 2s r =1?0.28382 =0.0550 转自电磁时间常数 T r =L r R r =0.28982.658 =0.1090

L m L r T r = 0.2838 0.2898×0.1090 =8.9819 L m L r = 0.2838 0.2898 =0.9793 1 s = 1 =61.8219 R s L r2+R r L m2 L r2= 1.85×0.28982+ 2.658×0.28382 0.28982 =4.3991 L m r = 0.2838 =2.6037 1 r =9.1718 n p L m r = 2×0.2838 =1.9586 n p J = 2 0.1284 =15.5763 二、异步电动机的仿真模型 用MATLAB/SIMULINK基本模块建立在αβ坐标系中异步电动机仿真模型如下图所示,其中将异步电动机仿真模型进行封装成AC Motor,三相正弦对称电压 u A、u B和u C经过3/2变换模块得到两相电压u sα和u sβ,送入αβ坐标系中的异步电动机仿真模型,输出两相电流i sα和i sβ,经过2/3变换模块,得到三相电流i A、i B和i C。这就是以αβ坐标系异步电动机仿真模型为核心,构建三相异步电动 机仿真模型的实例。 为了方便起见将ω用W表示,ψ用Psi表示,α用a表示,β用b表示。其中3/2 transform、2/3transform和AC Motor为该仿真模型中的子系统,其中增益环节的放大系数计算见上述算式。 异步电动机仿真模型如下图

相关文档
最新文档