乙二醇水溶液的工程应用

乙二醇水溶液的工程应用
乙二醇水溶液的工程应用

乙二醇水溶液作为冷、热媒的应用摘要:化工生产物料纯化工艺需采用冷、热媒分阶段对物料进行冷凝、气化。采用安全可靠、热力性能满足使用要求的介质是提高生产效率、保证物料质量的重要环节。本文介绍了乙二醇水溶液作为冷热媒在物料纯化过程中的应用。

关键词:乙二醇水溶液冷媒热媒应用

0 引言

在某工程中,系统中的气体物料连续不断地通过管道进入纯化器冷凝。纯化器盘管中冷媒温度-25℃。当纯化器装载量达到要求后,需将物料进行加热气化,此时通入纯化器盘管内的热媒温度为100℃。为了最大限度地提高纯化器的有效容积和传热面积,降低成本,提高效率,纯化器内的加热和冷凝均采用同一组排管。

1、我国现有物料纯化工艺的冷冻、加热系统

我国一些化工企业中,物料纯化工艺通常采用盐水冷却、蒸汽加热流程。详见图1。

物料冷凝时,将盐水通入纯化器中,不断进行循环,待冷凝工序完成后,为将冷凝器盘管内残留的盐水排入冷冻系统中,须用压缩空气将盐水排入排液箱中,再经排液泵打入系统。

当物料进行气化时,将蒸汽通入纯化器盘管中,待气化过程完成后,再用压缩空气将盘管中的凝结水吹扫干净,以防止盐水通入时浓度变化引起凝固点改变。该流程存在下列不足:

1)由于冷却介质(冷媒)采用了盐水,而盐水对金属的腐蚀性较强(温度≤80℃.年腐蚀率0.05~0.5mm/a)※,因此设备和管道有被腐蚀而发生泄漏事故的可能性。为防止事故发生,必须增加设备和管道的壁厚,提高了工程造价。

2)由于加热和冷却采用不同工质,在冷凝、气化工序转换时操作程序复杂,工作周期延长。

:

图1 蒸汽(热媒)盐水(冷媒)系统流程2、采用同一种介质的冷冻、加热系统

采用同一种介质作为冷热媒,在物料冷凝时,将冷媒通入纯化器中,冷凝工序完成后,切换冷冻、加热系统阀门,进行气化过程。流程见图2。

相对流程1而言,具有以下优点:

1)采用同一种工质为冷热媒,冷凝、气化工序转

化操作简单。

2)对系统的管理、自控仪表的检测更具先进性。

3、冷热媒的选择

3.1 理想的冷热媒应具有的特性

1)在该系统的工作温度范围内,所选的冷热媒是

液体状态,其凝固点应比该系统中制冷剂蒸发温度

图2 冷热媒采用同一介质的系统流程图

低4~8℃,其沸点应高于系统可能达到的最高温度。 2)比热大。在传输一定热量时,比热大的工质流量小,可以减少输送工质循环泵的功率消耗。

3)密度小。当流量一定时输送比重小的介质,其循环泵的功率消耗小。

4)化学稳定性好。在大气条件下不分解,不与空气中的氧化合,不改变其物理化学性质。 5)对设备、管道及附件腐蚀性小。 6)液态和气态时俱无毒。 3.2 乙二醇的特性

表1 热力性能

表2 化学稳定性

表3 对金属腐蚀性※

表4 毒性

注:①LD :致死浓度。

表5 燃烧、爆炸性

3.3 通过上述分析可知,乙二醇水溶液做为冷热媒

应用于该类工程是安全可靠的。

4、采用乙二醇水溶液为冷热媒的系统设计要点4.1 乙二醇水溶液浓度的确定

在某工程物料装置的乙二醇系统中,其工作温度为-25~100℃,因此乙二醇水溶液的浓度首先要满足凝固点-30℃以下、沸点105℃以上的基本要求,其次要考虑对应温度下的密度、比热及黏度对系统的影响。

下表为乙二醇水溶液在不同浓度下的沸点、凝固点、黏度、密度、导热系数和比热.

从上表看出,乙二醇水溶液随浓度的增加,凝固点下降。乙二醇水溶液浓度为48%时,凝固点为-31.1℃,沸点为106.7℃,可满足使用要求。该浓度下的λ值随温度的变化较小,但黏度随温度的变化较大,需在设计中考虑此因素。 4.2 冷媒泵功率的确定

普通离心泵是在一定流量下,根据杨程确定电机功率的,且均以水的黏度作为参考值。由于乙二醇水溶液在低温状态下的黏度较大,因此在选择泵时要充分考虑黏度的影响。通过泵在不同黏度对流量、杨程、效率修正系数确定冷媒泵的电机功率。 图4.2为离心泵输送粘性液体时泵性能修正系数图。

图4.2 离心泵性能修正系数

如果系统中输送48%乙二醇水溶液流量为30m 3/h ,扬程40米,溶液的黏度为27.3 mPa..s ,则可从图4.2中查出对应的流量、扬程、效率修正系数C Q 、C H 、C η分别0.99、0.95、0.78,水泵效率η取80%。

则输送乙二醇水溶液所需的轴功率为:

Q.H .. = 3600x102. .Q H

N C C C ηγη轴乙 (1)

30X1086X40

3600102X0.99X0.95X0.78X0.86.0kw X =

= 式中Q 、γ、H 分别为水泵流量、流体密度及扬程。 同样流量和扬程下输送介质为水的轴功率为:

30X1086X40

=

4.4kw 3600X102X0.8

N =轴水

因此输送乙二醇水溶液时应考虑介质对水泵的影响。

4.3 加热形式的确定

本工程采用蒸汽加热形式,蒸汽压力压力为0.3MPa (表压) ,此时蒸汽饱和温度为120℃。 4.4 氮气定压系统的设置 4.4.1 设置氮气定压装置的目的

在热媒加热系统中,需将乙二醇水溶液加热至100℃,而48%乙二醇水溶液常压下沸点(760mmHg )为106.7℃。由于加热设备内介质温度梯度的存在及管道的阻力损失等因素。可能使乙二醇水溶液汽化,造成热媒泵汽蚀,直接影响系统的正常运行。为加强系统可靠性,在加热罐液面充入氮气,提高整个系统的压力,以此提高工作介质的沸点。 4.4.2 氮气压力的确定

氮气压力的确定应考虑两个方面的因素:1) 防止溶液沸腾;2) 防止溶液泵汽蚀。

4.4.2.1估算非标准大气压下沸点所对应的压力可用Clausius-Clapeyron 方程: Lnp-lnp 0=

b 11

()Hv R T T

?- (2) 式中:

P : 系统中工质沸点对应的压力(mmHg ); P 0:正常沸点压力(760mmHg ); R : 气体常数(8.31J/K.mol ); T b : 标准大气压下介质的沸点K ; T :系统中工质的沸点;

△H v:溶液在760mmHg 的蒸发熵J/mol 。

在某工程中,加热蒸汽温度为120℃,故乙二醇水溶液的最高温度不会超过此温度,即

T =120+273=393K

由于被加热介质为乙二醇水溶液,因此△H v 可 通过计算得出:

△H 水=40756J/mol △H 乙二醇=49671J/mol

则 △H V =40756x0.52+49671x0.48=45035.2 J/mol

由(2)式可求出: P =1236mmHg=16.5kPa

由于系统管道和设备的压力损失△P=120 kPa , 考虑一定安全系数,系统中氮气定压力为:

P 定 =(P +△P )x1.1=150KPa

4.4.2.2离心泵的汽蚀余量可由下式得出:

2

1g ()

2a v P P v h H g g

ρ-=+- (3)

式中:

△h :允许汽蚀余量,m ;

P a : 作用于吸水面的绝对压力,kPa;

P v : 液体温度下的汽化压力,kPa; ρ:液体的密度;

v 1: 水泵吸入口的平均流速,m/s ; g : 重力加速度,m/s ;

H g :水泵制造厂提供的允许吸上高度,m 。 比较式(2)与式(3)的计算结果,取其较大值为系统的定压值。

4.5 设备管道材料选择 在选择冷凝器盘管材料及乙二醇系统管道材料时,对48%乙二醇水溶液对金属的腐蚀速度进行了测试。结果表明乙二醇水溶液对不锈钢及碳钢的腐蚀性均属耐腐蚀级。由于不锈钢导热性能较碳钢差(100℃时前者λ=16.3w/m.℃,后者λ=51.8w/m.℃)且价格较贵,故在设计中应采用碳钢材料。 参考文献:

1、《制冷工程设计手册》,中国建筑工业出版社,1985年

2、《工业溶剂手册》,冶金工业出版社 1984年

3、《有机化学原料大全》。化学工业出版社 1988年

4、《化学性质估算方法手册》化学工业出版社 1991年

5、《腐蚀数据手册》,化学工业出版社

6、《化工工艺设计手册》,化学工业出版社 2009年

7、《化学危险品实用手册》,化学工业出版社 1992年

8、《常用化学危险品安全手册》化学工业出版社 1994年

※ 《乙二醇水溶液腐蚀速度测试报告》,太原腐蚀与防护

学会。1994年

聚乙二醇

聚乙二醇 系列产品无毒、无刺激性,味微苦,具有良好的水溶性,并与许多有机物组份有良好的相溶性。它们具有优良的润滑性、保湿性、分散性、粘接剂、抗静电剂及柔软剂等,在化妆品、制药、化纤、橡胶、塑料、造纸、油漆、电镀、农药、金属加工及食品加工等行业中均有着极为广泛的应用。 中文名 聚乙二醇 英文名 Polyethylene glycol 别称 α-氢-ω-羟基(氧-1,2-乙二基)的聚合物等 化学式 HO(CH?CH?O)nH CAS登录号 25322-68-3 EINECS登录号 200-849-9

目录 .1不同名称 .2常用分类 .3物化性质 .?化学结构 .?化学性状 .?配伍性 .?配伍禁忌 .4产品分类 .5主要用途 .6常用规格 .7特别提示 .8安全信息 .9贮运 .10产品成员 .不同名称 中文名:聚乙二醇中文别名:α-氢-ω-羟基(氧-1,2-乙二基)的聚合物;乙二醇聚氧乙烯醚;聚氧化乙烯(PEO-LS);聚乙二醇400;聚乙二醇12000;聚乙二醇6000;聚乙二醇2000;AC52 常用分类 Polymers;医药中间体;Optimization Reagents;Protein Structural Analysis;X-Ray Crystallography;Cosmetic Ingredients & Chemicals;Gas Chromatography;Packed GC; Stationary Phases;分散剂、载体、压片剂、成型剂;分离剂;食品添加剂;抄纸过程中的化学品;化工助剂;造纸化学品 物化性质

熔点64-66℃ 沸点>250℃ 密度 1.27 g/mL at 25℃ 蒸气密度>1 (vs air) 蒸气压<0.01 mm Hg ( 20℃) 折射率n 1.469 闪点270℃ 储存条件2-8℃ 溶解度H2O: 50 mg/mL, clear, colorless form waxy solid 敏感性Hygroscopic Merck 147568 稳定性Stable. Incompatible with strong oxidizing agents. NIST化学物质信息Polyethylene glycol(25322-68-3) EPA化学物质信息Poly(oxy-1,2-ethanediyl), .alpha.-hydro-.omega.-hydroxy- (25322-68-3) 化学结构 HO(CH2CH2O)n H,由环氧乙烷与水或乙二醇逐步加成聚合而成。 化学性状 依相对分子质量不同而性质不同,从无色无臭黏稠液体至蜡状固体。分子量200~600者常温下是液体,分子量在600以上者就逐渐变为半固体状,随着平均分子量的不同,性质也有差异。从无色无臭粘稠液体至蜡状固体。随着分子量的增大,其吸湿能力相应降低。本品溶于水、乙醇和许多其它有机溶剂。蒸气压低,对热、酸、碱稳定。与许多化学品不起作用。有良好的吸湿性、润滑性、粘结性。无毒,无刺激。平均分子量300,n=5~5.75,熔点-15~8℃,相对密度1.124~1.130。平均分子量600,n=12~13,熔点20 ~25℃,闪点246℃,相对密度1.13 (20℃)。平均分子量4000,n=70~85,熔点53~56℃。 在一般条件下,聚乙二醇是很稳定的,但在120℃或更高的温度下它能与空气中的氧发生作用。在惰性气氛中(如氮和二氧化碳),它即使被加热至200~240℃也不会发生变化,当温度升至300℃会发生热裂解。加入抗氧化剂,如质量分数为0.25%~0.5%的吩噻嗪,可提高它的化学稳定性。它的任何分解产物都是挥发性的,不会生成硬壳或粘泥状的沉淀物。 聚乙二醇为环氧乙烷水解产物的聚合物,无毒、无刺激性,广泛应用于各种药物制剂中。低分子量的聚乙二醇毒性相对较大,综合来看,二醇类的毒性相当低。局部应用聚乙二醇特

乙二醇的物化性质

乙二醇的物化性质: 乙二醇的物理性质“ 别名甘醇 分子式C2H6O2;HOCH2CH20H 分子量62.07 熔点-13.2℃沸点:197.5℃ 密度相对密度(水=1)1.11;相对密度(空气=1)2.14 外观与性状无色、无臭、有甜味、粘稠液体 蒸汽压 6.21kPa/20℃ 闪点:110℃ 溶解性与水混溶,可混溶于乙醇、醚等 稳定性稳定 乙二醇的化学性质: 化学性质与乙醇相似,主要能与无机或有机酸反应生成酯,一般先只有一个羟基发生反应,经升高温度、增加酸用量等,可使两个羟基都形成酯。如与混有硫酸的硝酸反应,则形成二硝酸酯。酰氯或酸酐容易使两个羟基形成酯。乙二醇在催化剂(二氧化锰、氧化铝、氧化锌或硫酸)作用下加热,可发生分子内或分子间失水。乙二醇能与碱金属或碱土金属作用形成醇盐。通常将金属溶于二醇中,只得一元醇盐;如将此醇盐(例如乙二醇一钠)在氢气流中加热到180~200°C,可形成乙二醇二钠和乙二醇。此外用乙二醇与2摩尔甲醇钠一起加热,可得乙二醇二钠。乙二醇二钠与卤代烷反应,生成乙二醇单醚或双醚。乙二醇二钠与1,2-二溴乙烷反应,生成二氧六环。此外,乙二醇也容易被氧化,随所用氧化剂或反应条件的不同,可生成各种产物,如乙醇醛HOCH2CHO、乙二醛OHCCHO、乙醇酸HOCH2COOH、草酸HOOCCOOH 及二氧化碳和水。a二醇与其他二醇不同,经高碘酸氧化可发生碳链断裂。制法工业上由环氧乙烷用稀盐酸水解制得。实验室中可用水解二卤代烷或卤代乙醇的方法制备。应用乙二醇常可代替甘油使用。在制革和制药工业中,分别用作水合剂和溶剂。乙二醇的衍生物二硝酸酯是炸药。乙二醇的单甲醚或单乙醚是很好的溶剂,如甲溶纤剂HOCH2CH2OCH3 可溶解纤维、树脂、油漆和其他许多有机物。乙二醇的溶解

PEG6000聚乙二醇

聚乙二醇PEG-6000 【基本信息】 化学成分------------环氧乙烷缩合物 类型----------------非离子 外观----------------乳白色固状物 色泽----------------≤50(Pt-Co) 水份----------------≤1.0% PH值----------------5.0~7.0(1%水溶液) 【产品介绍】 聚乙二醇PEG-6000可用于药剂。相对分子量较低的聚乙二醇可用作溶剂、助溶剂、o/w型乳化剂和稳定剂。用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的,是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。 【性能与应用】 聚乙二醇PEG-6000在医药工业中作为赋形剂,用作栓剂、膏剂的制备;造纸工业中用作涂饰剂,增加纸张的光泽和平滑性;在橡胶工业中作为添加剂,增加橡胶制品的润滑性和塑性,减少加工过程中的动力消耗,延长橡胶制品的使用寿命,在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。可作为酯型表面活性剂的原料。 【包装与贮运】 包装:本品采用50KG、120KG、200KG桶装。 贮运:按一般化学品贮存和运输。贮存于干燥通风处。保质期二年。 中联邦表面活性剂小编编辑

丙二醇水溶液物性参数

丙二醇水溶液因为其无毒、无腐蚀等性质,在诸多领域作为载冷剂应用。其物理性质对设备和系统的设计都十分重要,下面是丙二醇水溶液的粘度(mPa.s)与其浓度和温度的关系。(数据来源ASHRAE手册2005) 温度℃乙二醇水溶液浓度(体积浓度) 10% 20% 30% 40% 50% 60% 70% 80% 90% –35 524.01 916.18 1434.22 3813.29 –30 330.39 551.12 908.47 2071.34 –25 110.59 211.43 340.09 575.92 1176.09 –20 73.03 137.96 215.67 368.77 696.09 –15 33.22 49.7 92 140.62 239.86 428.19 –10 11.87 23.27 34.78 62.78 94.23 159.02 272.94 -5 4.98 9.08 16.75 24.99 43.84 64.83 107.64 179.78 0 2.68 4.05 7.08 12.37 18.4 31.32 45.74 74.45 122.03 5 2.23 3.34 5.61 9.35 13.85 22.87 33.04 52.63 85.15 10 1.89 2.79 4.52 7.22 10.65 17.05 24.41 37.99 60.93 15 1.63 2.36 3.69 5.69 8.34 12.96 18.41 28 44.62 20 1.42 2.02 3.06 4.57 6.65 10.04 14.15 21.04 33.38 25 1.25 1.74 2.57 3.73 5.39 7.91 11.08 16.1 25.45 30 1.11 1.52 2.18 3.09 4.43 6.34 8.81 12.55 19.76 35 0.99 1.34 1.88 2.6 3.69 5.15 7.12 9.94 15.6 40 0.89 1.18 1.63 2.21 3.11 4.25 5.84 7.99 12.49 45 0.81 1.06 1.43 1.91 2.65 3.55 4.85 6.52 10.15 50 0.73 0.95 1.26 1.66 2.29 3 4.08 5.39 8.35 55 0.67 0.86 1.13 1.47 1.99 2.57 3.46 4.51 6.95 60 0.62 0.78 1.01 1.3 1.75 2.22 2.98 3.82 5.85 65 0.57 0.71 0.91 1.17 1.55 1.93 2.58 3.28 4.97 70 0.53 0.66 0.83 1.06 1.38 1.7 2.26 2.83 4.26 75 0.49 0.6 0.76 0.96 1.24 1.51 1.99 2.47 3.69 80 0.46 0.56 0.7 0.88 1.12 1.35 1.77 2.18 3.22 85 0.43 0.52 0.65 0.81 1.02 1.22 1.59 1.94 2.83 90 0.4 0.49 0.61 0.75 0.93 1.1 1.43 1.73 2.5 95 0.38 0.45 0.57 0.7 0.86 1.01 1.3 1.56 2.23 100 0.35 0.43 0.53 0.66 0.79 0.92 1.18 1.42 2 105 0.33 0.4 0.5 0.62 0.74 0.85 1.08 1.29 1.8 110 0.32 0.38 0.47 0.59 0.69 0.79 1 1.19 1.63 115 0.3 0.36 0.45 0.56 0.64 0.74 0.93 1.09 1.48 120 0.28 0.34 0.43 0.53 0.6 0.69 0.86 1.02 1.35 125 0.27 0.32 0.41 0.51 0.57 0.65 0.8 0.95 1.24 导热系数

粘度法测定水溶性高聚物相对分子量

实验:黏度法测定水溶性高聚物相对分子量 一、目的要求 1. 测定聚乙二醇的平均相对分子量 2. 掌握乌氏黏度计的原理及使用方法 3. 了解溶剂、温度、浓度对黏度的影响 二、基本原理 黏度是指液体对流动所表现的助力,这种助力反抗液体相邻部分的相对移动,可看作由液体内部分子间的内摩擦而产生。 相距为ds 的两液层以不同速度(v 和v dv +)移动时,产生的流速梯度为dv ds 。建立平稳流动时,维持一定流速所需要的力/ f 与液层的接触面积A 以及流速梯度dv ds 成正比: / dv f A ds η=?? 若以f 表示单位面积的阻力,则 上式称为牛顿黏度定律表示式,比例系数η称为黏度系数,简称黏度,单位:a p s ?。 溶液黏度的各种定义及表达式: 相对黏度:0 r η ηη= (0η为溶剂黏度) 特性黏度:[]0 0ln lim lim sp r C C C C ηηη→→==

[]η的数值与高聚物平均相对分子质量M 之间的半经验麦克非线性方程: 聚乙二醇水溶液在35℃时,316.610K L Kg -=??,0.82α= 在毛细管黏度计中,液体在重力的作用下流动符合泊肃叶定律: 488hgr t V m lV lt ηπρπ=- 对同一支黏度计而言,令 4 8hgr lV πα= ,8mV l βπ= , 则上式可改写为: t t ηβ αρ=- 式中1β,当100t s 时,等式右边第二项可省略,则 t η αρ =, 对于溶剂:000t ηαρ= 设溶液的密度ρ与溶剂的密度0ρ近似相等,由两式可得 这样,通过分别测定溶液和溶剂的流出时间t 和0t ,就可求出r η。进而分别求出 sp η、sp η、 ln r C η的值。配制不同浓度溶液分别进行测定,分别作 sp C C η和 ln r C C η两条直线, 用外推法得到[]η,然后代入[]K M α η=?,即可求出M 。

聚乙二醇作用和用途

聚乙二醇作用和用途: 产品无毒、无刺激性、具有优良的水溶性、相溶性、润滑性、粘接性和热稳定性。因而,作为润滑剂、分散剂、粘接剂、赋型剂等,在医药、兽药及化妆品行业中作为软膏、栓剂的基质,滴丸、片剂的载体,成型剂和针剂中的溶剂等,均有着极为广泛的应用。 质量标准:CP2000标准 包装规格:液体产品用50公斤/塑料桶,固体片状和粉末状产品用20公斤/纸箱。 贮运:本品无毒、难燃,按一般化学品运输,密封贮存于干燥片。 药用聚乙二醇(PEG)400 外观(25℃):无色粘稠液体凝点(℃):— 溶液的澄清度与颜色:不浓、不深于2#标准液 粘度40(m㎡/s):37~45 平均分子量:380~420 PH值:4~7 乙二醇或二甘醇:≤% 炽灼残渣(%):≤ 砷盐(ppm):≤3 重金属(ppm):≤5 包装规格:50公斤/塑料桶质量标准:cp2000 贮运:本品无毒、难燃,按一般化学品运输,密封贮存于干燥处。 主要用途:由于PEG400为液体、它具有与各种溶剂的广泛相容性,是很好的溶剂和增溶剂,被广泛用于液体制剂。当植物油不是合作活性物配料载体时,PEG则是首选材料。这主要是由于PEG稳定、不易变质,含有PEG的针剂被加热到150摄氏度时是很安全、很稳定的。针剂、滴眼液等液体制剂,此外PEG400的广泛的粘度范围、吸湿性使其在软胶囊的制作中应用也很广泛 药用聚乙二醇(PEG)600 外观(25℃):无色粘稠液体或呈半透明蜡状软物凝点(℃):— 溶液的澄清度与颜色:不浓、不深于2#标准液 粘度40(m㎡/s):56~62 平均分子量:570~630 PH值:4~7 乙二醇或二甘醇:— 炽灼残渣(%):≤ 砷盐(ppm):—

黏度法测定聚乙二醇的平均相对分子质量3

黏度法测定聚乙二醇的平均相对分子质量 姓名:学号: 班级:2012级化学2班指导教师: 一、实验目的 1、掌握用乌贝路德(Ubbelohde)黏度计测定黏度的原理和方法。 2、测定聚乙二醇的平均相对分子质量。 二、实验原理 黏度是指液体对流动所表现的阻力,这种力反抗液体中邻接部分的相对移动,因此可看作是一种内摩擦。高聚物稀溶液的黏度,主要反映了液体在流动时存在着内摩擦。其中,因溶剂分子之间的内摩擦表现出来的黏度叫纯溶剂黏度,记作η0 ;此外还有高聚物分子相互之间的内摩擦,以及高分子与溶剂分子之间的内摩擦,三者之总和表现为溶液的黏度η。同一温度下,一般来说η > η0。相对于溶剂,其溶液黏度增加的分数,称为增比黏度,记作ηsp ,即ηsp =(η-η0)/η0, 而溶液黏度与纯溶剂黏度的比值称为相对黏度,记作ηr,即ηr = η / η0ηr也是整个溶液的黏度行为,ηsp则意味着已扣除了溶剂分子之间的内摩擦效应。两者关系为:ηsp = η / η0-1= ηr-1。 对于高分子溶液,增比黏度ηsp往往随溶液的浓度c的增加而增加。为了便于比较将单位浓度下所显示出的增比黏度,即ηsp / c 称为比浓粘度;而ln ηr / c 则成为比浓对数粘度。ηr和ηsp都是无因次的量。 为了进一步消除高聚物分子之间的内摩擦效应,必须将溶液浓度无限稀释,使得每个高聚物分子彼此相隔极远,其相互干扰可以忽略不计。这时溶液所呈现出的黏度行为基本上反映了高聚物分子与溶剂分子之间的内摩擦。这一黏度的极限值记为lim ηsp/c =[η],[η]被称为特性黏度,其值与浓度无关。 实验证明,当聚合物、溶剂和温度确定以后,[η]的数值只与高聚物平均相 有关,它们之间的半经验关系可用Mark Houwink方程式表对分子质量M (平均) α 示:[η]=KM 平均 。测定高分子的[η]时,用毛细管黏度计最黏度法只能测定[η]求算出M 平均 为方便。当液体在毛细管黏度计内因重力作用而流出时遵守泊肃叶(Poiseuille)

乙二醇物性数据

乙二醇C2H(OH)2是无色无味的液体。挥发性低、腐蚀性低,容易与水和许多有机化合物混合使用。乙二醇分子量为62.07,凝固点为-12.7 C,溶解潜热 (-12.7 C)为187kJ/kg。不同浓度的乙二醇溶液的密度比热导热系数粘度和凝固点见下表: 体积% 0 10 20 30 40 50 60 凝固点 「C)0 -3 -8 -16 -25 -37 -55 乙二醇水溶液的密度kg/m3 温度乙 二醇体积百分比浓度 C25 30 40 50 60 65 100 -40 1120 1130 -17.8 1080 1100 1110 1120 1160 4.4 1048 1057 1070 1088 1100 1110 1145 26.7 1040 1048 1060 1077 1090 1095 1130 48.9 1030 1038 1050 1064 1077 1820 1115 71.1 1018 1025 1038 1050 1062 1068 1049 93.3 1005 1013 1026 1038 1049 1054 1084 乙二醇水溶液的导热系数w/m.K 温度乙二醇体积百分比浓度 C10% 20% 30% -10 0.415 -5 0.46 0.422 0 0.511 0.468 0.429 5 0.52 0.47 6 0.436 10 0.528 0.483 0.442 乙二醇水溶液的比热kJ/kg.k 温度乙二醇体积百分比浓度 C10% 20% 30% -10 3.56 -5 3.757 3.574 0 3.937 3.769 3.589 5 3.94 6 3.78 3.603 10 3.954 3.792 3.617 乙二醇水溶液的粘度mPa.s 温度乙二醇体积百分比浓度 C10% 20% 30% -10 6.19 -5 3.65 5.03 0 2.08 3.02 4.15 1 / 2

乙二醇的防冻特性

附件: 乙二醇的防冻特性 防冻液是冷水机组冷却系统的冷却介质,用于冷水机组在冬季防冻。冷水机组对冷却介质(防冻液)性能有以下要求: (1)良好的防冻性能; (2)防腐及防锈性能; (3)对橡胶密封导管无溶胀及侵蚀性能; (4)防止冷却系统结垢的性能; (5)抗泡沫性能; (6)低温粘度不太大; (7)化学性质稳定。 防冻液有乙醇型、乙二醇型(甘油型)。乙醇型,即酒精水溶液型防冻液。因为沸点低、易蒸发、使用中损失量大基本上已停用。丙三醇型,因价格昂贵,使用也受限制。目前普遍使用,防冻液为乙二醇型。 乙二醇的物理化学性质见表1。 表1 乙二醇物理化学性质 目前市场供应的防冻液有乙二醇水溶液,这种防冻液可直接使用,如北京油脂化工厂生产的1号、2号、3号防冻液,青岛日用化工厂生产的FG-20、FG-3 0、FG-40防冻液。 市场上供应的还有一种防冻液母液,即浓缩型。这种防冻液一般为进口产品,或合资企业生产,通常采用小铁桶式的包装,如良普顿、壳牌等。 浓缩型防冻液,即防冻液母液一般不能直接使用,而应该根据使用温度的要求,用软化水进行调制到一定的浓度才能使用,乙二醇防冻液母液调制浓度和冰点参见表2。 从表2中可以看出乙二醇型防冻液,其冰点随着乙二醇在水溶液中的浓度变化而变化,浓度在59%以下时,水溶液中乙二醇浓度升高冰点降低,但浓度超

过59%后,随着乙二醇浓度的升高,其冰点呈上升趋势,当浓度达到100%时, 其洋点上升至-13C,这就是浓缩型防冻液(防冻液母液)为什么不能直接使用的一条重要原因,必须引起使用者的注意。 表2 防冻液母液调制浓度和冰点 由于当前市场上供应的防冻液种类比较多,而且生产渠道又是多种多样,所以选择和正确使用防冻液是一个值得引起重视的问题。 2.如何正确使用防冻液 (1)加注防冻液前一定要对发动机冷却系统进行一次认真的清洗。 这是因为防冻液中加有除垢剂和清先剂,使用前如果没有对发动机冷却系统进行认真的清洗,而直接加入防冻液后,发动机冷却系统中原有的水垢与防冻液接触后脱落,使防冻液变浊、变稠,甚至变色、变味,严重时堵塞水管、水道、或沉淀在水箱下部弯管接头部位。造成散热不良,防冻液不能循环,致使发动机温度过高。为防止这些现象的发生,应在加注防备冻液前,应使用10%的烧碱 水溶液浸泡水箱一个小时,再将冲先液排放,然后用软化水反复冲洗2?3次,以清除发动机冷却系统中原积存的水垢,冲先完后才能加注防冻液。 (2)加注防冻液前要检查发动机冷却系统爱莫能助无渗漏现象,并应及时 排除后才能使用防浆液。 (3)禁止直接加注防冻液母液。 有些驾驶人员及修理人员以为防冻液越纯越好,乙二醇浓度越大越好,而直 接加注防冻液母液,这样做不但不能满足防冻液对冰点的要求,反而会出现一些意想不到的现象,如防冻液变质,浓度大,密度大,低温粘度增大以及发动机温度高等现象。所以在使用防冻液母液时定要按要求进行调制,禁止直接使用。 (4)不要把正常现象看作异常。 防冻液沸点咼,热容量大,蒸发损失小,冷却效率咼。水的沸点在760mm Hg环境条件下为100C,乙二醇型防冻液沸点可过到110C以上,所以加注防冻液的车辆比用软化水冷却时发动机冷却液温度要高明出10C左右,这是一种正 常现象,应该看到使用防冻液后,温度虽然高,却不易开锅”这一事实,所以不

分光光度法测定聚乙二醇水溶液浓度

分光光度法测定聚乙二醇水溶液浓度 摘要:分光光度法测定不同分子量聚乙二醇的浓度,一般有氯化钡法和Dragendoff 试剂法。分光光度法具有仪器设备简单、操作简便等特点。本文采用氯化钡法,在一定条件下测定水溶液中不同分子量的聚乙二醇的浓度。利用该方法简单快捷,可以用于实际生产中标定分离膜的分离性能。 关键词:分光光度法聚乙二醇膜分离技术 Determination of Polyethylene Glycol Content by Spectrophotometric Abstract: Two different reagents are used for determination of the concentration of different molecular weights polyethylene glycol (PEG) by spectrophotometric, which are barium chloride and Dragendoff reagent. The characteristics of the spectrophotometric are rapidity, simplicity and accuracy. This paper used the reagent of barium chloride for determination of the concentration of polyethylene glycol (PEG), which was under certain conditions in aqueous solution with different molecular weights. The separation performance of the separation membrane can be accurately calibrated in this way. Key words: spectrophotometric; polyethylene glycol; membrane separation technology.

乙二醇水溶液的冰点和沸点

乙二醇(ethylene glycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG。化学式为(HOCH2),是最简单的二元醇。乙二醇是无色无臭、有甜味液体,对动物有毒性,人类致死剂量约为1.6 g/kg。乙二醇能与水、丙酮互溶,但在醚类中溶解度较小。 :-12.6℃ :197.3℃ :相对密度(水=1)(20℃); 相对密度(空气=1): 与水任意比例混合,混合后由于改变了冷却水的蒸气压,冰点显着降低。 其降低的程度在一定范围内随乙二醇的含量增加而下降。 当乙二醇的含量为60%时,冰点可降低至- 48.3℃,超过这个极限时,冰点反而要上升。 乙二醇防冻液在使用中易生成酸性物质,对金属有腐蚀作用。 乙二醇有毒,但由于其沸点高,不会产生蒸气被人吸入体内而引起中毒。 乙二醇的吸水性强,储存的容器应密封,以防吸水后溢出。 由于水的沸点比乙二醇低,使用中被蒸发的是水,当缺少冷却液时,只要加入净水就行了。 这种防冻液用后能回收(防止混入石油产品),经过沉淀、过滤,加水调整浓度,补加防腐剂,还可继续使用,一般可用3—5年。 但要过滤多遍,以防对机动车造成损伤。 有很多人认为乙二醇的冰点很低,防冻液的冰点是由乙二醇和水按照不同比例混合后的一个中和冰点,其实不然,混合后由于改变了冷却水的蒸气压,冰点

才会显着降低。 其降低的程度在一定范围内随乙二醇的含量增加而下降,但是一旦超过了一定的比例,冰点反而会上升。 40%的乙二醇和60%的软水混合成的防冻液,防冻温度为-25℃;当防冻液中乙二醇和水各占50%时,防冻温度为-35℃。 PX-C8T浓度计是根据乙二醇浓度与折射率的对应关系而设计的光学仪器,该产品不仅可以测量乙二醇的浓度,同时液可以测量乙二醇冰点,以及测量电瓶液比重,在测量时,只要滴几滴乙二醇在折光仪棱镜上,然后向着光观察,就可以快速读出乙二醇的浓度。测量范围:乙二醇浓度:0-100%;乙二醇冰点:0到-60℃;电池液比重:到。 PX-C8T乙二醇浓度计,又称防冻液乙二醇浓度计,乙二醇浓度测试仪,乙二醇浓度测试仪,乙二醇浓度检测仪,乙二醇浓度测量仪,是为测量乙二醇等水溶液的乙二醇浓度的比例而设计的精密的光学仪器。简单易用,且价格优惠。只要滴几滴液体在棱镜上,然后向着光观察,就可以读出溶液的浓度。如果标有T(ATC)的是增加了温度自动补偿系统。 下面是乙二醇水溶液的冰点和沸点与浓度的关系,数据来源ASHRAE手册(2005版)。

乙二醇水溶液的密度

乙二醇水溶液作为重要的载冷剂,其物理性质对设备和系统的设计都十分重要,下面是乙 二醇水溶液的密度(kg/m3)和其浓度的关系。(数据来源ASHRAE手册2005) 乙二醇水溶液浓度(体积浓度) 温度℃10% 20% 30% 40% 50% 60% 70% 80% 90% -35 1089.94 1104.60 1118.61 1132.11 -30 1089.04 1103.54 1117.38 1130.72 -25 1088.01 1102.36 1116.04 1129.21 1141.87 -20 1071.98 1086.87 1101.06 1114.58 1127.57 1140.07 -15 1070.87 1085.61 1099.64 1112.99 1125.82 1138.14 -10 1054.31 1069.63 1084.22 1098.09 1111.28 1123.94 1136.09 -5 1036.85 1053.11 1068.28 1082.71 1096.43 1109.45 1121.94 1133.91 0 1018.73 1035.67 1051.78 1066.80 1081.08 1094.64 1107.50 1119.82 1131.62 5 1017.57 1034.3 6 1050.33 1065.21 1079.33 1092.73 1105.43 1117.58 1129.20 10 1016.28 1032.94 1048.76 1063.49 1077.46 1090.70 1103.23 1115.22 1126.67 15 1014.87 1031.39 1047.07 1061.65 1075.46 1088.54 1100.92 1112.73 1124.01 20 1013.34 1029.72 1045.25 1059.68 1073.35 1086.27 1098.48 1110.13 1121.23 25 1011.69 1027.93 1043.32 1057.60 1071.11 1083.87 1095.92 1107.40 1118.32 30 1009.92 1026.02 1041.26 1055.39 1068.75 1081.35 1093.24 1104.55 1115.30 35 1008.02 1023.99 1039.08 1053.07 1066.27 1078.71 1090.43 1101.58 1112.15 40 1006.01 1021.83 1036.78 1050.62 1063.66 1075.95 1087.51 1098.48 1108.89 45 1003.87 1019.55 1034.36 1048.05 1060.94 1073.07 1084.46 1095.27 1105.50 50 1001.61 1017.16 1031.81 1045.35 1058.09 1070.06 1081.30 1091.93 1101.99 55 999.23 1014.64 1029.15 1042.54 1055.13 1066.94 1078.01 1088.48 1098.36 60 996.72 1011.99 1026.36 1039.61 1052.04 1063.69 1074.60 1084.90 1094.60 65 994.10 1009.23 1023.45 1036.55 1048.83 1060.32 1071.06 1081.20 1090.73 70 991.35 1006.35 1020.42 1033.37 1045.04 1056.83 1067.41 1077.37 1086.73 75 988.49 1003.34 1017.27 1030.07 1042.04 1053.22 1063.64 1073.43 1082.61 80 985.50 1000.21 1014.00 1026.65 1038.46 1049.48 1059.74 1069.36 1078.37 85 982.39 996.96 1010.60 1023.10 1034.77 1045.63 1055.72 1065.18 1074.01 90 979.15 993.59 1007.09 1019.44 1030.95 1041.65 1051.58 1060.87 1069.53 95 975.80 990.10 1003.45 1015.65 1027.01 1037.55 1047.32 1056.44 1064.92 100 972.32 986.48 999.69 1011.74 1022.95 1033.33 1042.93 1051.88 1060.20 105 968.73 982.75 995.81 1007.71 1018.76 1028.99 1038.43 1047.21 1055.35 110 965.01 978.89 991.81 1003.56 1014.46 1024.52 1033.80 1042.41 1050.38 115 961.17 974.91 987.68 999.29 1010.03 1019.94 1029.05 1037.46 1045.29 120 957.21 970.81 983.43 994.90 1005.48 1015.23 1024.18 1032.46 1040.08 125 953.12 966.59 979.07 990.38 1000.81 1010.40 1019.19 1027.30 1034.74

丙二醇水溶液物性参数

粘度 丙二醇水溶液因为其无毒、无腐蚀等性质,在诸多领域作为载冷剂应用。其物理性质对设备和系统的设计都十分重要,下面是丙二醇水溶液的粘度(mPa.s)与其浓度和温度的关系。(数据来源ASHRAE手册2005) 温度℃乙二醇水溶液浓度(体积浓度) 10%20%30%40%50%60%70%80%90% –35 524.01916.181434.223813.29–30 330.39551.12908.472071.34–25 110.59211.43340.09575.921176.09–20 73.03137.96215.67368.77696.09–15 33.2249.792140.62239.86428.19–10 11.8723.2734.7862.7894.23159.02272.94 -5 4.989.0816.7524.9943.8464.83107.64179.78 0 2.68 4.057.0812.3718.431.3245.7474.45122.03 5 2.23 3.34 5.619.3513.8522.8733.0452.6385.15 10 1.89 2.79 4.527.2210.6517.0524.4137.9960.93 15 1.63 2.36 3.69 5.698.3412.9618.412844.62 20 1.42 2.02 3.06 4.57 6.6510.0414.1521.0433.38 25 1.25 1.74 2.57 3.73 5.397.9111.0816.125.45 30 1.11 1.52 2.18 3.09 4.43 6.348.8112.5519.76 350.99 1.34 1.88 2.6 3.69 5.157.129.9415.6 400.89 1.18 1.63 2.21 3.11 4.25 5.847.9912.49 450.81 1.06 1.43 1.91 2.65 3.55 4.85 6.5210.15 500.730.95 1.26 1.66 2.293 4.08 5.398.35 550.670.86 1.13 1.47 1.99 2.57 3.46 4.51 6.95 600.620.78 1.01 1.3 1.75 2.22 2.98 3.82 5.85 650.570.710.91 1.17 1.55 1.93 2.58 3.28 4.97 700.530.660.83 1.06 1.38 1.7 2.26 2.83 4.26 750.490.60.760.96 1.24 1.51 1.99 2.47 3.69 800.460.560.70.88 1.12 1.35 1.77 2.18 3.22 850.430.520.650.81 1.02 1.22 1.59 1.94 2.83 900.40.490.610.750.93 1.1 1.43 1.73 2.5 950.380.450.570.70.86 1.01 1.3 1.56 2.23 1000.350.430.530.660.790.92 1.18 1.422 1050.330.40.50.620.740.85 1.08 1.29 1.8 1100.320.380.470.590.690.791 1.19 1.63 1150.30.360.450.560.640.740.93 1.09 1.48 1200.280.340.430.530.60.690.86 1.02 1.35 1250.270.320.410.510.570.650.80.95 1.24

聚乙二醇技术指标

聚乙二醇技术指标、应用与检测方法 聚乙二醇 PEG8000 组成:环氧乙烷缩合物 类别:非离子 规格:PEG8000 技术指标: 外观 PEG8000 乳白色固状物(25℃) PH 值 5.0~7.0(1%水溶液) 分子量标准规格士10% 水份≤1% 包装与贮存 20kg编织袋包装贮存期为二年 性能与应用: 1、聚乙二醇系列产品可用于药剂。分子量高的固体蜡状聚乙二醇常用于增加低分子量液体PEG的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的,PEG8000是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。 2、PEG8000在医药、化妆品工业生产中用作基质,起调节粘度、熔点的作用;在橡胶、金属加工工业中用作润滑剂、冷却剂,在农药、颜料工业生产中用作分散剂、乳化剂;在纺织工业中用作抗静电剂、润滑剂等。 聚乙二醇 PEG6000 拼音名:Juyi’erchun 6000 英文名:MACROGOL 6000 来源(分子式)与标准: 本品为环氧乙烷和水缩聚而成的混合物 分子式以HOCH2(CH2OCH2)nCH2OH表示,其中n 代表氧乙烯基的平均数 性状: 本品为白色蜡状固体;略有特殊臭 本品在水或乙醇中易溶,在乙醚中不溶 凝点本品的凝点(附录Ⅵ D)为53~58℃ 粘度取供试品25.0g,置100ml量瓶中,加水溶解并稀释至刻度,摇匀,用毛细管内径为1.0mm的平氏粘度计,依法测定(附录Ⅵ G第一法),在40℃时的运动粘度为10.5 ~16.5mm2/S 检查: 平均分子量取本品约12.5g,精密称定,置干燥的250ml 具塞锥形瓶中,加入吡啶25ml,加温使溶解,

粘度

杭州师范大学学生实验报告实验名称粘度法测定水溶性聚合物的平均分子量 姓名:王丹同组者姓名:陆亚红日期:2012年5月1日 一、实验目的 1.掌握使用粘度法测定聚合物分子量的基本原理 2.掌握乌氏粘度计测定聚合物稀溶液粘度的实验技术及数据处理方法 3.测定高聚物---聚乙烯醇的平均分子量。 二、实验原理 聚合物稀溶液的粘度主要反映了液体分子之间因流动或相对运动所产生的内摩擦阻力。内摩擦阻力与聚合物的结构、溶剂的性质、溶液的浓度及温度和压力等因素有关,它的数值越大,表明溶液的粘度越大。 聚合物溶液粘度的变化,一般采用下列的粘度量来描述。 1.相对粘度,又称粘度比,用ηr表示。 它是相同温度条件下,溶液粘度η与纯溶剂粘度η0之比,表示为: ηr=η/η0(1) 相对粘度是一个无因次量,随着溶液浓度增加而增加。对于低剪切速率下聚合物溶液,其值一般大于1。 2.增比粘度(粘度相对增量),用ηsp表示,是相对于溶剂来说,溶液粘度增加的分数: ηsp =(η-η0)/η0 =ηr –1(2) 3. 比浓粘度(粘数),对于高分子溶液,粘度相对增量往往随溶液浓度的增加而增大,因此常用其与浓度c之比来表示溶液的粘度,称为比浓粘度或粘数,即: ηsp/c = (ηr-1)/c(3) 粘数的因次是浓度的倒数,一般用 ml/g表示。

4.比浓对数粘度(对数粘度),其定义是相对粘度(粘度比)的自然对数与浓度之比,即: ( lnηr)/c = [ln(1+ηsp)]/c(4) 单位为浓度的倒数,常用 ml/g表示。 5.特性粘度(极限粘度),其定义为比浓粘度(粘数)ηsp/c或比浓对数粘度(对数粘度)lnηr/c在无限稀释时的外推值,用[η]表示,即: [η] = lim(ηsp/c) = lim(lnηr/c)(5) c→0c→0 [η] 称为特性粘度(或极限粘数),其值与浓度无关,量纲是浓度的倒数。 实验证明,对于给定聚合物,在给定的溶剂和温度下,[η]的数值仅有试样的分子量Mη所决定。[η]和 Mη的关系如下: [η] =K Mηα(6) 上式称为Mark-Houwink方程。 式中:——扩张因子,与溶液中聚合物分子形态有关; Mη——粘均分子量 (注:一些常用聚合物的K 、α值见附表1所示) K 、α与温度、聚合物种类和溶剂性质有关,K值受温度影响明显,而α值主要取决于高分子线团在溶剂中舒展的程度,一般介于0.5~1.0之间。在一定温度时,对给定的聚合物-溶剂体系,一定的分子量范围内K 、α为常数,[η]只与分子量大小有关。K 、α值可从有关手册中查到(见附表1),或采用几个标准试样又式(6)进行测定,标准试样的分子量有绝对方法(如渗透压法和光散射法)确定。 在一定温度下,聚合物溶液粘度对浓度有有一定的依赖关系,通常用哈金斯(Huggins)方程描述为: ηsp/c =[η] – kˊ[η]2c(7) 或用克拉默(Kraemer)方程描述为: (lnηr)/c =[η] –β[η]2c(8) 对于给定的聚合物,在给定的温度和溶剂时,kˊ、β应为常数,其中kˊ为哈金斯(Huggins)常数,它表示溶液中高分子间和高分子与溶剂分子间的相互作

水乙二醇特性

水乙二醇特性

普通液压油喷射在热金属表 面(700C)JY喷射在热金属表面(700C) 水乙二醇 ⑴水乙二醇是由水(35~55%)和乙二醇相溶,并加入水溶性稠化剂、抗氧防锈剂以及抗泡剂等制成,也可用丙二醇或其他聚合物代替乙二醇。 水乙二醇是一种呈透明的真溶液,具有良好的稳定性和流动性,高的粘度指数。其难燃性决定于水含量,水量低于35%会大幅度降低,并且粘度显著增加。常用作工业液压系统介质。 产品特性 ?优异的抗燃性:JY水——乙二醇抗燃液压液(简称JY)无燃点、无闪点、热歧管抗燃试验(704 C )不燃烧,所以在靠近高温或明火设备以及在压力高而液压油喷出可以引起火灾的设备上使用JYW ,可以完全避免火灾事故的发生。

JY喷射在丙烷燃烧器上,仅仅使丙普通液压油喷射在丙烷燃烧 烷燃烧器的火焰倾斜,而JY本身并器上产生大火 未点燃 ?优异的耐寒性:JY含有大量的乙二醇(优良的降凝剂),因而凝固点(一40 C )极低。在一般的寒冷环境下(> -20 C )可以照常启动设备而无需加热液压介质,若环境温度过低,JY粘度太大而启动不了设备时,可以先将JY预热再行启动,即使因温度过低而冻结,加热融化后,使用性能不变。 ?优异的抗磨性:JY含有国际上最新型的极压抗磨剂,因此能更有效的减少液压设备的磨损和承载能力,完全能满足工作压力从低压到高压的各种液压设备的使用要求。 ?优良的防锈性:JY含有高性能的气相防锈剂,不仅液压设备的油箱和管路中被JY浸泡的金属材料不会生锈,没被浸泡的部分也不会生锈。 ?优良的抗泡性:JY中含有优质消泡剂,可以抑制泡沫的产生并使已产生的泡沫迅速消失。因此使用过程中泡沫很少,保证了液压设

相关文档
最新文档