电缆温度在线监测系统

电缆温度在线监测系统
电缆温度在线监测系统

电缆温度在线监测系统文件类型:PDF/Adobe Acrobat 文件大小:字节

更多搜索:电缆温度在线监测系统

OP-LWD型

电缆温度在线监测系统

该系统主要适用于电缆沟温度在线监

测及火灾预警( 电缆中间接头温度监测系

统), 高压开关柜温度在线监测,电机及其

接线盒温度在线监测,泵及风机的轴承温度

在线监测

南京欧帕电力科技有限公司

电话: 传真:

网址: .cn

产品目录

一, 系统简要介绍

二, 网络结构图

三, 检验报告

四, 应用业绩

五, 系统说明书

六, 软件功能简介

七, 技术支持与售后服务

一,简要介绍

1-1) 系统功能

OP-LWD型电缆温度过热故障在线监测及火灾预警系统(简称电缆温度在线监测

系统),是针对发电厂和变电站的高压电缆,电缆端头,中间头因绝缘老化或接触不良

等故障的早期预测而设计,能有效防止电缆火灾的发生,本系统的主要功能如下:

通过对电缆及电缆接头的连续温度监测, 通过专有的分析软件能够提前确定电缆

的早期故障,实现电缆故障的早期预测,防患于未然.

当电缆发生故障时,提供报警并准确确定故障点位置,指导检修工作.

CRT显示器,直观显示电缆接头,电缆桥架分布,电缆走向,实时连续的温度监测.

历史温度记录功能,可记录5-10年的历史数据

MIS网络接口,可与厂内的管理网络相连,实现信息共享和进一步的数据处理功能. 1-2) 系统特点

OP-LWD型电缆温度在线监测系统是一种高可靠性的分布式电缆安全监测系统,

通过监测电缆及电缆接头的温度预测电缆可能发生的故障,极大限度地防止了电缆事故的发生,系统特点如下:

1,监视工作站通过CRT屏幕显示整个厂区电缆分布图

显示测点部位和实时温度值,并能显示开关柜,桥架

上电缆名称及分布情况.当电缆发生过热故障时,屏幕

上能显示发生故障的部位,由于系统能指示出故障发生

的准确部位,因此能有效指导检修工作.

2,智能温度传感器

该传感器能将温度值直接转换成数字信号,其量程:

-55~+125℃,精度达到0.5℃,ESD>±10000VDC,分辩率

高达±0.01℃.由于采用数字技术使传感器测量精度高,

情况稳定,长期运行无需调校,传感器具有在线自检功

能,全密封绝缘防水防尘,保证了整个系统的高可靠性.

3,采用网络化现场总线,简便系统安装和维护

该系统采用完全的数字化现场总线网络结构,节省大量布线费用,且系统维护简便, 模块总线采用4芯双绞双屏蔽电缆,温度及烟感探头总线采用AMP五类双绞线. 4,高性能电气隔离,安全运行的可靠保证

OP-LWD型电缆温度在线监测系统的数据总线已被

设计为相互隔离,系统集线器具有2级3.5KV的电气隔

离,总隔离电压高达7KV.系统的数据总线采用光纤隔

离设备,其隔离电压高达1000KV,系统部件的完全隔离

性保证在系统某一部分串入高压时,其他部分仍能正常

工作,有效保护了人身及设备的安全.总线符合以下标

准:

±15KV IEC 1000-4-2 空气间隙放电

±8KV IEC 1000-4-2 接触放电

±4KV IEC 1000-4-4 快速电压瞬变

电缆接头局放在线监测系统

系统功能 ●能检测放电量、放电相位、放电次数等基本局部放电参数, 并可按照客户要求,提供有关参数的统计量。 ●最小测量放电量:5mV;表贴电极传感器的频率范围: 800kHz~500MHz;电感传感器的频率范围为500kHz~20MHz;放电脉冲分辨率:10μs。 ●能显示工频周期放电图、二维(Q-φ,N-φ,N-Q)及三维 (N-Q-φ)放电谱图。 ●可记录测量相序、放电量、放电相位、测量时间等相关参 数,可提供放电趋势图并具有预警和报警功能,可对数据库进行查询、删除、备份及打印报表等。 ●系统能够识别常见现场放电信号类型:如电晕放电、被测 电缆外部的放电、内部的放电。 ●系统应有录波功能,保存原始测试数据,及回放测试状态 时原始数据,三相电缆交叉互联下可进行放电源判相,以便离线后能清楚分析原始数据。 系统特点 ●抗干扰能力强,系统采用宽频带检测技术,应用双传感器 定向耦合脉冲信号并利用宽频差动电流脉冲时延鉴别法进行在线的干扰抑制,以剔除最难消除的随机脉冲型干扰

(发明专利);再加上设置阀值电压、小波分析等其他综合抗干扰措施,使测量结果准确可靠。 ●采用虚拟仪器技术,将硬件模块与计算机结合,利用 LabVIEW编写软件,通过界面操作,实现各种功能,并便于进一步开拓。 ●电缆接头在线检测系统分布式结构,即电缆接头局放信号 通过分布在各个监测点的高速采集模块对信号进行选通、放大、采集,转换成数字信号,经过局域网TCP/IP通信协议,把数据传送到数据服务器,由数据服务器统一对信号进行计算、分析操作。 ●本监测方法可根据用户要求应用于在线监测或便携式带 电检测。 软件界面

电缆环境温度实时在线监测系统组成及应用

电缆环境温度实时在线监测系统组成及应 用 (TLKS-PTMS-IMS) 一、概述 近年来,随着国民经济的迅速增长,我国城市化进程进一步加快,城市生产生活用电也迅速增加。这无疑给城市的供电系统带来的诸多压力。而城市供电以电缆系统为主,虽然比架空线路更安全,但维护起来却极其困难。因此,电力部门急需一种维护电缆的有效手段,以提高供电的可靠性,确保城市供电的安全与稳定。 二、工作原理 通信技术和测控技术的愈见成熟,为实现电缆维护的方便快捷提供了必要条件。在此基础上,诞生了电缆环境温度实时在线监测系统。该系统是一套集成度极高的综合监控系统。由电缆综合监控部分和电缆隧道内环境监控部分组成。电缆监测部分能够实现对局放、护套环流、电缆温度等信息的实时监测。电缆隧道监控部分能够实现对环境温度、气体、水位、井盖及视频等信息的实时监测,除此之外,还集成了声光报警、风机控制、排水控制、门禁控制等辅助功能。以下为该系统架构图:

电缆环境温度实时在线监测系统结构图 三、实现功能 1、现场设备状态监测: 电缆温度、电缆隧道环境监测(有害气体浓度、液位、井盖等)、视频监测(出入口)、出入口门禁系统等状态在线监测,使运行人员不用去现场巡检即可对现场设备运行情况了如指掌。 2、现场辅助设备联动控制: 当现场设备运行出现异常状况时,联动电缆隧道内辅助设备,实现自动化控制。比如当发生火灾时自动关闭防火门防止火势蔓延; 3、监测数据集中管理: 电缆温度监测系统、环境状态监测系统、视频监控系统、门禁监控系统等所

有监测数据都集中在同一个系统集中监控平台上显示、存储、管理,实现统一管理、统一控制,方便运行人员操作,提高运行人员的管理效率。 4、保障输电线路可靠、安全供电: 通过监测系统反馈的现场输电线路的运行状态,以及控制设备对现场环境的自动调节,从而改善输电线路的运行环境,避免发生电力故障,从而提高输电线路的可靠性,保障供电质量。 5、延长输电线路的使用寿命: 电缆环境温度实时在线监测系统通过监测高压电缆的温度和运行环境等状态,评估输电线路的负载能力,合理调配输电线路的负荷电流,避免过负荷运行,延长输电线路的使用寿命。 6、保障电缆运行环境: 通过监测电缆隧道内的环境,实时监测有害气体、水位、井盖等环境参数,监测电缆运行环境,保障检修人员安全,防止非法入侵和设备被盗。 四、技术参数 工作电压:DC24V 功率:30W(最大预热功率60W) 湿度:<95%相对湿度(无凝露) LED功能指示:电源显示、系统故障、光纤故障和温度报警 激光源寿命:≥20年;符合EN60825-1的CLASS1 光转换开关寿命:≥20年;非机械式(继电器)转换开关 最大探测距离:2-10KM(可扩展) 通道数:8通道 取样间隔:1米 定位精度:1米 空间分辨率:1米 测量时间:2秒/通道 温度精度:±0.5℃ 串行接口:RS232接口\RS485接口

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

电力电缆运行温度监测技术 李磊

电力电缆运行温度监测技术李磊 发表时间:2018-01-10T09:08:23.950Z 来源:《电力设备》2017年第27期作者:李磊1 梁继刚2 [导读] 摘要:电力电缆作为电力系统中能量传输的关键设备之一,其运行状况对电力系统运行的安全可靠性有重大影响。 (国网陕西省电力公司西安市供电公司电缆运检室陕西省 710000) 摘要:电力电缆作为电力系统中能量传输的关键设备之一,其运行状况对电力系统运行的安全可靠性有重大影响。了解电力电缆的故障原因,有利于采用合理而有效的监测手段及预防措施,保证电力电缆运行的安全性。在电力电缆工作系统中,受绝缘材料性能、制作工艺以及接触电阻存在等因素的影响,电缆接头故障时有发生。因此对电力电缆及其接头的运行状况监测问题进行研究十分必要。基于此,本文主要对电力电缆及其接头运行温度监测技术进行分析探讨。 关键词:电力电缆;接头;运行温度;监测技术;研究 1、前言 电力电缆中间接头的表面温度是反映其运行状态的重要参数。,因此,通过对电缆接头处温度的变化进行经常、连续地监视,就可了解和掌握它的运行状况。发现某接头位置的温度过高,或者与环境温度的差别较大或变化较快,便说明该位置的绝缘已较为薄弱,继续运行可能会导致严重的故障发生,此时,系统应及时发出报警信号,以便值班人员迅速进行处理,避免事故发生。 2、电缆接头温度监测方式 在电力电缆网络中,电缆接头是不可或缺的一部分。总结多年运行经验,有超过90%的电缆运行故障,都是因为接头故障引起的。并且接头温度过高也是发生故障和绝缘老化最主要的原因之一。电荷集肤效应以及涡流损耗、绝缘介质损耗都会产生附加热量,从而使电缆温度升高。当电缆负载电流通过电缆时.电缆接头的温度会从100℃上升到140℃,这便会引起芯线温度也会上升到90℃,导致芯线发热,过高的温度会加速绝缘老化,以致绝缘被击穿。当接头质量不达标时,压接不紧、接触电阻过大,电缆接头温度长期过高时就会将绝缘层破坏,极易导致火灾的发生。 在电缆接头的运行温度监测中,需要考虑到温度监测的具体技术。其中点式温度监测方式包含了有线连接和无线连接两种方式,具体的运行监测如下。 2.1有线连接方式 有线连接是利用数据总线以及单片机来实现主控计算机和温度传感器之间的连接,从而完成数据的管理控制和传输的要求。如,在通过点式温度监测方式来设计的电缆接头运行温度监测系统中,通过总线来进行各个部分的连接,就属于最典型的点式温度监测系统有线连接方式。但是这一方式存在的不足在于:只适合小范围且待测量点相对密集的场合;安装时工作量偏大,并且实现上有很大的困难;一旦出现故障,很难进行维护。所以,多应用于变电站或者是发电厂等待测设备相对集中的区域。 2.2无线连接方式 针对城市电网当中的电缆接头进行温度的在线监测,就可以利用无线连接的方式进行监测处理。城市地下电缆接头温度接头温度监测系统设计的组成如图1所示。在整个系统之中包含了数据采集、处理、传输、显示以及长远距离的通信能力等,同时再配合上软件的支持,不但可以对电缆的工作状态进行监测.同时也可以对电缆故障隐患进行分析。与有线连接方式进行比较.无线连接方式具有不受距离的限制.可以满足大范围温度监测要求;剔除了数据传输布线等繁杂的工作,减少了工作量;适用性较广,拥有良好的经济性等优势。 图1,城市地下电缆接头温度监测系统的组成 3、电缆接头的温度监测 3.1电缆温度就地监测方法 电缆温度的就地监测方法是使用合适的传感器,将测得的对象温度信号转换成为电信号,送入附近适当的监测点,以适合的方式展现出温度测量结果。就地监测方法具有成本低的优点,且布线简单,施工工程量小。其缺点是仪器工作环境不佳,工作人员必须实地观察、记录测量温度,并且警报信号不易检测。 3.1.1示温腊片法 示温蜡片法是在电力电缆或电缆接头可能的过热点贴上特殊蜡片,进行定期的巡视,再根据蜡片的颜色变化或者融化程度来大致推测该点的温度范围。示温蜡片具有超温变化特性,当测温点温度低于某设定的临界温度时,蜡片保持原来正常的颜色,当温度高于临界温度,颜色会突然改变。这是电力电缆等高压设备定性判断温度的方法之一。该方法成本低廉,原理简单,且产品轻巧,便于携带,安装简

亿森开关柜局部放电在线监测系统

开关柜局部放电在线监测系统 技 术 资 料 福州亿森电力设备有限公司

开关柜局部放电在线监测系统简介 前言: 高压开关柜是使用极广且数量最多的开关设备。由于在设计、制造、安装和运行维护等方面存在着不同程度的问题,因而事故率比较高,在诸多性质的开关柜事故中,绝缘事故多发生于10千伏及以上电压等级,造成的后果也很严重。特别是小车式开关柜,绝缘事故率更高,而且往往一台出现事故,殃及邻柜的现象更为突出。因此,迫切需要对开关柜实行状态检修,对设备运行状况进行实时在线监测,根据设备的运行状态和绝缘的劣化程度,确定检修时间和措施,减少停电时间和事故的发生,提高电力系统运行的安全可靠性及自动化程度。 高压开关柜的绝缘故障主要表现为外绝缘对地闪络击穿,内绝缘对地闪络击穿,相间绝缘闪络击穿,雷电过电压闪络击穿,瓷瓶套管、电容套管闪络、污闪、击闪、击穿、爆炸,提升杆闪络,CT闪络、击穿、爆炸,瓷瓶断裂等。

各类绝缘缺陷发展到最终击穿,酿成事故之前,往往先经过局部放电阶段,局部放电的强弱能够及时反映绝缘状态,因此通过在线监测局部放电来判断绝缘状态是实现开关柜绝缘在线监测和诊断的有效手段。 本系统采用声电联合检测方法,即通过同时检测局部放电产生的暂态对低电压(TEV,国内俗称地电波)和超声波信号实现对开关柜绝缘状态的监测。 一、局放产生 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,对电力设备进行局部放电测试是电力设备制造和运行中的一项重要预防性试验。 基于对发生局部放电时产生的各种电、光、声、热等现

电力电缆局放及环流在线监测系统技术方案

上海宜商实业发展有限公司 电缆终端接头局部放电及护套环流在线监测 系统 技术方案

目录 一、概述 (2) 二、国内外现状和发展趋势 (3) 三、系统指标及功能 (3) 1.技术指标 (3) 2.系统功能特点 (4) 四、技术方案 (4) 1.系统结构图 (4) 2.前端采集单元介绍 (5) 五、现有工作基础、装备水平及实验测试能力 (11) 六.售后服务及培训 (11)

一、概述 由于交联聚乙烯(XLPE)电缆具有绝缘性能好、易于制造和安装方便、供电安全可靠、有利于美化城市等优点,在60年代初问世以来的40余年中得到了迅速发展。在中低压领域几乎替代了油浸纸绝缘电缆,并已在高电压等级中使用。近十年来,我国城市电网中大量采用XLPE电力电缆输配电。但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因,在绝缘与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生局部放电(PD),同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘击穿,造成严重事故。 我公司生产的电缆接头局放测量系统已应用到国内多个供电局,因该系统结构复杂、成本较高,所以目前主要是便携式的带电监测方式应用。经过多年的技术积累,我们已完成对国内近千个110KV、220kv、330KV电缆接头的带电检测。通过对这些数据的对比分析,发现电缆接头处的局放水平与监测的脉冲幅值有密切的联系;在此基础上,拟对原有的局放测量系统进行简化设计,只以接头处接地线上的脉冲幅值大小和接地电流值所为主要监测参量,进行实时监测,从而以较低成本,并有效方便的实现对电缆接头局放水平的在线监测。 当电缆线芯中有电流流过时,将会使金属护套上产生感应电势。在护套开路时,这个感应电势可能会很大,有时不但会危及人身安全,还会击穿金属护套的外护层,尤其是电缆线路发生过电压及短路故障时, 在金属护套上会形成很高的感应电压, 使电缆外护套绝缘发生击穿, 故应在金属护套的一定位置采用特殊的连接方式和接地方式这些不同类型的接地电流成分不仅可以反映电力电缆金属护层自身的状态,也可以反映主绝缘的品质状态(如老化以及缺陷等)引起的局部放电在内的多类故障。

电缆电线温度监测系统

电缆温度监测系统 火灾事故大部分是由于温度过高引起的,通过对电缆头或电缆本身的连续温度测量,能够预测电缆头或电缆本身的故障趋势,及时提供电缆故障部位检修指导。 KITOZER-2300高压电缆温度在线监测系统通过对电缆接头或电缆本身的连续温 度测量,能够预测 电缆头或电缆本 身的故障趋势,及 时提供电缆故障 部位和检修指导, 还可接入各种环 境探测器(离子烟雾传感器、微波红外传感器、浸水探测器等),及时发出预警信号,从根本上避免了电缆事故的发生。 采用了当今先进的通讯技术、微处理器技术、数字化温度传感技术及离子感烟技术。独创设计的低温、强电场、潮湿环境运行技术。避免了电缆沟内强大电场的干扰,完整安全地把数据传送至监视终端。因此,该系统是一种高可靠性的分布式电缆在线监测系统。

电缆温度监测系统是由温度监测器、上位计算机、温度采集电缆三部分组成 (一)KITOZER-4温度监测器: 循环显示各测点的温度数值,可带两条测温电缆,共计128个测温点。 1、工作电压:220VAC 功率:≤10W 2、工作环境:-40℃~85℃ 3、有四路开关量输入,可分别接入各种环境探测器(离子烟雾传感器、微波红外传感器、浸水探测等) 4、2路报警。 5、通过485总线或光纤可把采集到的温度数值上传至监控计算机。 6、通讯总线采用完全隔离措施,能经受的电压冲击典型值为1500VRMS/分钟或2000VRMS/秒. (二)线性温度采集电缆 铺设在电缆接头处或者沿电缆走向铺设,连续实时的采集电缆接头的温度值或整条电缆的温度场分布情况,每个温度采集点都有固定的、唯一的编码。信号都经过高压隔离,不受强电磁场干扰。

电力电缆数据采集与分析系统

电力电缆数据采集与分析系统 随着城市化规模扩大建设速度加快,相应的城市附属设施建设同样发展迅速,电力电缆供电网络也得以快速发展,规模庞大的地下供电网络,电缆分布众多,如何发展同时对电力部门电缆安全运行,事故预防亦提出更高要求。 电力电缆安全运行管理设计面较多,具有分布广、相距远、地面环境复杂等特点。如果能够对其实现全天候全面监测,无疑对保障供电及电力安全生产有重大意义。由此立项有针对性监测电缆接头温度及其所处环境(井内沟内有毒气体、可燃气体、积水、井盖盖板防盗)展开研究,设立一套综合性实时数据采集和在线监测系统配合以GIS地理信息系统,已完成实现电力安全生产及现代化管理。 本系统采用无线(GPRS)通信方式在不破坏市政路面情况下,传输所监测数据,并可根据监测要求设定部分数值,辅以GIS地理信息系统准确定位,及时判断故障点并发出预警信息,上位机系统基于.NET平台B/S网络架构,具有数据分析预测功能,方便管理人员网内即时查询,能够满足综合检测管理需求,方便管理。此系统具有可靠性高、覆盖范围广、成本低、方便安装维护等特点。是一套确保地下电缆安全运行的理想系统。 输电电缆运行管理,相关部门每年都投入大量人力物力,对电缆沟井内电缆及环境进行巡视检查。特别是在高温、大负荷季节进行大量巡检工作对井沟内电缆接头进行的红外测温,井盖安全防偷窃防破坏巡视,及井沟内积水、防火观察检测等,但无法实时掌握,进行预防,及时预测。在这种情况下建立一个综合有效地电缆沟井运行状态在线监测平台,对影响运行的重要状态进行实时在线监测。 针对电力部门的应用给出了对沟井电力电缆接头温度、环境温湿度、可燃有毒气体、火灾积水、井盖防窃盗(并可扩展视频监控)、短信报警的综合在线监测系统平台,实现了电缆沟井内环境及运行状态的在线实时监测,对相关运行人员提供了可靠地数字依据,更好的做出运行安排,减轻了劳动强度,为安全运行提供了保障。 目前国内对电缆沟井在线监测系统,在形式上主要以有线光纤为主,监测项目通常为电缆接头温度或沟井可燃气体监测,不能综合监测电缆沟井内多项综合环境因素,并存在有线监测安装范围局限(只在一条线路内)。不能适应电缆多分布监测的需要,投资大,施工难强度大。并对于监测的数据不能分析处理储存,不能预测预警。为有效地评估预测安排相应检修工作带来困难,建设研发新综合监测系统及可靠地数据收发、分

电力电缆的温度

电力电缆的温度标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

附录A 常用电力电缆的最高允许温度表A.0.1 常用电力电缆最高允许温度

注:1、对发电厂、变电所及大型联合企业等重要回路铝芯电缆,短路最高允许温度200℃。 2、含有锡焊中间接头的电缆,短路最高允许温度为160℃。 附录B 10kV及以下常用电力电缆允许持续载流量(建议性基础值) 1~3kV油纸、聚氯乙烯绝缘电缆空气中敷设时允许载流量 注:1、表中系铝芯电缆数值;铜芯电缆的允许持续载流量值可乘以。 2、单芯只适用于直流。 2 1~3kV油纸、聚氯乙烯绝缘电缆直埋敷设时允许载流量 注:1、表中系铝芯电缆数值;铜芯电缆的允许持续载流量值可乘以。 2、单芯只适用于直流。 1~3kV交联聚乙烯绝缘电缆空气中敷设时允许载流量 注:①允许载流量的确定,还应遵守本规范第3.7.4条的规定。

②水平形排列电缆相互间中心距为电缆外径的2倍。 1~3kV交联聚乙烯绝缘电缆直埋敷设时允许载流量 注:水平形排列电缆相互间中心距为电缆外径的2倍。 6kV三芯电力电缆空气中敷设时允许载流量 注:①表中系铝芯电缆数值;铜芯电缆的允许持续载流量值可乘以。 ②缆芯工作温度大于70℃时,允许持续载流量的确定还应遵守本规范第3.7.4条的规定。 6kV三芯电力电缆空气中敷设时允许载流量 注:表中系铝芯电缆数值;铜芯电缆的允许持续载流量值可乘以。 表 10kV三芯电力电缆允许载流量 注:①表中系铝芯电缆数值;铜芯电缆的允许持续载流量值可乘以。 ②缆芯工作温度大于70℃时,允许载流量的确定还应遵守本规范第3.7.4条的要求。 附录C 敷设条件不同时电缆允许持续载流量的校正系数 表 35kV及以下电缆在不同环境温度时的载流量校正系数 注:其他环境温度下载流量的校正系数K可按下式计算:

振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局部放电检测和定位技术基本原理研究 随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何 准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故 的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化 预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的振荡波电缆局部 放电检测和定位技术,能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进 一步推广应用、改进创新提供技术参考。 近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供 电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结 构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝 缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生 局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘 击穿,造成重大事故。 根据北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在 10kV 电缆故障中 占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来 越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜 伏性缺陷的要求也越来越迫切。 根据 2007 年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文 献资料,采用振荡波电缆局部放电检测和定位技术对配电电缆进行测试,能够及时发现和定位潜伏 性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。 振荡波电源技术 电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直 流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电 压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆 投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求 试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。 振荡波电压是近年来国内外研究较多的一种用于 XLPE 电力电缆局部放电检测和定位的电源。 该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各 种缺陷,且试验不会对电缆造成伤害[4]。 OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流 电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05 μF—2μF。

电力电缆线路运行温度在线检测技术应用分析

电力电缆线路运行温度在线检测技术应用分析 电力电缆线路运行温度在线检测技术能够检测运行线路的绝缘状态、电力电缆的过热情况,其在当前实际生活中得到广泛应用,有助于及时发现并解决电缆运行存在的问题。首先阐述了温度在线检测技术应用的重要性,之后分析了电力电缆线路运行温度在线检测技术,最后就电缆线路的运行维护措施,以及电力电缆运行温度在线检测技术应用展开探究,以此为保证电力电缆供电的正常运行奠定基础。 标签:电力电缆线路;运行温度;在线检测技术;应用 当前我国电缆运行温度在线检测技术在实际中得到广泛的应用,该技术能够有效监测电力电缆导体载流量因导体温度发生改变而出现的变化情况,对电缆线路期间的导体载流量的具体情况能够及时掌握,为制定有效的措施解决这一问题奠定良好基础。本文主要对电力电缆线路运行温度在线检测技术应用展开分析。 1温度在线检测技术应用的重要性 想要使电缆得到正常运行,及时掌握电力电缆导体温度情况十分重要,把控好流量情况是保证电缆导体稳定性温度的基础,温度在线检测技术是检测电力电缆导体温度的可靠技术,该技术的应用能使电力电缆平台软件的工作效率得到很大提升。另外,温度在线检测技术的应用,还能够及时掌握线路绝缘状态的温度情况,这对获取线路运行中过热部分的方位提供保障,有助于及时发现与解决电线电缆存在的故障问题。然而从实际情况来看,当前工作人员对这方面的工作并不重视,影响了线路温度在线检测技术的使用效果,因此,相关工作人员应对这方面的工作深入研究。 2电力电缆线路运行温度在线检测技术 2.1光纤传感技术 后相拉曼散射效应是该项技术的核心部分,由于二氧化硅分子结构的石英玻璃是构成光纤的主要材料,光纤能达到与纳米激光脉冲相融合的效果,而且对于热振动频率来说,为电缆温度具体情况的掌握奠定了基础。电力电缆温度的了解与掌握,光纤温度传感技术发挥重要作用,比如,其中的OTDRA测温技术,对光纤传感技术的良好应用发挥重要作用,虽然该技术需要较高的光开技术,而且在维护方面有着较高要求,但是其在光纤传感技术中的应用效果十分显著。 从当光纤技术的发展取得良好成果,使其在电缆温度检测期间的应用越来越广泛。在检测电缆温度过程中,分布式光纤温度检测是应用较多的一项技术,其主要是采用Raman散射效应展开工作,在检测电力电缆温度方面取得良好的效果。

XSJ-2000型电缆温度在线监测预警系统

XSJ-2000型电缆温度在线监测预警系统 1、引言 随着现代工业化产业的蓬勃发展,设备自动化管理水平的提高,电缆用量越来越多。由于运行的电力电缆长度密度增加,其电力电缆火灾事故的发生率也相应增大。电力电缆的安全运行已经成为用电单位的重要指标。 为进一步落实“坚持预防为主,落实安全措施,确保安全生产”的要求,完善各项反事故措施,更好地推动电力安全生产,有目标、有重点地防止电力生产重大恶性事故的发生,国家电力公司颁布了《防止电力生产重大事故的二十五项重点要求》(国电发[2000]589号)。原文1.1.11条款明确要求“对电缆中间头定期测温”,以防止发生电缆沟重大火灾事故。电力企业按照“关于贯彻落实《防止电力生产重大事故的二十五项重点要求》的通知(发输电发[2000]125号)”中明确提出“为了预防电缆中间接头爆破和防止电缆火灾事故扩大,可加装电缆中间接头温度在线监测和烟感报警系统。对电缆中间接头温度实施在线监测,可根据温度变化来判定接头是否存在爆破的可能性,起到对电缆接头爆破早期预警的作用;烟感报警系统可即时发现火情,避免事故扩大。” 本系统就是从分析电缆火灾原因入手,抓住电缆火灾的基本特征开发研制的。 2、系统简介 2-1 系统概述: XSJ-2000型电缆、电缆头温度在线监测系统,采用了当今先进的总线通讯技术、微处理器技术、数字化点温、线温传感技术、离子感烟技术。独创设计的低温、强电场、潮湿环境运行技术。该系统的开发研制均在电缆隧道内经多次反复试验攻关才得以完善,避免了电缆隧道内强大电场的干扰,完整安全地把数据传送至监视终端,因此,该系统是一种高可靠性的分布式电缆、电缆头温度在线监测系统。 该系统具有良好的计算机界面,可显示电缆沟电缆隧道分布模拟图、电缆及电缆头运行温度及温度曲线、显示传感器所监测的实际位置,当运行中电缆、电缆头温度出现异常时,显示画面及事故音响同时出现,可通过计算机的电缆隧

国内外几种电缆局部放电在线检测方法技术分析

国内外几种电缆局部放电在线检测方法技术分析 李华春周作春张文新从光 北京市电力公司 100031 [摘要]:本文简要的介绍国内外几种电缆局部放电在线检测方法的原理和特点,并进行了简单的分析比较。结合国内外电缆局部放电在线检测方法研究和应用情况提出当前XLPE电缆局部放电在线监测存在的问题以及在高压XLPE电缆附件局部放电在线检测研究方面今后还需要做的工作。 [关键词]:电缆、局部放电、在线检测、分析 前言 常规XLPE电缆局部放电测量多采用IEC60270法,但是其测量频带较低,通常在几十到几百kHz范围内,易受背景干扰的影响,抗干扰能力差。理论研究表明,XLPE电力电缆局部放电脉冲包含的频谱很宽,最高可达到GHz数量级。因此,选择在信噪比高的频段测量有可能有效地避免干扰的影响。目前国内外已把电缆局部放电测量的焦点转移到高频和超高频测量上。 [2][1]。 迄今为止,国内外用于XLPE电缆局部放电检测的方法有很多。但由于X LPE电缆局部放电信号微弱,波形复杂多变,极易被背景噪声和外界电磁干扰噪声淹没,所以研究开发电缆局部放电在线检测技术的难度在所有绝缘在线检测技术中是最高的。由于电缆中间接头绝缘结构复杂,影响其绝缘性能的原因很多,发生事故的概率大于电缆本体,同时在电缆中间接头处获取信号比从电缆本体获取信号灵敏度要高且容易实现,因

此通常电缆局部放电在线检测方法亦多注重于电缆附件局部放电的检测,或者在重点检测电缆中间接头和终端的同时兼顾两侧电缆局部放电的检测。电缆局部放电在线检测方法中主要的检测方法有差分法 耦合法[6、7、8、9][3、4]、方向耦合法、电磁[13、14、15、16][5]、电容分压法[10]、REDI局部放电测量法 [18][11、12]、超高频电容法、超高频电感法[17]、超声波检测法等。在众多检测方法中,差分法、方向耦合法、电 磁耦合法检测技术目前已成功应用到现场测量中。下面简要的介绍这些方法的原理和特点。 1. 电缆局部放电在线检测方法中主要的检测方法 1.1. 差分法(the differential method) 差分法是日本东京电力公司和日立电缆公司共同开发的一种方法。其基本原理见图1。将两块金属箔通过耦合剂分别贴在275kV XLPE电缆中间接头两侧的金属屏蔽筒上(此类中间接头含有将两端金属屏蔽筒连接隔断的绝缘垫圈),金属箔与金属屏蔽之间构成一个约为1500~2000pF 的等效电容。两金属箔之间连接50欧姆的检测阻抗。金属箔与电缆屏蔽筒的等效电容、两段电缆绝缘的等效电容(其电容值基本认为相等)与检测阻抗构成检测回路。当电缆接头一侧存在局部放电,另一侧电缆绝缘的等效电[3] 容起耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示信号。研究发现,频谱分析仪中心频率设在10~20MHz时,信噪比最高。差分法的检测回路

10kV 电缆振荡波局放测试系统测试要求

10kV电力电缆 阻尼振荡波局部放电检测试验方案 (试行)

10kV 电力电缆振荡波局部放电检测试验方案 一、试验标准和目的 根据要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。 二、试验仪器 ONSITE MV 10 型电缆振荡波局放检测系统 三、试验内容 10kV 电缆振荡波局部放电检测基本原理如图1所示: 图1 电缆振荡波局放测试原理 用交流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。 振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。 LC f π2/1=

1、被测电缆要求及测试前准备 1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏; 2)尽量将电缆接头处PT、避雷器等其它设备拆除; 3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够; 4)收集电缆长度、型号、类型、投运日期等电缆参数; 5)电缆长度L:电缆一侧测量方式:50m≦L≦6km; 电缆两端测量方式:L>6km。 6)测试用电缆用发电机、10KV放电棒、接地线、220V电源插盘。 2、振荡波局部放电试验 2.1 电缆局放校准。 采用ONSITE MV 10型电缆振荡波局部放电测试和定位仪,图2所示为校准界面: 图2 局放校准界面 测试要求: 1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上; 2)注意在高压测试开始时将校准器连线拆除; 3)局放校准仪的输出频率设定在100Hz; 4)校准区间从100pC~100nC均要校准。

电力电缆线路运行温度在线检测技术应用

电力电缆线路运行温度在线检测技术应用 发表时间:2019-07-23T16:51:37.453Z 来源:《基层建设》2019年第13期作者:张虎印夏敏 [导读] 摘要:伴随着我国对电力需求量的日增多,为满足我国经济发展对电力资源的需求,以及人们日常生活中对电力的需求,相关人员随之加大了对电力电缆线路的运行监控管理,而这对于进一步维护电力电缆线路的稳定运行同样有着十分积极的作用。 广西正禹工程质量检测有限公司广西桂林市 541001 摘要:伴随着我国对电力需求量的日增多,为满足我国经济发展对电力资源的需求,以及人们日常生活中对电力的需求,相关人员随之加大了对电力电缆线路的运行监控管理,而这对于进一步维护电力电缆线路的稳定运行同样有着十分积极的作用。基于此,本文将针对电力电缆线路运行温度在线检测技术的应用进行相关的阐述。 关键词:电力电缆线路;运行温度;线检测技术;应用 引言 对于我国电力事业而言,电力电缆线路作为其中重要的组成部分之一。在电力电缆线路运行的过程中,要想保证电力电缆线路的正常运行,相关人员就必须对其温度情况进行准确的把握。基于此,电力电缆线路运行温度在线检测技术随之营运而生,由于电力电缆线路运行温度在线检测技术在实际当中的应用能够快速找出电力电缆线路运行中存在的问题,促使电力电缆线路在今后得到稳定的发展,因此,其在不断的推广之中,得到了人们的高度重视与广泛应用。加大对电力电缆线路运行温度在线检测技术应用的研究更是有着十分重要的现实意义。针对该方面内容的研究,本文实现将对现有的电力电缆线路运行温度在线检测技术进行分析,其次在对该技术的应用进行阐述,以供参考。 1.电力电缆线路运行温度在线检测技术 目前,由于电力电缆线路运行温度在线检测技术的在电力电缆稳定运行中所占据的地位越发重要,我国相关人员随之加大了对该方面技术的研究力度。目前,常见的温度在线检测技术有以下几点:一是,光纤传感技术。光纤传感技术作为近年来所流行起来的一种新型温度测量技术。相对以往的温度测量技术而言,光纤传感技术所具备的优势主要可表现在便利性方面。也正是因为光纤传感技术具有这一特点,所以,其被广泛的应用到来电力电缆线路的温度测量之中。氧化硅与石英玻璃分别作为光纤传感技术的主要制作材料与构成成分之一。就现如今的光纤传感技术而言,其自身虽然具备着很对以往温度在线检测技术所不具备的优势,但不可否认的是,光纤传感技术自身在发展的过程中仍存在有一定的不足,即该检测技术对专业性知识要求较高的过程检测会存在一定的吃力现象。二是,点式温度传感技术。对于点式温度传感技术而言,其作为一种建立在温度传感器基础上,对现场几个特定点温度进行检测的技术之一,其在整个检测的过程中都是依靠温度传感器实现的。而该过程当中过获取到的温度数据,大都是采用特定专用电缆在温度传感器上获取而来。通常情况下,在得到这些数据之后,都需要将这些数据传输到计算机终端对其进行深入的分析。点式温度传感技术在该过程中所具备的优势主要可表现在实际的使用操作上非常简单,而且存在的缺点则是不能对检测范围进行全面的检测。三是,热效应在线检测技术。通过热效应在线检测技术的名称可了解到,其在检测的过程中主要是依靠热效应实现的。目前,在电力电缆表面温度的检测上,需要使用红外热像仪对其进行,在完成对温度的收集之后,就可通过对温度信息的有效改变计算出电力电缆线芯的具体温度。对于热效应在线检测就似乎而言,该技术最大的优势为具有精准的判断性,但其存在的不足则可体现在其很容易在实际应用的过程高中受到外界因素的影响。以上就是电力电缆线路运行温度在线检测技术,相关人员需要对其加以重视,进而保证电力电缆线路今后的稳定运行。 2.电力电缆线路运行温度在线检测技术应用 由上述可见,因温度在线检测技术对保证电力电缆线路的稳定运行有着十分积极的作用,因此,现如今我国所拥有的电力电缆线路运行温度在线检测技术类型还是比较丰富的。然而,针对温度在线检测技术在的应用,本文将从以下几点对其进行相关的阐述:一是,分布式光纤温度传感技术的优势。对于分布式光纤温度传感技术而言,其在实际应用过程中存在的主要优势在于:应用过程中存在的诸多不良环境。该技术在实际应用过程中,主要是才赢光频放射测温发,所以,分布式光纤温度传感技术能够在弥补传统测温方法存在的缺点的同时,使得温度在线检测的效率在极大的程度上得到不错的提升,即使是在易燃易爆的恶劣环境下,分布式光纤温度传感检测技术也能在其中正常运行。二是,电力电缆发热的在线检测仪。根据相关的研究调查可以发现,精准性较差作为一般测温方式普遍存在的缺点之一,该缺点的存在不但会使得最终的测量效果不佳,而且不能完全掌握每一条电缆,及其在每一段时间当中的发热情况。基于此,为避免该现象的出现,相关人员迫切需要制定一个适用于电网电缆状态检修的检测仪器,并且需要在该仪器制定的过程中,采用智能温度传感器、以及综合单片机系统进行制作,只有这样才能在极大的程度上实现对电力电缆线路发热温度的实施监控,才能保证监测数据的准确性。就电缆发热在线监测仪的实际应用情况来看,相对传统测温方式而言,该方式所具备的优势主要可体现在以下:温度测量准确率高、降低电力电缆火灾事故的发生率。三是,查询电路。查询线路在该过程当中存在的意义主要在于,为检修人员提供可靠的数据,让其在检修的过程中能够有效的掌握电缆在某一时间段当中所发热的情况,以及对具体某一天的温度值进行确认。以上就是电力电缆线路运行温度在线检测技术应用,相关人员需要对其加以重视,促使其在电力电缆在今后得到更好的发展。 结束语 总而言之,随着新时代社会经济的不断发展,我国电力事业随之得到了不错的提升。电力电缆作为电力事业中不可缺少的一部分,通过上述对该方面内容的研究可了解到,电力电缆运行温度在线监测技术对电力电缆的稳定运行十分重要,相关人员必须对其加以重视,并采用科学合理的方法将其应用到电力电缆线路中,促使我国电力事业在今后得到不错的发展。 参考文献: [1]姚莎莎,王辰霞.电力电缆线路运行温度在线检测技术应用分析[J].现代商贸工业,2018,39(27):193-194. [2]宋鹏先,朱晓辉,朱明正,王浩鸣,房晟辰.电力电缆线路运行温度在线检测技术应用研究[J].工程技术研究,2018(02):33-34. [3]熊齐林.电力电缆线路运行温度在线检测技术的应用[J].自动化应用,2015(04):78-79+81. [4]罗俊华,周作春,李华春,罗旻.电力电缆线路运行温度在线检测技术应用研究[J].高电压技术,2007(01):169-172.

电力电缆线路温度在线检测技术应用

电力电缆线路温度在线检测技术应用 摘要:基于温度在线检测技术的重要性,分析电力电缆线路运行温度在线检测技术。内容包括光纤传感技术、点式温度传感技术、线式温度传感器技术、热效应温度传感技术,以及它们的应用。 关键词:电力电缆;电缆温度;温度在线检测 引言 在电力电缆的日常运行检测中,针对电缆温度的状况,所采用的在线检测技术也得到了大范围的普及。电网系统中,其单位时间内可输送的电力能源受到其温度的变化影响。因此,采用更有效的方式实时检测电缆系统运行温度,可以针对电缆载流量的具体状况而找到更为有效的解决方案,有力保障电力系统供电的稳定性。 1温度在线检测技术 在相关维护人员进行电缆温度日常巡检过程中,想要更为实时的掌握导线幅值的变化状况,就必须要关注其温度,电缆温度的稳定,是把控电缆流量的关键[1-3]。电缆温度在线检测技术的优势是非常明显的。例如,与传统的热电偶局部点温度测量方式相比,更为实时的分布式光纤测温技术可以更为精准实时的显示导线温度与绝缘构件的温度状况,极大地提升了相关系统的工作效率。光纤分布式测温技术不仅仅能够为导线载流量的调整提供了更好的依据,也可以实时找到那些过热部位,让日常的检修工作更具有时效性,有效排除了那些潜在的安全威胁,发挥线检测技术的优势。 2电力电缆线路的运行温度在线检测技术

2.1光纤传感技术 在电缆温度在线测量的相关技术中,光纤传感技术以后相拉曼散射效应为运行基础,将光纤与纳米激光脉冲理论相结合,利用热振动频率来展示电缆的实施温度。在电力电缆实际温度监测过程中,光纤技术的应用场景相对普遍,其对电力系统日常维护工作带来的便利性也是被越来越多的相关从业人员所认可,而实际应用中,通常会与光时域反射测温技术相融合,获取电力电缆的实时温度,但是,这一项测温技术在具体的应用场景中,还是存在着一些不足,其主要体现在相关零部件的精度要求高,寿命较短,相关检测设备的维护成本较高。 2.2点式温度传感技术 与光纤传感技术相比,点式温度传感技术的操作更为简便,日常检测设备的运行维护成本较低,但是,由于点式温度传感技术的先天局限性,使其无法在整个电缆导线测温系统中得到应用。点式传感技术的核心是在电缆相应需要进行实时温度监测的部位设置监测点,然后使用相关传输设备将这些监测点与相应的温度显示设备连接到一起,监控人员就可以获取到这些点的温度变化状况。点式传感技术的核心工作方式也是其弱点之一,如何在电缆系统的各个位置选取测量点,如何找到那些最容易发生故障部位,这些问题都需要相关检测实施人员进行操作,埋下安全隐患。 2.3线式温度传感器技术 线式温度传感器技术主要针对电缆进行温度监控,对应电缆将会采用特别设置的温度敏感材料,在运行过程中,温度一旦出现预设的

相关文档
最新文档