正余弦定理

正余弦定理
正余弦定理

正余弦定理

姓名班级

1.在△ABC中,根据下列条件解三角形,其中只有一解的是() A.b=7,c=3,C=30°B.b=5,c=42,B=45°

C.a=6,b=63,B=60°D.a=20,b=30,A=30°

2.一个三角形的三边之比为6:7:9,那么这三角形是

A、钝角三角形

B、锐角三角形

C、直角三角形

D、三内角之比为6:7:9

?的值为()

3.在△ABC中,AB=5,BC=7,AC=8,则AB BC

A.79 B.69 C.5 D.-5

4.已知三角形的两边长分别为4,5,它们夹角的余弦是方程0

-

x的

+x

2

3

22=根,则第三边长是()

A.20B.21 C.22D.61

5.已知△ABC的面积为3,A=60°,b=4,则a=________;c=________.

6.已知在ABC

△的面积S。

△中,6,30

a c A

===,求ABC

7.在ABC

△中,已知三条边,,

A B C,求证:

a b c和三个角,,

(1)cos cos

=+

a b C c B

(2)22(cos cos )c a B b A a b -=-

8.已知在ABC △中,2

2tan tan A a B b

=,判断ABC △的形状。

9.已知方程2(cos )cos 0x b A x a B -+=的两根之积等于两根之和,且,a b ABC ?为 的边,A ,B 为,a b 的对角,试判断ABC △的形状。

高考第32课正弦定理与余弦定理的综合应用.docx

第32课正弦定理与余弦定理的综合应用 【自主学习】 第32课正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,内角A,B,C的对边分别为a,b,c.若a2-b2= 3bc,sin C3sin B,则角A=. 【答案】π6 【解析】由sin C3sin B得c3b,代入a2-b23bc得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 2,所以角A= π 6. 3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为n mile/h.

(第3题) 【答案】 176 4.(必修5P26本章测试7 改编)设△ABC的内角A,B,C的对边分别为a,b,c.若a sin A+c sin C-2a sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c2-2ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B= 2 2,因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c 成等比数列,则角B的取值范围为. 【答案】 π0 3?? ???, 【解析】因为a,b,c成等比数列,所以b2=ac,所以cos B= 222 - 2 a c b ac + = 22- 2 a c ac ac + ≥1 2, 因为0

正余弦定理讲义讲课稿

培优教育一对一辅导讲义 科目:_数__年级:__高一__姓名:____教师:____时间:____

解: 例2 C B b a A c ABC ,,2,45,60和求中,===? 解: 例3在C A a c B b ABC ,,1,60,30和求中,===? 课后作业 1在△ABC 中, k C c B b A a ===sin sin sin ,则k 为( ) A 2R B R C 4R D R 2 1 (R 为△ABC 外接圆半径) 2 在ABC ?中,已知角3 3 4,2245= ==b c B ,ο,则角A 的值是( ) A.ο15 B.ο75 C.ο 105 D.ο 75或ο 15 3、在△ABC 中,=?=?=c b a B A ::,60,30则若 4、在ABC ?中,若14,6760===a b B ,ο ,则A= 。 5、在ABC ?中,已知ο45,2,3=== B b a ,解三角形。 探究一.在?ABC 中,已知,,a b A ,讨论三角形解的情况

分析:先由sin sin b A B a = 可进一步求出B ; 则0180()C A B =-+ ,从而A C a c sin sin = 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。 2.当A 为锐角时,如果a ≥b ,那么只有一解; 3.如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。 评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。 探究二 你能画出图来表示上面各种情形下的三角形的解吗? 三例题讲解 例1.根据下列条件,判断解三角形的情况 (1) a =20,b =28,A =120°.无解 (2)a =28,b =20,A =45°;一解 (3)c =54,b =39,C =115°;一解 (4) b =11,a =20,B =30°;两解 [随堂练习1] (1)在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。 (2)在?ABC 中,若1a =,1 2 c = ,040C ∠=,则符合题意的b 的值有_____个。 (3)在?ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。 (答案:(1)有两解;(2)0;(3)222x <<) 例2.在ABC ?中,已知,cos cos cos a b c A B C ==判断ABC ?的形状.

余弦定理证明过程(完整版)

余弦定理证明过程 余弦定理证明过程 =a,∠da=π-∠ba=π-,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=b∴=∴asin=sina………… ①-aos=osa-b…… ②由 ①得asina=sin,同理可证asina=bsinb,∴asina=bsinb=sin.由 ②得aos=b-osa,平方得: a2os2=b2-2bosa+2os2a,即a2-a2sin2=b2-2bosa+2-2sin2a.而由 ①可得a2sin2=2sin2a∴a2=b2+2-2bosa.同理可证b2=a2+2- 2aosb,2=a2+b2-2abos.到此正弦定理和余弦定理证明完毕。3△ab的三边分别为a,b,,边b,a,ab上的中线分别为ma.mb,m,应用余弦定理证明: mb= m=ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 同理可得: mb=

m= 4 ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 证毕。 第五篇: 余弦定理的多种证明 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b, 三角为a,b, 满足性质 a^2=b^2+^2-2*b**osa b^2=a^2+^2-2*a**osb ^2=a^2+b^2-2*a*b*os os=2ab osb=2a osa=2b 证明:

正弦定理和余弦定理专题训练

正弦定理和余弦定理专题训练 一、选择题 1. 在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为3 2,则C =( ) A.30° B.45° C.60° D.75° 2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A = 2π 3 ,a =2,b =233,则B 等于( ) A.π3 B.5π6 C.π6或5π6 D.π6 3. 在△ABC 中,cos 2B 2=a +c 2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A.等边三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则“a >b ”是“cos 2A < cos 2B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π 4 B.π3 C.π4 D.π6 二、填空题 6. 设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-1 4, 3sin A =2sin B ,则c =________. 7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =________. 8. 在△ABC 中,A =2π3 ,a =3c ,则b c =________. 三、解答题 9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为

正余弦定理的综合应用

正余弦定理的综合应用教学设计 课题名称正余弦定理的综合应用 科目数学(高三)授课人耿向娜 一、教学内容分析 本节课为高三一轮复习中的解三角形部分的习题课。解三角形的知识在历年的高考中与三角函数向量等知识相结合,频繁出现在选择、填空和17题的位置,是学生们的重要得分点之一。本节课对2013年中出现的解三角形问题的分析解答,强化学生对解三角形的理解和巩固,同时消除他们对高考的畏惧感,提升其自信心。 二、教学目标 1、知识目标:熟练掌握正余弦定理、三角形面积公式、边角关系互化,同时熟练结合三角函数知识求相关函数的最值等。 2、能力目标:培养学生分析解决问题的能力,提高学生的化简计算能力 3、情感目标:让学生在直接面对高考真题的过程中,体会解决问题的快乐,提升他们的自信心,提高他们的备战能力! 三、学情分析 我所任课的班级是高三22班是文科普通班,他们的数学基础整体上很薄弱,计算能力有待提高。通过三个多月的一轮复习,越来越多的学生对数学产生了兴趣,同时也品尝到数学成绩提高带来的喜悦,具有了一定的函数知识和解决问题的能力。 四、教学重点难点 重点正余弦定理的应用 难点公式的转化和计算

五、教法分析 本节课我利用多媒体辅助教学,采用的是教师引导下的学生自主探究式学习法。 六、教学过程 教学环节教学内容设计意图 一、基 础 知 识 回 顾回顾正弦定理:k C c B b A a = = = sin sin sin ; C k c B k b A k a sin , sin , sin= = = 余弦定理: ? ? ? ? ? - + = - + = - + = C ab b a c B ac c a b A bc c b a cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 2 ? ? ? ? ? ? ? ? ? - + = - + = - + = ab c b a C ac b c a B bc a c b A 2 cos 2 cos 2 cos 2 2 2 2 2 2 2 2 2 三角形面积公式:A bc B ac C ab S sin 2 1 sin 2 1 sin 2 1 = = = 通过对公式的 回顾,为本节 课解答问题提 供工具。 二、例 题 讲 解类型一:判定三角形形状 1、设在ABC ?中,若B b A a cos cos=,判定该三角形 的形状。 该题的设置目 的在于训练学 生对边角混合 式的转化。此 题可以边化 角,也可角化 边,让学生体 会正余弦定理 的应用和边角 转化的魅力。 形 直角三角形或等腰三角 或 法二:(角化边) 角形 为等腰三角形或直角三 , 或 ) 解析:法一:(边化角 ? = = + ? = - - + ? - = - ? - + = - + ? - + = - + ? = + = + = ? = ? = b a c b a o b a c b a c b a b a b c a b a c b a ac b c a b bc a c b a B A B A B A B A B A A 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ) )( ( ) ( ) ( ) ( 2 2 . 2 2 2 2 sin 2 1 2 sin 2 1 sinBcos cos sin π π

正余弦定理中的范围问题(推荐)

正余弦定理中的范围(含最值)问题(编者:李成伦) 范围问题,是正余弦定理中较困难的问题,也是考试比较头疼的问题。下面通过以下几个例题来谈谈怎样解决这类问题。 一,利用角的范围,和三角函数的“有界性”相结合 例:设锐角三角形ABC ,内角A,B,C 的所对的边为c b a ,,,且A b a sin 2?= (1)求角B 的大小 (2)求 的求值范围c A cos cos + 例:在三角形ABC 中,的范围求b a C c +=+=,30,62 例:三角形ABC 的三个内角A,B,C 一次成等差数列 (1)若C A B sin sin sin 2=,试判断?ABC 的形状 (2)若?ABC 为钝角三角形,且c a >,试求代数式212cos 2sin 32sin 2-+A A C 的值的范围 例:ABC ?中,角A ,B ,C 的对边是c b a ,,,已知 c b a B A 2cos cos +-= (1)求角A 的大小 (2)求C B sin sin 的最大值 二,挖掘三角形中的隐含条件 例:在三角形ABC 中,角A ,B ,C 的对边是c b a ,,,且222,c b a c b a +<>>,则角A 的取值范围是 A,??? ??ππ,2 B,??? ??24ππ, C,??? ??23ππ, D,?? ? ??20π, 例:(2011年浙江高考)在?ABC 中,角ABC 的对边是c b a ,,已知B p C A sin sin sin =+,且24 1b ac = (1)1,4 5==b p 时,求c a ,的值 (2)若角B 为锐角,求p 的取值范围

余弦定理的八种证明方法

余弦定理的八种证明方法 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。 用多种方法证明余弦定理,扩展思维,了解更多的过程。 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。 一余弦定理的内容 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法 ∵如图,有a+b=c ∴c·c=(a+b)·(a+b) ∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB 方法三:解析法 在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc 则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a 则由距离公式得a=(c-bcosA)2-(bsinA)2 化简得a=c2+b2-2bccosA ∴a2=c2+b2-2bccosA 方法四:面积法 S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),

2021届高三高考数学文科一轮复习知识点专题4-6 正弦定理和余弦定理【含答案】

2021届高三高考数学文科一轮复习知识点 专题4.6 正弦定理和余弦定理【考情分析】 1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 【重点知识梳理】 知识点一正弦定理和余弦定理 1.在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则 定理正弦定理余弦定理 公式 a sin A= b sin B= c sin C=2R a2=b2+c2-2bc cos A;b2=c2 +a2-2ca cos B; c2=a2+b2-2ab cos C 常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C; (2)sin A= a 2R,sin B= b 2R,sin C= c 2R; (3)a∶b∶c=sin A∶sin B∶sin C; (4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A= b2+c2-a2 2bc; cos B= c2+a2-b2 2ac; cos C= a2+b2-c2 2ab 2.S△ABC=1 2ab sin C= 1 2bc sin A= 1 2ac sin B= abc 4R= 1 2(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R, r. 3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角A为钝角或直角图形 关系式a=b sin A b sin Ab a≤b 解的个数一解两解一解一解无解知识点二三角函数关系和射影定理 1.三角形中的三角函数关系 (1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;

正余弦定理的综合应用及答案

正余弦定理的综合应用 1.【河北省唐山一中2018届二练】在ABC ?中,角,,A B C 的对边分别为,,a b c ,且 ()()3,cos sin sin cos 0b A B c A A C =+-+=. (1)求角B 的大小;(2)若ABC ?的面积为 3 2 ,求sin sin A C +的值. 2.【北京市海淀区2018届高三第一学期期末】如图,在ABC ?中,点D 在AC 边上,且 3AD DC =,7AB =,3 ADB π ∠=,6 C π ∠= . (Ⅰ)求DC 的值; (Ⅱ)求tan ABC ∠的值. 【解决法宝】对解平面图形中边角问题,若在同一个三角形,直接利用正弦定理与余弦定理求解,若图形中条件与结论不在一个三角形内,思路1:要将不同的三角形中的边角关系利用中间量集中到一个三角形内列出在利用正余弦定理列出方程求解;思路2:根据图像分析条件和结论所在的三角形,分析由条件可计算出的边角和由结论需要计算的边角,逐步建立未知与已知的联系. 3.【海南省2018届二模】已知在ABC ?中,a ,b ,c 分别为内角A ,B ,C 的对边,且 3cos sin cos b A a A C +sin cos 0c A A +=. (1)求角A 的大小; (2)若3a =,12 B π = ,求ABC ?的面积. 4.【湖北省天门等三市2018届联考】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos cos 3sin cos C A B A B +=. (Ⅰ)求cos B 的值;(Ⅱ)若1a c +=,求b 的取值范围. 5.【山东省淄博市2018届高三3月模拟】在 中,角 对边分别为 ,已知 . (1)求角的大小;(2)若 ,求 的面积. 6.【福建省南平市2018届第一次质检】在中, 分别为角 的对边,且 . (1)若,求及; (2)若 在线段 上,且 ,求的长. 7.【山东省实验中学2017届高三第一次诊,16】在△ABC 中,a ,b ,c 分别是角A ,B , C 的对边, cos 2cos C a c B b -=,且2a c +=.

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

正余弦定理专题教学内容

解斜三角形(正余弦定理灵活应用) 1.正弦定理: A a sin =B b sin =C c sin =2R.(关键点“比”) 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角) 2.余弦定理: a2=b2+c2-2bccosA ;① b2=c2+a2-2cacosB ;② c2=a2+b2-2abcosC. ③ 在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. cos A =bc a c b 2222-+; cos B =ca b a c 2222-+; cos C =ab c b a 22 22-+. 利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角; (2)已知两边和它们的夹角,求第三边和其他两个角. 可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来理解”. 判断三角形的形状: 1.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是( ) 答案:C A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 2.下列条件中,△ABC 是锐角三角形的是( ) 答案:C A.sin A +cos A =51 B.AB ·>0 C.tan A +tan B +tan C >0 D.b =3,c =33,B =30° 解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角. 由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角. 由 B b sin = C c sin ,得sin C =23,∴C =3π或3 π2. 3.在△ABC 中,sin A =C B C B cos cos sin sin ++,判断这个三角形的形状. 解:a =ab c b a ca b a c c b 22222222-++-++,所以b (a 2-b 2)+c (a 2-c 2)=bc (b +c ).所以(b +c )a 2=(b 3+c 3)+bc (b +c ).所以a 2=b 2-bc +c 2+bc .所以a 2=b 2+c 2.所以△ABC 是直角三角形. 解斜三角形(求角度和长度) 4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______. 解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc .∴bc a c b 2222-+=21.∴∠A =3π. 答案:3 π 5.在△ABC 中,“A >30°”是“sin A > 21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中,C B A ∠∠∠,,的对边分别为,,a b c 若a c ==且 75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正余弦公式

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2)

cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式(上面公式反过来就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)] cos(a)cos(b)=12?[cos(a+b)+cos(a-b)] sin(a)cos(b)=12?[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(a) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1 -2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的) a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中tan(c)=ba

高考数学专题--正余弦定理及解三角形

高考数学专题--正余弦定理及解三角形 高考考点:1、利用正、余弦定理解三角形 2、解三角形的实际应用 3、解三角形与其他知识的交汇问题 解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点. 考点1 利用正、余弦定理解三角形 题组一 利用正、余弦定理解三角形 调研1 ABC △的内角,,A B C 的对边分别为,,a b c ,已知3 cos sin 3b a C a C =+ . (1)求A ; (2)若3a = ,2bc =,求ABC △的周长. 【解析】(1) 3cos sin 3b a C a C =+ ,3 ,sin sin cos sin sin 3B A C A C ∴=+由正弦定理得, 3 sin cos cos sin sin cos sin sin 3A C A C A C A C ∴+=+ ,tan 3A =即, ()0πA ∈又,,∴ π 3A = . (2) 22π,32cos 3b c bc =+-由余弦定理得, ()2 33b c bc +-=即, 2bc =又,3b c ∴+=, 故33ABC +△的周长为. 调研2 如图,ABC △中,角,,A B C 的对边分别为,,a b c ,已知3sin cos C c B b = .

(1)求角B 的大小; (2)点D 为边AB 上的一点,记BDC θ∠=,若π85π,2,5,2 5CD AD a θ<<=== ,求sin θ与b 的值. 【解析】(1)由已知3sin cos C c B b =,得3sin sin cos sin C C B B =, 因为sin 0 C >,所以sin 3tan cos 3B B B == , 因为0πB <<,所以 π 6B = . (2)在BCD △中,因为sin sin sin CD BC a B BD C θ== ∠,所以 85 25sin sin B BDC = ∠,所以 25sin 5θ=, 因为θ为钝角,所以ADC ∠为锐角,所以 ()25cos cos π1sin 5ADC θθ∠=-=-= , 在ADC △中,由余弦定理,得22252cos(π)5425255b AD CD AD CD θ=+-?-=+-?? =, 所以5b = . ☆技巧点拨☆ 利用正、余弦定理解三角形的关键是利用定理进行边角互化.即利用正弦定理、余弦定理等工具合理地选择“边”往“角”化,还是“角”往“边”化. 若想“边”往“角”化,常利用“a =2R sin A ,b =2R sin B ,c =2R sin C ”; 若想“角”往“边”化,常利用sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,cos C =a 2+b 2-c 2 2ab 等. 题组二 与三角形面积有关的问题 调研3 如图,在ABC △中,点D 在边AB 上,CD ⊥BC ,AC =53,CD =5,BD =2AD . (1)求AD 的长;

正余弦定理综合应用

正余弦定理综合应用 学校: __________ 姓_名: ________ 班_级: _________ 考_号: ____________ 一、解答题 1 . 已 知 的 内 切 圆 面 积 为 , 角 所 对 的 边 分 别 为 , 若 1)求角 ; 2)当 的值最小时,求 的面积 . 2 .设 的内角 , , 所对的边分别为 , , ,且 ( 1)求 的值; 3)若 ,求 面积的最大值 ,求 的值;

1)求; 2)若,求

4 .已知向量,,角,,为的内角,其所对的边分别为,,. 1)当取得最大值时,求角的大小; 2)在(1)成立的条件下,当时,求的取值范围 5.在△ ABC 中,角A,B,C 所对的边分别为a,b,c,且. (1)判断△ ABC 的形状; (2)若,求的取值范围.

6 .如图:在中,,点在线段上,且 .求的长; Ⅱ)若,求△ DBC 的面积最大值. 7 .在中,角的对边分别为, (1)求角的大小; 2)若的外接圆直径为2,求的取值范围

8 .在锐角三角形中,角所对的边分别为,已知 (1)求角的大小; (2)求的取值范围。 42 9.设函数 f x cos 2x 2cos2 x. 3 (1)求 f x 的最大值,并写出使 f x 取最大值时x 的集合; 3 (2)已知ABC 中,角A,B,C 的边分别为a, b, c ,若 f B C 2,b c 2,求 a 的最小

值. 2 10.在ABC 中,角A,B,C 所对的边分别为a,b,c,且ACB 3 . 3 (1)若a, b,c依次成等差数列,且公差为 2 ,求c的值; (2)若 c 3, ABC ,试用表示ABC的周长,并求周长的最大值

相关文档
最新文档