一拖二恒压供水控制系统中的PLC与变频器

一拖二恒压供水控制系统中的PLC与变频器
一拖二恒压供水控制系统中的PLC与变频器

一拖二恒压供水控制系统

1 引言

变频调速技术是近十几年来迅速发展起来的比以往任何调速方法更加优越的新技术,因其具有节能效果明显、调速曲线平滑、调速过程简单、安全可靠、保护功能齐全、起动性能优越、自动化程度高等特点而受到越来越多的企业的青睐,被应用到工业生产控制过程中的任何场合,显著的节能效果给众多的企业带来了巨大的经济效益。特别是近几年来随着IGBT功率元件和DSP微处理系统在变频器中的应用,变频器本身已非常成熟,使得变频调速技术的优越性更加突出,传动效率越来越高,使用越来越方便,可靠性也得到了进一步的提高。

2 系统构成及控制方案

2.1 系统构成

一拖二(一台变频器控制两台电机)变频恒压供水控制系统由变频器、信号采集及处理系统和控制系统3部分组成。

(1) 变频器

此系统对变频器的要求不高,现有国内外各品牌变频器基本都能满足技术要求,在此我们以深圳蓝海华腾E5-P-4T18.5变频器为例。此变频器经过几番更新换代,质量更加可靠、性能更加稳定,与国内其他品牌相比性价比较高。再加上恒压供水专用扩展卡EX-DT03,使控制系统更简单方便。

(2) 信号采集及处理系统

该系统主要由压力变送器,信号隔离器及PID调节器等组成,对就地采集的信号进行处理和转换,为控制系统提供一个准确可利用的信号。

(3) 控制系统

该控制系统由按钮、继电器、接触器、触摸屏等电子电气元件组成。该系统作为变频调速控制主体,可控制水泵的起停、加减速运转以及泵间的相互切换等。主要电气元件均采用国内领先产品。TPC7062KS是北京昆仑通态旗下产品。简单易学的组态的软件,使它组态方便简易, 益于操作。

2.2 控制系统方案

为了实现恒压力供水的目的,系统采用闭环控制,同时考虑系统的安全性,附加开环控制,作为备用。开环、闭环之间可以方便的进行转换。压力传感器进行实时检测,并将检测到的管道水压信号经过转换后传送给变频PID调节器,PID调节器将此信号与给定值进行比较后,经过一系列的运算将输出一个标准的控制信号给本系统的执行器-变频器,变频器根据调节器输出信号的变化来改变其输出频率,进而改变水泵电机的转速,以此来控制出水量的大小。由于变频器的输出频率在0~50Hz范围内连续可调,当用水量较小时,水泵维持低速运行,当用水量增大致使压力降低时,变频器输出频率会一直上升到

50Hz时,使压力始终在设定值附近波动並最终达到设定值,从而实现了恒压力

供水的目的。

(1) 系统功能

可以根据需要,在触摸屏上设定压力值,系统自动进行循环启动,实现恒压供水,系统的响应速度快,稳定性好;

系统设有手动、自动控制模式:在手动方式下,由工人根据压力表显示的情况,进行手动启动,设定由工频启动;在自动方式下,完全根据压力设定值进行循环启停泵操作;

可以在线切换手动、自动控制模式:当系统在自动方式下完全启动以后,可以不停机直接切换到手动状态下运行;

每台泵都设有变频/工频两种状态,在自动运行模式下,任一台泵只有处于变频状态,才能由触摸屏控制进入循环软启序列;

具有显示报警功能,系统设置有各种显示功能,可以显示电压、电流、压力、变频器输出频率、电机转速等参数,同时设置各种保护功能,如过流保护、过压保护、过载保护等。

(2) 工作原理

在自动运行模式下,通过人为设定所需的压力,启动系统,选择自动后,控制系统通过变频器启动一台处于变频状态的水泵电机。当电机达到满速以后,如果检测压力仍达不到设定要求,控制系统会自动地将该泵由变频切换到工频,然后由变频器自动启动另外一台处于变频状态的水泵电机。当检测到的压力值偏高且变频器运转在下限频率时,则第一台工频运行的水泵电机将自动停机;若再需加泵时,控制系统会自动将变频运行的水泵切换至工频运行,然后再变频启动另外一台处于变频状态的备用泵;以此顺序运行,直到出口压力达到设定的要求值。

在手动运行模式下,由人工根据压力表显示的压力情况进行现场手动工频启动单台泵。

此系统优点是自动调节供水动力范围大,不用经常人工起停水泵,因而自动化程度高,当单台电机运行时间过长可自动切换另一台电机,因此减小了电机长期满负荷运转所造成的磨损,延长了设备的使用寿命。

(3) 控制系统原理图

此系统中,变频器作为系统的控制核心,起着至关重要的作用。尤其变频自动加减泵的过程,关系到系统的安全和调节的平滑性,在设置的过程中应该注意。

变频器及控制系统的其它电子电气元件作为本系统的执行机构,作为变频调速控制主体,可控制水泵的起停、加减速运转以及泵间的相互切换等。

3 节能原理

水泵为平方转矩负载,即水泵的负载转矩与转速的平方成正比,而轴功率和负载转矩与转速的乘积成正比,因此,水泵的轴功率与电机转速的立方成正比。

由此可知,当要求出水量减少时,可使电机转速降低,而电机转速微量减少,将使功率大幅下降,节能效果十分明显。本变频调速系统经过优化设计,精心的设备选型,合理的设置,配合正确的信号给定,使得电机始终处于

最佳运行状态,节能挖潜得到了最大的发挥。

4 效益分析

(1) 水泵恒压供水避免了运行时电机所做的无用功

(2) 水泵进行变频调速改造以后,由于系统采用软启动连续变速运行,减少了对水泵的磨损,大大延长了设备使用寿命和维修周期,减少了维修费用和由此带来的直接经济损失;

(3) 系统采取过流、过压、瞬时断电、短路、欠压、缺相等多种保护,避免了因电机烧损而影响生产所带来的直接和间接经济损失。

5 总结

用变频调速和触摸屏来实现恒压供水,与用调节阀门来实现恒压供水相比较,节能效果十分显著。其优点是:起动平稳,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击;由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命;可以消除起动和停机时的水锤效应;在锅炉和其他

燃烧重油的场合,恒压供油可使油的燃烧更加充分,大大地减轻了对环境的污染。本系统经多年应用与完善,性能优越,安全方便,深得用户好评。

西门子S7-200PLC+变频一拖三恒压供水全套工艺图

西门子S7-200型PLC 一拖三变频恒压供水电气图 设计:彭作珩 版权所有人:彭作珩

系统控制工艺要求 1.供水压力恒定,波动要小,尤其是在换泵时. 2.三台泵根据压力的设定采用先开先停的原则. 3.能实行自动按时轮换切换泵,防止某一台泵长时间运行而烧坏及防止某一台泵长时间不 用而锈死. 4.要保护和报警功能 5..为了检修方便,设手动功能. 6.要水池防抽空功能. 7.为防止系统给变频器反送电,造成变频器烧毁,KM1与KM2,KM3与KM4,KM5与KM6 必须进行机械互锁. 选型 1.PLC: 采用西门子S7-200型,CPU224, 2.变频器:ABB/ACS400型7.5KW, 3.PID:选具有压力显示的PID调节器. 工作原理: 1.利用变频器的两个可编程继电器输出端口,RO1和RO2进行功能设定,当变频器达到最 高频率时,RO1的常开触点RO1B-RO1C闭合, 当变频器达到最低频率时,RO2的常开触点RO2B-RO2C闭合,可以作为CPU224的输入信号,判断是否进行加泵和切泵 2.为了节省成本,不采用模拟模块EM235,而采用PID调节器,由于采用了PID调节器,而不 用变频器内部的PID,设置变频器时将FACTORY设置成0就可以了 3..变频器的运行要根据PLC输出Q1.0 (DCOMI-DI2) 是否闭合来确定,变频器的停止要根 据PLC输出Q0.7 (DCOMI-DI1) 是否闭合来确定,设置变频器时将变频器的内部继电器RO1,RO2设置成频率到达就可以了 PLC 1.201接变频器的DCOM1.202,203接变频器的DI1,DI 2.变频器的RO1的常开触点接到 PLC的I0.0,RO2 变频器的RO2的常开触点接到PLC的I0.1 2.KA为自动/手动中间继电器, 中间继电器KA的常开触点接I0. 3. 3.主程序含调节程序和电机切换程序,加机程序及减机程序, 4.子程序实际是清零程序,在PLC上电时,先将VD200,VD201,VD260赋值为零,作为中继 的M复位. 5.在主程序中T56,T57为变频器的频率上下限到达滤波时间继电器,用于稳定系 统,VB200为变频泵的泵号,VB201为工频泵运行的总台数,VD260为倒泵时间存储器. 版权所有人:彭作珩

变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二P L C解析.d o c -CAL-FENGHAI.-(YICAI)-Company One1

变频恒压供水一拖二PLC 程序解析 ——PLC 步进指令应用实例之一 一、变频恒压供水系统主电路和控制线路图: PE L3L2L1源电压指示 作电流指示 泵变频运行 泵变频运行 泵工频运行 泵工频运行 制电源 体散热风机 此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低

时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。如此循环不已。 需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。 变频器零速信号 变频器频率到达信手动/ 自动 自动启动自动停止 1# 泵变频运行2# 泵变频运行 故障信号输入 R200 变频器故障信号 1# 泵工频故障2# 泵工频故障 变频器运转指令 1# 泵变频自动运行控制自动/ 手动控制 1# 泵工频手动运行控制2# 泵变频自动运行控制 2# 泵工频手动运行控制1# 泵变频自动运行2# 泵变频自动运行1# 泵变频自动运行2# 泵变频自动运行 1# 泵工频运行指示2# 泵工频运行指示故障指示

ACS510恒压供水一拖三系统图及参数表

ACS510/550恒压供水一拖三接线及调试一、变频器接线图 系统图参见ACS510手册P126、P127 二、参数设置及说明 此图的给定信号来自变频器内部 9902=>7(PFC控制宏)或15(SPFC控制宏)

9905=>电机额定电压 9906=>电机额定电流(选取三电机中最大值) 9907=>电机额定频率 9908=>电机额定转速 9907=>电机额定功率(选取三电机中最大值) 1002=>6(DI6) 1003=>1(FORW ARD) 1102=>7(EXT2) 1304=>如压力表是4~20mA,应设为4 1401、1402、1403=>31(PFC) 1601=>2(DI2) 4010=>19 4011=>定义内部给值 8117=>2(辅机数量) 8718=>自动切换间隔(>0才有效) 8120=>3 8123=>2(循环软启) 8127=>3(电机数量) 8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<81097(内部) 4023=>说明:f最小<4023 4024、4026=>睡眠延时、唤醒延时 4025=>唤醒偏差 三、循环工作时序: 1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。 2、如果压力不够,准备将M2投入。于是: ●变频器暂时停机,RO1断开,K1断开; ●RO2吸合,因此K2吸合,M2投入变频; ●RO1吸合,因此K1.1吸合保持,M1投入工频。 3、如果压力还不够,准备将M3投入,于是: ●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行 ●RO3吸合,因此K3吸合,M3变频 ●RO2吸合,因此K2.1吸合并保持,M2投入工频 4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力 ●RO1断开,这时K1.1掉电,M1停止工频运行 5、如果实际压力仍高于给定压力 ●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行 6、如果此时压力又不够,这时: ●RO3断开,K3断开停止变频器运行 ●RO1闭合,K1吸合,M1变频运行 ●RO闭合,K3.1吸合并保持,M3工频运行 7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这 样变频器就找不到该位的电机。

ABB510变频器PID内部给定控制,外部给定控制与一拖三PFC控制相关参数合集

ABB510变频器 PID部给定控制,外部给定控制及一拖三PFC控制相关 参数合集

要将变频器置于远程状态(LOC/REM)=REM

ABB变频器一拖一一、1拖1 PID配置:1、ABB变频器一拖一接线: 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号。2、变频器参数调节:参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)16.01 0-不需要启动允许信号40.10 19(部设定给定值)40.11 设定压力值(压力表量程的百分数,比如目标8公斤,量程16公斤,设置成50%) 二、1拖3 PID配置:

ABB变频器一拖三1、ABB变频器一拖三接线 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号;4)10和16,17,18接通是三台泵的启动联锁信号;5)3个继电器分别接三台泵。2、变频器参数设置参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)14.01 31=PFC 控制14.02 31=PFC控制14.03 31=PFC控制16.01 0-不需要启动允许信号40.10 19(部设定给定值)40.11 设定压力值(压力表量程的百分数,比如目标8公斤,量程16公斤,设置成50%)81.17 2=辅机数量81.27 3=辅机数量

变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二PLC 程序解析 ——PLC 步进指令应用实例之一 一、变频恒压供水系统主电路和控制线路图: PE L3L2L1源电压指示 作电流指示 泵变频运行 泵变频运行 泵工频运行 泵工频运行 制电源 体散热风机 此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒

压供水。如此循环不已。 需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。 变频器零速信号 变频器频率到达信手动/ 自动 自动启动自动停止 1# 泵变频运行2# 泵变频运行 故障信号输入 R200 变频器故障信号 1# 泵工频故障2# 泵工频故障 变频器运转指令 1# 泵变频自动运行控制自动/ 手动控制 1# 泵工频手动运行控制2# 泵变频自动运行控制 2# 泵工频手动运行控制1# 泵变频自动运行2# 泵变频自动运行1# 泵变频自动运行2# 泵变频自动运行 1# 泵工频运行指示2# 泵工频运行指示故障指示 上图为PLC 控制接线图。水泵和变频器的故障信号未经PLC 处理,而是汇总给继电器KA2。其手动/自动的切换控制继电器KA1来切换。变频/工频的运

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

一个最简单的变频恒压供水实例

恒压供水 接线: 按图五所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数: 电阻满量程:400?(蓝、红) 零压力起始电阻值:≤20?(黄、红) 满量程压力上限电阻值:≤360?(黄、红) 接线端外加电压:≤6V(蓝、红) 图五 恒压供水接线图 开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5公斤)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。

参数设定: F1.01出厂值为0.0,设定为1 F1.23出厂值为0,设定为30.0 F2.05出厂值为0,设定为1 F2.19出厂值为0,设定为1 F4.00出厂值为0,设定为1 F4.06出厂值为0,设定为3.10 按电机名牌设定电机参数:F1.21、F5.00~F5.04 闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5KG。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。

采用PLC控制的变频器一拖三恒压供水技术方案

采用PLC控制的变频器一拖三恒压供水技术方案 1. 系统控制要求; 1.1 实现变频器一拖三控制并可手动/自动切换; 1.2自动状态运行时系统启动一台泵后,当压力无法达到设定压力时,系统自动启动第二台泵,当压 力还是无法达到设定压力时,系统自动启动第三台泵;当出口压力高于设定压力时应尽快切除掉一台 泵………或两台泵,直到满足设定压力为止。 1.3手动状态时,要求手动启/停每一台泵,用于检修及应急; 1.4 低液位时,停所有泵并声音及指示灯报警; 1.5 管网压力如果大于设定值上限,所有泵停,直至压力下降然后按设定重新逐一启动水泵。 1.6 三台泵均具备软启动功能。 电气原理图: 2. 设备选型: 2.1 PLC系统选型:选用台湾亚瑞电子(南京)有限公司生产的SR-22MRD 可编程控制器。该控制器具备14点DC输入,8点模拟量输入端口,模拟量输入端口为DC0—10V(精度为0.1V);8点继电器输出(负载能力为:感性负载2A,非感性负载10A)。 2.2 压力变送器的选择:可选择三线制电压型压力变送器,带LCD数显表头。压力范围在 10Kpa-60Mpa。 2.3 液位开关选用供液电极型液位开关。

2.4 变频器:风机水泵型变频器。 3.电气控制原理及PLC程序说明: 3.1 电气控制原理图如图。3台水泵电机为M1,M2,M3。KM1,KM3,KM5分别控制三台泵工频运行;KM2,KM4,KM6分别控制三台泵变频运行。电路设计为互锁功能。每台泵均有热继电器作电机过载保护。QF1-4分别为变频器、泵主回路隔离开关。QF5为PLC及控制回路提供电源。SA为手动/自动切换旋纽,打到1位置启动PLC按设计程序自动运行;打到2位置为手动启动单台泵运行,用于检修、紧急状态下使用。HL3-HL8为运行状态指示。HL2为水箱位置报警指示。 3.2 PLC I/0地址及功能如图 3.3 程序文字简介: SA旋钮置于自动位置,PLC运行准备。当液位传感信号为1,如果压力信号<=2V,3号泵变频运行,1、2号泵工频运行补水;当压力信号<=2.5V, 1号泵工频、2号泵变频运行;压力信号〉=2.5V ,小于3V 时,1号泵变频运行。如果信号大于3V,将所有泵置零,即停止三台泵所有方式的运行,待压力下降重新逐一起动水泵运行。变频与工频切换时,考虑到电机中的残余电压,不能将电机立即切换到工频,而是延时一段时间,到电机中的残余电压下降到较小值,这个值保证电源电压与残余电压不同相时造成的切换电流冲击较小,故设置延时时间为700ms(可根据现场情况调节),之后接入工频。变频器设置为自由停车。 本程序关键部位功能块解读: 1. 程序开始采用TBLS功能块作为程序的启动与停止(包括急停),启动按钮定义为S置位信号。 停止按钮定义R端复位; 2 .大量采用&逻辑功能块,各条件均满足经过判断后用于输出; 3. 灵活使用反向器,例如变频器的一拖三功能和变频与旁路的切换均为反向器实现。压力传感器信号<2.5V且>2V,则由CMPR模块(模拟量比较器)引出一路至反向器1#,经过反向后控制1#变频输出为零,再经过一个反向器控制1#工频输出。所以变频器一拖三功能,变频与旁路的切换换都是通过反向器及其后接延时接通TRG模块实现。变频器的启/停控制也由三段压力信号约束(三段经比较后的压力信号接入或逻辑模块作为RS的置位信号,三路控制变频输出的反信号接入另一&逻辑模块作为RS复位端控制变频 器的启/停,由此实现变频输出的平滑切换。) 假如液位传感器信号为0,即:水满,程序置零,工频变频运行停止,输出为零,直到信号为1开始 补水。 SA置于手动位置可通过外围控制电路启动各台泵单独工频运行,便于检修与应急。 以下为编辑完成的程序界面:

变频器一拖三恒压供水

一拖三”变频改造方案实现厂区恒压供水 摘要 针对原供水系统存在的问题,对生产区循环加压泵供水系统进行了变频技术改造,以降低 成本,提高供水质量及工作效率。 关键字 变频器;水泵;恒压供水;改造 1概述 中铝青海分公司供水加压泵站由一、二期泵站构成,共计有加压泵 10台套,一、二期各 供水600多万t 。正常情况下,两个独立控制的泵站的水泵均为三用两备运行状态。 1.1设备现状 一期泵站1986年投产,已连续运行 20年。5台水泵型号为150S78A ,流量为144 m3/h 配用电机型号为JO2-82-2,功率为40 kW ;二期泵站1990年8月投产,已连续运行16 泵型号为6SH-6A ,流为量180 m3/h ,扬程为55 m ,配用电机型号为JO2-82-2,功率为 存在问题 1)水泵运行年限较长,设备严重老化,故障率高。由于没有相应的备品备件供应,所以维修困 难。 响平稳供水,对分公司安全生产构成威胁。 2) J02系列电机是非节能产品,是属国家明令淘汰的电机产品。 3) 由于用水量不稳定,水压忽高忽低,水压高时易使供水管网破裂,水压低时不能满足生产生活需要。 所以必须及 时调整水泵水压,但由于水泵控制分散在两个控制室,造成水泵水压调整不便。 4)由于是两个泵站,所以必须有两组人员看守、操作泵站,存在人力浪费现象。 2改造方案 在基本保持原有加压泵站的功能和出力大小的情况下,将原有的 10台套水泵对应更换为ISO 系列,流量 为150耀180 m3/h ,扬程为62 m 的新水泵,安装位置与旧水泵对应。配用电机型号为 Y 系列2极,功 率为45 kW 。废弃原有水泵的控制系统,对 10台新水泵实施集中控制。对其中 7台水泵实施工频控制; 对剩余的3台水泵实 施一拖三”的变频控制,实现水压的自动控制调节。正常情况下,要求以工频控制的 水泵运行4台,备用3台;如果厂区用水量有大幅度的变化,可多开或少开工频控制的水泵,但不管那 种情况,都同时投运已实施 一拖三”的变频控制水泵系统,并尽可能使 3台变频控制的水泵保持在一工频 运行、一变频运行、一备用的状态,以达到自动调节管网的水压,实现恒压供水的目的。 本文针对改造方案中提出的 一拖三”的变频控制方案,从电气设计的角度进行了较为全面的论证,说明了 该方案的可行性。 3恒压供水系统工作原理 恒压供水控制系统将主要由 PLC 、PID 、变频器、切换继电器、压力传感器等部分组成。为了维持供水管 网的压力不变,必须在系统的管道上安装压力变送器作为反馈组件来为控制系统提供反馈信号。由于供水 系统管道长、管径大,管网的充压比较慢,故系统是一个大滞后系统,不宜直接采用 PID 调节器进行控 制,而应采用PLC 参与控制的方式来实现对控制系统的调节。变频器选择 FRN55 P11S-4CX ,可编程控制器选择日本松下 FP1-C40 型。 控制核心单元 PLC 根据手动设定压力信号与现场压力传感器的反馈信号,得到压力偏差和压力偏差的变 化率,经过 PID 运算后,PLC 将0?5V 的模拟信号输出到变频器,用以调节电机的转速以及进行电机的 软启动;PLC 通过比较模 拟量输出与压力偏差的值,驱动切换继电器组,以此来协调投入工作的水泵电 机台数,在大范围上控制供水的流量,同时完成电机的启停、变频与工频的切换。 PID 调节器控制变频 5台套,每年 ,扬程为62 m , 年。5台水 45 kW 。 1.2 已影 FRN45 P11S-4CX 或

ABB510变频器PID内部给定控制,外部给定控制及一拖三PFC控制相关参数合集

ABB510变频器 PID内部给定控制,外部给定控制及一拖三PFC控制相 关参数合集

要将变频器置于远程状态(LOC/REM)=REM

ABB变频器一拖一一、1拖1 PID配置:1、ABB变频器一拖一接线: 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号。2、变频器参数调节:参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)16.01 0-不需要启动允许信号40.10 19(内部设定给定值)40.11 设定压力值(压力表量程的百分数,比如目标8公斤,量程16公斤,设置成50%)

二、1拖3 PID配置: ABB变频器一拖三1、ABB变频器一拖三接线 注:1)图压力传感器反馈的信号为电流型,设置J1为电流,向右拨码;2)11和12短接;3)10和13接通是启动信号;4)10和16,17,18接通是三台泵的启动联锁信号;5)3个继电器分别接三台泵。2、变频器参数设置参数设定值99.02 6=PID控制宏10.02 1=DI1控制启停11.02 7=外部213.04 20%(实际信号为4-20ma或2-10V时)14.01 31=PFC 控制14.02 31=PFC控制14.03 31=PFC控制16.01 0-不需要启动允许信号40.10 19(内部设定给定值)40.11 设定压力值(压力表量程的百分

数,比如目标8公斤,量程16公斤,设置成50%)81.17 2=辅机数量81.27 3=辅机数量 收起内容

三菱plc恒压供水教学课件

https://www.360docs.net/doc/e2418400.html,
(1)了解恒压供水的工作原理及系统 的结构; 的结构; 调节的参数设置; (2)掌握PLC的PID调节的参数设置; 变频器、 (3)掌握PLC、变频器、触摸屏和 FX0N-3A模拟量I/O模块的综合应用; 模块的综合应用;

https://www.360docs.net/doc/e2418400.html,
(4)掌握PLC、变频器和外部设备的 电路设计及综合布线; 电路设计及综合布线; 变频器、 (5)能运用PLC、变频器、触摸屏等 新器件解决工程实际问题。 新器件解决工程实际问题。

https://www.360docs.net/doc/e2418400.html,
(1)可编程控制器4台(FX2N48MR); (2)恒压供水实训台1台; (3)220V接触器6个; (4)F940触摸屏1台;

https://www.360docs.net/doc/e2418400.html,
(5)A540变器1台; 电流表; (6)电压/电流表; 软件、 (7)计算机1台(已安装GPP软件、 GD Designer软件); 软件); 导线若干。 (8)导线若干。

https://www.360docs.net/doc/e2418400.html,
PID 1 共有两台水泵, (1)共有两台水泵,按设计要求一台 运行,一台备用, 运行,一台备用,自动运行时泵运行累 轮换一次,手动时不切换; 计100h轮换一次,手动时不切换;

https://www.360docs.net/doc/e2418400.html,
(2)两台水泵分别由M1、M2电动机 拖动, 拖动,电动机同步转速为3000转/min, 控制; 由KM1、KM2控制; (3)切换后起动和停电后起动须5s报 运行异常可自动切换到备用泵, 警,运行异常可自动切换到备用泵,并 报警; 报警; 调节指令; (4)PLC采用的PID调节指令;

建筑给排水图集建筑给排

[教学研究]水设计给排水设计施工图给排水施工图给排水大样图 建筑给排水图集建筑给排水设计给排水设计施工图给排水施工图给排水大样图 7.5设备控制图 04FD02防空地下室电气设备安装12路电容柜接线图 15.仪表电缆保护及连接图册35-0.38KV变压器二次电路图35-6~10KV变压器二次电路图35KV开关柜微机综合保护原理图6#机专用盘图纸 630kVA及以下室内型 6OOMW机组一次接线全图900MW超临界机组DEH系统图ABB软启动接线、控制原理图cmc-P(L)喷淋专用一用一备软起动控制装置原理图 D0608UPS二次接线图 DW17主备回路图 DW17主备自投主电自复回路F&G SF6环网柜 GCS总装图12xx GGD3一、二次电路图及设备表(58张) GGD总装配图(35xx) GZG58微机高频开关直流电源柜图纸LED显示屏 M开关自投自复三联锁 plc柜设计图 PLC控制交流双速电梯电气图PLC控制两进一联络 SWB-05-56定量给料机原理图VS1进线柜原理图

α角伺服器原理图 泵站系统 变电所10KV进线、计量柜、变压器柜原理图 变频调速系统电气原理图 变频器控制原理图 变压器全套图纸 变压器微机保护监控二次电路图柴油发电机组并机控制器图纸柴油发电机组控制器图纸 常用CAD电气图库对照 常用电气控制原理图通用图厂配电变压器二次图 单电源进线配双台变压器(400,630kVA及以下) 电动控制图 电机控制原理图 电机控制原理图大全 电炉全套图纸 电气原理图 电梯电梯主回路图纸 电站电气二次图 断路器选型.图纸及外型尺寸断路器原理图 二次设备电路图 二台(VI)喷淋互备自投星--三角降压起动控制电路图

一拖二全自动恒压供水变频柜说明书

变频恒压供水控制柜 使用说明

1.概述 本变频恒压供水自动控制柜主件由高性能风机水泵专用变频器和西门子可编程控制器组成,具有运行稳定可靠、操作灵活方便(双泵可独立或混合操作运行)、调试简单、中文显示运行信息和故障信息、全自动运行无人值守、功能强大(可根据用户需求添加控制程序)等特点。 控制柜以系统管网的瞬时变化的压力为稳定参数(比较定位)通过微机控制变频器的输出频率。自动跟踪调节水泵的转速;实现对系统水压的PID 闭环调节,从而保证管网的末端的压力恒定,使整个供水系统持续高效运行。当用水量增大时,变频器输出频率变大,水泵转速加快,供水量增大; 用水量减小时,变频器输出频率变小,水泵转速减慢、供水量减小,保证用户对水的压力和流量的需要。 优点 1、选用高性能风机水泵专用变频器; 2、数字PID调节,键盘操作、数字显示、全自动运行无人值守; 3、选用西门子可编程控制器; 4、性能优良、控制方式灵活、抗干扰能力强、工作稳定可靠; 5、运行状态、故障信息中文提示; 6、 自动状态下,水泵电机实现自动启动。对电网和管网无冲击,大大延 长水泵、电机、管道系统、电气控制系统的使用寿命; 7、每台泵均设手动、停、自动三挡转换功能,控制灵活方便; 8、控制程序化、可根据用户的要求实现多种控制方式。 9、 2台泵定时自动切换交替运行,均衡各台泵的平均工作时间延长水泵 的使用寿命,从而避免备用泵的长期不运行而锈蚀; 10、可选择附加功能丰富。如:时控、温控、温差控等。 2.主要功能 2.1 双泵运行功能 将2台供水泵运行选择转换开关“手动停自动”全部转至“自动” 位置,当管网压力低于设定值时,A泵开始变频运行,B泵进入备用状态,

一拖二SPFC控制恒压供水变频控制参数设置

一拖二SPFC控制恒压供水变频控制参数设置9902=7/15 PFC/SPFC宏 1201=0 关闭恒速 1304=0%(20%) 0(4)-20mA 1401-=31继电器输出 1402=31 继电器输出 1601=0 关闭运行允许 2007=20Hz 最小频率 2008=52Hz最大频率 2601=0 关闭磁通优化 3408=121 信号2参数 3409=0 信号最小值 3410=100 信号最大值 3411=1 格式 3412=8 单位 3413=0 输出最小值 3414=压力表最大量程 3415=128 信号3参数 3416=0 信号最小值 3417=100 信号最大值 3418=1 格式 3419=8 单位

3420=0 输出最小值 3421=压力表最大量程 4001=1.5~2 增益 4002=20~30S 积分时间 4005=0/1 输出频率随反馈值的增加而降低/升高4010=19 PID设定值为内部 4011=设定压力占压力表量程的百分比 4022=0/2 若需睡眠功能设为2 4023=23Hz 睡眠频率 4024=180S 睡眠延时 4025=5 唤醒偏差 4026=0.5S 唤醒延时 8109/10/11=50Hz 辅机启动频率 8112/13/14=25Hz 辅机停止频率 8115=10S 辅机启动延时 8116=20S 辅机停止延时 8117=1 辅机数量 1台辅机 8118=0.1h 自动切换时隔 8119=100% 自动切换范围 8120=3 内部锁定 8122=0.5S PFC启动延时 8123=2 SPFC使能 8127=2 电机数量

变频恒压供水原理说明

变频恒压供水原理说明 变频恒压供水设备利用专门为风机、泵类、空气压缩机等流量和压力控制特点而研制的专用变频调速器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵组的运行与退出台数,而且内置PID功能与我司开发的专门处理恒压供水的控制板,可以方便地与远传压力表连用,同而完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。为客户节省成本,具有较高的经济性和实用性。 一、变频恒压供水特点: 1、恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及水龙头共振现象。 2、动平滑,减少电机水泵的冲击,延长了电机及水泵的使用寿命,避免了传统供水中的水锤现象。 3、采用变频恒压供水保护功能齐全,运行可靠,具有欠压、过压、过流、过热等保护功能。 4、系统配置可实现全自动定时供水,彻底实现无人值守自动供水.控制系统具有故障报警和显示功能,并可进行工变频转换,应急供水。 5、系统根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,当系统零流量时,机组进入休眠状态,水泵停止,流量增加后才进行工作,节电效果明显,比恒速水泵节电23%-55%。 6、变频恒压供水设备不设楼顶水池,既减少建筑物的造价,又克服了水源二次污染,气压波动大,水泵启动频繁和建造水塔一次性投资大,施工周期长,费用高等缺点。 7、整套设备只需一组控制柜和水泵机组,安装非常方便,占地面积少。 8、本设备采用全自动控制,操作人员只需转换电控柜开关,就可以实现用户所需工况,操作简单。 二、工作原理: 变频恒压供水系统采用一电位器设定压力(也可采用面板内部设定压力),采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 三、变频恒压供水系统控制图(以一台变频器控制一台马达为例): 例:使用远传压力表,量程0-10kg,反馈4-20mA,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 四、适用范围:

ACS510恒压供水一拖三系统图及参数表

ACS510/550恒压供水一拖三接线及调试一、变频器接线图 系统图参见ACS510手册P126、P127 二、参数设置及说明 此图的给定信号来自变频器内部 9902=>7(PFC控制宏)或15(SPFC控制宏)

9905=>电机额定电压 9906=>电机额定电流(选取三电机中最大值) 9907=>电机额定频率 9908=>电机额定转速 9907=>电机额定功率(选取三电机中最大值) 1002=>6(DI6) 1003=>1(FORWARD) 1102=>7(EXT2) 1304=>如压力表是4~20mA,应设为4 1401、1402、1403=>31(PFC) 1601=>2(DI2) 4010=>19 4011=>定义内部给值 8117=>2(辅机数量) 8718=>自动切换间隔(>0才有效) 8120=>3 8123=>2(循环软启) 8127=>3(电机数量) 8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<81097(内部) 4023=>说明:f最小<4023 4024、4026=>睡眠延时、唤醒延时 4025=>唤醒偏差 三、循环工作时序: 1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。 2、如果压力不够,准备将M2投入。于是: ●变频器暂时停机,RO1断开,K1断开; ●RO2吸合,因此K2吸合,M2投入变频; ●RO1吸合,因此K1.1吸合保持,M1投入工频。 3、如果压力还不够,准备将M3投入,于是: ●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行 ●RO3吸合,因此K3吸合,M3变频 ●RO2吸合,因此K2.1吸合并保持,M2投入工频 4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力 ●RO1断开,这时K1.1掉电,M1停止工频运行 5、如果实际压力仍高于给定压力 ●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行 6、如果此时压力又不够,这时: ●RO3断开,K3断开停止变频器运行 ●RO1闭合,K1吸合,M1变频运行 ●RO闭合,K3.1吸合并保持,M3工频运行 7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这 样变频器就找不到该位的电机。

一拖二恒压供水控制系统中的PLC与变频器

一拖二恒压供水控制系统中的PLC与变频器 1 引言 变频调速技术是近十几年来迅速发展起来的比以往任何调速方法更加优越的新技术,因其 具有节能效果明显、调速曲线平滑、调速过程简单、安全可靠、保护功能齐全、起动性能优越、自动化程度高等特点而受到越来越多的企业的青睐,被应用到工业生产控制过程中的任何场合,显著的节能效果给众多的企业带来了巨大的经济效益。特别是近几年来随着IGBT 功率元件和DSP 微处理系统在变频器中的应用,变频器本身已非常成熟,使得变频调速技术的优越性更加突出,传动效率越来越高,使用越来越方便,可靠性也得到了进一步的提高。 现代工业生产是复杂多样的,它们对控制的要求也各不相同。可编程控制器(PLC由于具有 以下特点而深受工厂工程技术人员的欢迎。 (1) 可靠性高,抗干扰能力强 其平均无故障时间大大超过IEC规定的10万小时,同时,有些PLC还采用了冗余设计和 差异设计,进一步提高了其可靠性。 (2) 适应性强,应用灵活 多数采用模块式的硬件结构,组合和扩展方便。 (3) 编程方便,易于使用 梯形图语言和顺控流程图语言(Sequential Function Chart) 使编程简单方便。 (4) 控制系统设计、安装、调试方便 设计人员只要有PLC就可进行控制系统设计,并可在实验室进行模拟调试。 (5) 维修方便,工作量小 PLC有完善的自诊断、历史资料存储及监视功能,工作人员可以方便的查出故障原因,迅 速处理。 (6) 功能完善除基本的逻辑控制、定时、计数、算术运算等功能外,配合特殊功能块,还可以实现点位 控制、PID运算、过程控制、数字控制等功能,既方便工厂管理又可与上位机通信,通过远程模块还可以控制远方设备。 由于具有以上特点,使得PLC的应用范围极为广泛,可以说只要有工厂、有控制要求,就会有PLC的应用。 2 系统构成及控制方案 2.1 系统构成 一拖二(一台变频器控制两台电机)变频恒压供水控制系统由变频器、信号采集及处理系统和控制系统3 部分组成。 (1) 变频器 此系统对变频器的要求不高,现有国内外各品牌变频器基本都能满足技术要求,在此我们以西门子MM430 变频器为例。此变频器经过几番更新换代,质量更加可靠、性能更加稳定,与国外其他品牌相比性能价格比较高。只是此变频器多功能数字输入端子没有对两路模拟输入信号的切换功能,只能通过外部继电器切换。 (2) 信号采集及处理系统 该系统主要由传感器及PID调节器等组成,对就地采集的信号进行处理和转换,为控制系 统提供一个准确可利用的信号。 (3) 控制系统 该控制系统由按钮、继电器、PLC 等电子电气元件组成。该系统作为变频调速控制主体,可控制水泵的起停、

(完整版)变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二 PLC 程序解析 PLC 步进指令应用实例之一 此系统是 2000 年前后,由上海博源自动化有限公司制作的(很想念他们, 多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、 PLC 和两台水泵构成。利用了变频器控制电路的 PID 等相 关功能,和 PLC 配合实施变频一拖二自动恒压力供水。 具有自动 /手动切换功能。 变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动 1#泵,至全速运行一段时间后, 由远传压力表来的压力信号仍未到达设定值时, PLC 控制 1#泵由变频切换到工 运行,然后变频启动 2#泵运行,据管网压力情况随机调整 2#泵的转速,来达到 恒压供水的目的。当用水量变小,管网压力变高时, 2#泵降为零速时,管网压力 仍高,则 PLC 控制停掉 1#工频泵,由 2#泵实施恒压供水。至管网压力又低时, 将 2#泵由变频切为工频运行,变频器启动 1# 泵,调整 1# 泵的转速,维修恒压供 水。如此循环不已。 柜体散热风 控制电源 2 # 泵工频运 1 # 泵工频运 2 # 泵变频运 1 # 泵变频运 工作电流指示 电源电压指 、变频恒压供水系统主电路和控制线路

需要说明一下的是:变频器必须设置好 PID 运行的相关参数,和配合 PLC 控制的相关工作状态触点输出。详细调整,参见东元 M7200 的说明书。 在本例 中,须大致调整以下几个参数。 1、设置变频器启 /停控制为外部端子运行; 2、 设置为自由停车方式,以避免变频 /工频切换时造成对变频器输出端的冲击; 3、 设置 PID 运行方式,压力设定值由 AUX 端子进入。反馈信号由 VIN 端子进入; 4、对变频器控制端子——输出端子的设置。设定 RA 、RC 为变频故障时,触点 动作输出;设定 R2A 、R2C 为变频零速时,触 点动作输出;设定 DO1、DOG 为 变频器全速(频率到达)时,触点动作输出。 R200 S200 上图为 PLC 控制接线图。水泵和变频器的故障信号未经 PLC 处理,而是汇 总给继电器 KA2 。其手动/自动的切换控制继电器 KA1 来切换。变频 /工频的运 行由接触器触点来互锁,以提高运行安全性。可以看出, R2A 和 DO1 是 PLC 的 两个关键输入信号。在 PLC 的控制动作输出中,对变频到工 频的切换是通过 DO1 (变频器零速信号)来进行的;对工频到变频的切换是通过 R2A (变频器频率 L N COM X00 X01 X02 X03 X04 X05 X06 X07 X3 X4 COM X0 X1 X5 X6 X7 X2 故障信号输入 2 # 泵变频运行 1 # 泵 变频运行 自动停止 自动启动 手动/ 自 动 变频器频率到达 信 变频器零速信号 SA1 SB1 SB2 KM3 KM KA2 R2A D01 COM 0Y00 COM1 Y01 COM2 Y02 Y03 Y04 Y05 KM1 KM2 KM3 KM4 1 H2 H3 H4 H5 HL1 HL2 HL3 HL4 M3 M4 KM3 K M4 SA4 SA5 Y2 K11 K13 KA1-1 K12 K14 KM3 KM4 M2 KM2 KA1 KM1 Y0 Y0 SC 1 KA2 S200 故障指示 2 # 泵变频自动运行 1 # 泵变频自动运行 2 # 泵 工频运行指示 1 # 泵工 频运行指示 2 # 泵变频 自动运行 1 # 泵变频自 动运行 2 # 泵变频自动 运行控 2 # 泵工频手动运行控 1 # 泵变频自动运行控 1 # 泵工频手动运行控 自动/ 手动控 制 变频器运转指令 2 泵工频故障 1 # 泵工频故障 变 频器故障信号 KA2 HL5 +24V COM R200 Y4 Y5 KM1 KM2 Y3 KA1-2 Y1 M1 K2

相关文档
最新文档