高精度数字电压表原理图及源程序

高精度数字电压表原理图及源程序
高精度数字电压表原理图及源程序

RP1

LCD_CMD_WR EQU 00E0H

LCD_DATA_WR EQU 00E1H

LCD_BUSY_RD EQU 00E2H

LCD_DATA_RD EQU 00E3H

;********************************

AD_12CMD_WR EQU 00E0H ;初始化为12位转换器AD_8CMD_WR EQU 00E8H ;初始化为8位转换器AD_8HB_RD EQU 00E4H ;高8Bit输出

AD_4LB_RD EQU 00ECH ;低4Bit输出

;*********************************

ORG 0000H

LJMP MAIN

ORG 0030H

;=========================================

MAIN: MOV SP,#60H

CLR RS0

CLR RS1

ACALL INIT ;LCD初始化

;=======================================

;参数设置

;=======================================

AD574: MOV DPTR,#AD_12CMD_WR

MOVX @DPTR,A ;启动转换

SETB P3.0

LOOP: NOP

JB P3.0,LOOP

MOV DPTR,#AD_8HB_RD

MOVX A,@DPTR

MOV R2,A

MOV DPTR,#AD_4LB_RD

MOVX A,@DPTR

MOV R3,A

;======================================== ;数据处理(参数)传递

;R2R3=(ABC0)

;处理后R2R3=(0ABC)

;======================================== MOV A,R2

SWAP A ;高低交换

MOV R5,A

ANL A,#0F0H ;

MOV R4,A

MOV A,R3

SWAP A

ORL A,R4

MOV R3,A

MOV A,R5

ANL A,#0FH

MOV R2,A

;======================================== ;入口参数:被减数在R2R3中,减数在R6R7中

;出口参数:差值在R2R3中

;======================================== MOV R6,#08H

MOV R7,#00H

CLR C ;=============

MOV A,R2

SUBB A,R6

JNC SUBI ;无借位,直接运算

SETB 02H

MOV A,R2

CPL A ;取反

ANL A,#0FH

MOV R2,A

MOV A,R3

CPL A

MOV R3,A

;===========================

;计算

;==========================

SUBI: CLR C

MOV A,R3

SUBB A,R7

MOV R3,A

MOV A,R2

SUBB A,R6

MOV R2,A

;========================================== ;乘以10计算

;=========================================== MOV R1,#00H

MOV A,R3

LCALL MUL10

MOV 49H,A

MOV A,R2

LCALL MUL10

MOV 48H,A

;========================================

;============================================ ;除法运算

;============================================ ;============================

;整数部分

;============================

MOV R0,#30H

LCALL DIVD0

MOV A,40H

MOV @R0,A

INC R0

MOV A,#2EH

MOV @R0,A

INC R0

;==========================

;小数部分

;==========================

MOV 45H,#05H

ALUDEF: MOV A,42H

LCALL MUL10

MOV 47H,A

MOV A,41H

LCALL MUL10

MOV 46H,A

;==========================

;确定小数

;==========================

LCALL DIVD1

MOV A,40H

MOV @R0,A

INC R0

DJNZ 45H,ALUDEF

MOV A,#05H

CLR C

SUBB A,40H

JC DV53

SJMP DV54

DV53: INC 40H

DEC R0

MOV A,40H

MOV @R0,A

LOPJ: CJNE @R0,#0AH,DV54

MOV @R0,#00H

DEC R0

INC @R0

INC R0 ;==================== SJMP LOPJ

DV54: CLR OV

INC R0

MOV @R0,#56H

;RET

;===========================

;显示

;===========================

MOV A,#01H

ACALL C51

MOV A,#81H

ACALL C51

MOV DPTR,#TAB1

LCHIN: CLR A

MOVC A,@A+DPTR

INC DPTR

LCALL C51DDR

JNZ LCHIN

MOV A,#0C3H

ACALL C51

JNB 02H,LOP_

MOV A,#2DH

LCALL C51DDR

LOP_: MOV R0,#30H

MOV A,@R0

LCALL CHASCII

INC R0

LCALL C51DDR

MOV A,@R0

INC R0

LCALL C51DDR

MOV R1,#06H

LOPXS: MOV A,@R0

LCALL CHASCII

LCALL C51DDR

INC R0

DJNZ R1,LOPXS

MOV R2,#5

DELL1ms:LCALL DEL

DJNZ R2,DELL1ms

MOV A,#01H

ACALL C51

MOV A,#0C3H

ACALL C51

CLR 02H ;======================== LJMP AD574

;============================

;计算子程序

;=============================

DIVD0: CLR 00H

PUSH PSW

SETB RS0

CLR RS1

MOV R4,48H

MOV R5,49H

ACALL DIVD

POP PSW

RET

DIVD1: SETB 00H

PUSH PSW

SETB RS0

CLR RS1

MOV R4,46H

MOV R5,47H

DIVD: MOV R2,#00H

MOV R3,#00H

MOV R6,#08H

MOV R7,#00H

CLR C

MOV A,R3

SUBB A,R7

MOV A,R2

SUBB A,R6

JC DVD1

SETB OV

POP PSW

RET

DVD1: MOV B,#10H DVD2: CLR C

MOV A,R5

RLC A

MOV R5,A

MOV A,R4

RLC A

MOV R4,A

MOV A,R3

RLC A

MOV R3,A

XCH A,R2

RLC A

XCH A,R2

MOV F0,C

CLR C

SUBB A,R7

MOV R1,A

MOV A,R2

SUBB A,R6

ANL C,/F0

JC DVD3

MOV R2,A

MOV R0,A

MOV A,R1

MOV R3,A

INC R5

DVD3: DJNZ B,DVD2 MOV A,R2

MOV R0,A

MOV 40H,R5

MOV 41H,R0

MOV 42H,R1

CLR OV

JNB 00H,DIED

POP PSW

DIED: RET

;============================================ INIT: MOV A,#3CH

LCALL C51

MOV A,#0CH

LCALL C51

MOV A,#06H

LCALL C51

RET

DDW:

PUSH ACC

MOV DPTR,#LCD_BUSY_RD

DDW1:

MOVX A,@DPTR

JB ACC.7,DDW1

POP ACC

;ACALL DELAY

RET

C51:

ACALL DDW

MOV DPTR,#LCD_CMD_WR

MOVX @DPTR,A

RET

C51DDR:

PUSH DPH

PUSH DPL

ACALL DDW

MOV DPTR,#LCD_DATA_WR

MOVX @DPTR,A

POP DPL

POP DPH

RET

;FLASH: MOV A,#08H ;关闭显示;ACALL C51

;ACALL DELAY4

;MOV A,#0CH ;开显示,关闭光标

;ACALL C51

;ACALL DELAY4

;DJNZ R4,FLASH

;RET

;DELAY: PUSH PSW

;SETB RS0

;SETB RS1 ;延时子程序2.5ms。

;MOV R6,#1 ;5

;D1: MOV R7,#1 ;248

;DJNZ R7,$

;DJNZ R6,D1

;POP PSW

;RET

;DELAY4: PUSH PSW

;SETB RS0

;SETB RS1 ;0.81ms.

;MOV R5,#1 ;40

;DL6:

;MOV R6,#1 ;100

;DL7:

;MOV R7,#1 ;100

;DL8:

; DJNZ R7,DL8

;DJNZ R6,DL7

;DJNZ R5,DL6

;POP PSW

;RET

DEL: PUSH PSW ;延时50ms SETB RS0

SETB RS1

MOV R7,#200 ;200

DEL1: MOV R6,#123 ;123

NOP

DEL2: DJNZ R6,DEL2

DJNZ R7,DEL1

POP PSW

RET

HASC: MOV B,A

LCALL HAS1

XCH A,B

SWAP A

HAS1: ANL A,#0FH

ADD A,#90H

DA A

ADDC A,#40H

DA A

RET

CHASCII:MOV A,@R0

ORL A,#30H

RET

;===================

;乘以10计算子程序

;===================

MUL10: PUSH PSW

CLR RS0

SETB RS1

MOV B,#0AH

MOV R0,A

ANL A,#0FH ;屏蔽高位

MUL AB

ADD A,R1

MOV R4,A

SWAP A

ANL A,#0FH

MOV R1,A

MOV A,R4

ANL A,#0FH

MOV R4,A

MOV A,R0

SWAP A

ANL A,#0FH

MOV B,#0AH

MUL AB

ADD A,R1

MOV R6,A

ANL A,#0FH

MOV R7,A

MOV A,R6

SWAP A

ANL A,#0FH

MOV R1,A

MOV A,R7

SWAP A

ORL A,R4

POP PSW

RET

TAB1: DB 'Current V oltage'

DB 00H

END

单片机课程设计数字电压表

单片机课程设计 ——电压表的设计 学院:信息工程学院 专业:电子信息科学与技术 班级:2011150 学号:201115002 姓名:王冬冬 同组同学:凡俊兴 201115001

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (2) 3.1设计思路 (2) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0809的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (8) 3.5.3 ADC0809的转换原理 (8) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (9) 3.7 LED数码管的控制显示 (9) 3.7.1 LED数码管的模型 (9)

LED数码管模型如图3-6所示。 (9) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (9) 4.1 主程序 (10) 4.2 A/D转换子程序 (11) 4.3 中断显示程序 (12) 5使用说明与调试结果 (13) 6总结 (13) 参考文献 (14) 附录1 源程序 (15) 附录2原理电路 (19)

1 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号

基于单片机的数字电压表设计报告

单片机原理及系统课程设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2010 年 3 月 7 日

基于单片机的数字电压表设计 摘要

图3.2系统原理图4软件设计

5.系统调试及仿真结果 6.总结 两周的课程设计结束了,在这过程中,我学到了很多东西。首先,我学会了单片机设计的基本过程有哪些,每一过程有哪些基本的步骤,怎样通过查资料去完成这每一步。其次我巩固了上学期所学的一些单片机知识,从而加深了对ADC0809芯片的功能的了解。在编程过程中,遇到了许多困难,通过与同学之间的交流和咨询,最后解决了这些困难。所谓实践出真知,学到的东西只有运用到实践当中,才能真正体会到知识的力量。最后,通过这次课程设计,让我明白了想法和实践还是有差距的,当你真正去做一件事的时候,你会发现你的想法可能不适用,随时都需要调整,另外扎实的理论知识也是完成设计任何设计必不可少的要素,一切想法离开了理论知识都是空想。 参考文献 [1]彭为,黄科,雷道仲.单片机典型系统设计实例精讲[M].电子工业出版社.2009:22-54. [2] 谭浩强.C程序设计(第三版)[M].清华大学出版社.2009:32-46. [3] 王思明,张金敏,张鑫等.单片机原理及应用系统设计(第一版)[M].科学出版社.2012:70-292.

附录A源程序代码#include #include #define uchar unsigned char sbit p21=P2^1; sbit p22=P2^2; sbit p23=P2^3; sbit EOC=P3^1; sbit OE=P3^0; sbit ST=P3^2; sbit p34=P3^4; sbit p35=P3^5; sbit p36=P3^6;

基于51单片机的简易数字电压表的设计

课题交流毫伏表设计 系别 专业 年级 姓名 学号 指导教师

目录 第一章引言 (2) 1.1摘要 (2) 1.2 设计目的 (2) 1.3设计任务及要求 (2) 1.4 课程设计过程 (2) 第二章系统方案选择和论证 (3) 2.1基本方案论证 (3) 2.2输出部分中各模块的方案选择 (3) 2.3总体方案设计 (4) 第三章AT89C51的结构 (5) 3.1AT89C51的概述 (5) 3.2 AT89C51部结构 (5) 3.3存储器和特殊功能寄存器的介绍 (5) 3.4时钟电路和复位电路 (7) 第4章元器件的选择 (7) 4..1显示 (7) 4.2 模数(A/D)芯片 (11) 4.3 数模AC/DC736芯片 (13) 4.4 OP07 (13) 第五章电路的设计 (14) 5.1时钟电路 (15) 5.2A/D转换程序 (17) 第6章系统的调试 (18) 6.1 硬件的调试 (18) 6.2软件调试 (19) 参考文献 (20) 附录 (20) 程序清单 (20) 元件清单 (25)

容摘要 本次设计主要解决AC/DC转换、A/D转换、数据处理及显示控制等几个模块。控制系统采用AT89C51单片机,A/D转换采用ADC0809。要求交流毫伏表检测信号的电压围:1mv—2v ,输入信号的频率围:10Hz-2000KHz,并在LCD1602液晶上显示测量电压信号。 关键词AT89C51单片机;电压测量;A/D转换;LCD1602液晶显示;AC/DC 转换;放大;衰减。 1.2 设计目的 本课程的任务是通过“交流毫伏表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 1.3设计任务及要求 1、设计一个交流毫伏表,检测信号的电压围:1mv—2v。 2、输入信号的频率围:10Hz-2000KHz 3、查阅相关资料,了解交流毫伏表的各种现实发法极其特点,并着重掌 握交流毫伏表的设计及显示等。 4、熟悉并掌握个芯片的功能极其管脚分。 5、检测设计电路中所需要的各种电子元器件。 6、对设计的交流毫伏表进行装接与调试,要时设计的电路达标。 7、完成设计交实物图极其设计报告。 1.4课程设计过程 1、各组组成员讨论并进行软硬件系统设计,经指导老师同意进行具体方 案实施。 2、将可行方案硬件电路焊接在万能板上,并检查。 3、软硬件仿真。

单片机课程设计 数字电压表设计

《单片机原理及应用》课程设计报告书 课题名称数字电压表设计 名姓 学号 专业

指导教师 机电与控制工程学院月年日 1 任务书 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以8051单片机为核心,以逐次逼近式A/D转换器ADC0809、LED显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压,最小分辨率为0.02V。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的8051单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上,该部分决定了数字电压表的精度等主要技术指标。根据需要本设计采用逐次逼近型A∕D转换器ADC0809进行模数转换。 3、键盘显示部分。利用4×6矩阵键盘的一个按键控制量程的转换,3或4位LED显示。其中一位为整数部分,其余位小数部分。 关键词:8051 模数转换LED显示矩阵键盘 2 目录

1 绪论 (1) 2 方案设计与论证 (2) 3 单元电路设计与参数计算 (3) 4 总原理图及参考程序 (8) 5 结论 (14) 6 心得体会 (15) 参考文献16 (7) 3 1.绪论 数字电压表的基本工作原理是利用A/D转换电路将待测的模拟信号转换成数字信号,通过相应换算后将测试结果以数字形式显示出来的一种电压表。较之于一般的模拟电压表,数字电压表具有精度高、测量准确、读数直观、使用方便等优

点。 电压表的数字化测量,关键在于如何把随时连续变化的模拟量转化成数字量,完成这种转换的电路叫模数转换器(A/D)。数字电压表的核心部件就是A/D转换器,由于各种不同的A/D转换原理构成了各种不同类型的DVM。一般说来,A/D 转换的方式可分为两类:积分式和逐次逼近式。 积分式A/D转换器是先用积分器将输入的模拟电压转换成时间或频率,再将其数字化。根据转化的中间量不同,它又分为U-T(电压-时间)式和U-F(电压-频率)式两种。 逐次逼近式A/D转换器分为比较式和斜坡电压式,根据不同的工作原理,比较式又分为逐次比较式及零平衡式等。斜坡电压式又分为线性斜坡式和阶梯斜坡式两种。 在高精度数字电压表中,常采用由积分式和比较式相结合起来的复合式A/D转换器。本设计以8051单片机为核心,以逐次比较型A/D转换器ADC0809、LED 显示器为主体,构造了一款简易的数字电压表,能够测量1路0~5V直流电压,最小分辨率0.02V。 4 2.方案设计与论证 基于单片机的多路数字电压表电路的基本组成如图3.1所示。

DIY数字显示直流电压表

DIY数字显示直流电压表 最近想做一个电源,因为经常DIY,没有一个电源不像样子,虽然是业余的,但是电压有时也会有不同的电压值,如做成固定的电压应用起来就不方便,如做成可调的,电源值就不能直观的展示出来,每调一次就用万用表量一起也不方便。如果有一个电压表装在电源上就方便多了,指针式的表头读起数来总是有点别扭,所以就想找一个数字式的电压表头。因此在这样的背景下自己通过DIY 制作了一个4位数字显示的电压表头。 做数字式电压表用什么IC好呢?选来选去最后决定用ICL7017吧!定好芯片就开要画个完整的电路图。既然要做就做好点,不想用洞洞板来接线路板,电线飞来飞去的有点头痛的感觉,所以还要画一块PCB板。电路图及PCB板的设计如下图示:

有了图就要准备物料了,不想一个一个的写出来,给个物料清单吧如下 组件编号 组件数值组件规格用量 号 C1 0.1uF 瓷片电容±20% 50V 1 C2 100P 瓷片电容±5% 50V 1 C3 0.1uF 金属膜电容±5% 63V 1 C4 0.1uF 独石电容±5% 63V 1 C6 0.22uF 金属膜电容±5% 63V 1 C5 0.47uF 金属膜电容±5% 63V 1 C7,C8 10uF/25V 电解电容+80-20% 2 R1 150Ω金属膜电阻±1% 1/4W 1 R8 1K 金属膜电阻±1% 1/4W 1 R9 1M 1/2W 金属膜电阻±1% 1/2W 1 R7 1M 金属膜电阻±1% 1/4W 1 R3 2.95K 金属膜电阻±1% 1/4W 1 R2,R5 10K 金属膜电阻±1% 1/4W 2 R4 20K 金属膜电阻±1% 1/4W 1 R6 154K 金属膜电阻±1% 1/4W 1 R10 470K 金属膜电阻±1% 1/4W 1 VR2 5K 精密微调电阻922C0 W 502 1 D2,D3 4148 ST 1N4148 DO-35 2 J1,J2 DC5V 鱼骨针2pin 2 D1 DIODE 1N4004 DO-41 1 DS1~4 HS-5161BS2 共阳8段数码管 4 U1 ICL7107 IC ICL7107CPLZ DIP-40 1 U2 TC4069 IC TC4069UBP DIP-14 1 U3 TL431 IC TL431A TO-92 1 IC插座14 pin 2.54mm 1 IC插座40 pin 2.54mm 1 PCB光板36x68x1.6mm 双面FR-4 1 塑料外壳尺寸要与PCB板配合,网上购的 1 镙丝 4 锡线适量 工具就是电子爱好者的常用工具了

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

数字电压表的设计实验报告

课程设计 ——基于51数字电压表设计 物理与电子信息学院 电子信息工程 1、课程设计要求 使用单片机AT89C52和ADC0832设计一个数字电压表,能够测量0-5V之间的直流电压值,两位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为 5V;能用两位LED进行轮流显示或单路选择显示,显示精度0.1伏。 2、硬件单元电路设计 AT89S52单片机简介 AT89S52是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存

储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS -51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。 AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级,2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器。 ADC0832模数转换器简介 ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。 图1 芯片接口说明: 〃 CS_ 片选使能,低电平芯片使能。 〃 CH0 模拟输入通道0,或作为IN+/-使用。

多量程直流数字电压表

电子技术课程设计报告 专业班级: 学生学号: 学生姓名: 指导教师: 设计时间: 自动化与电气工程学院

设计课题题目: 多量程直流数字电压表 一、设计任务与要求 1.设计并制作一个直流稳压电源,设计要求为 (1) 输入电压为220V (2) 输出电压为±5V 2.设计一个2 13 直流数字电压表,设计要求为 分辨率 (1) 测量量程:基本量程:200mV 0.1mV 扩展量程:2V 1mV 20mV 0.01mV (2) 测量范围: 0mV~2V (3 ) 显示范围:十进制数0~1999 (4) 使用双积分A/D 转换器ICL7107完成直流电压的数字化转换 二、电路原理分析与方案设计 1. 设计要求分析 数字电压表由电阻网络(量程调整)、直流放大(运放组成)、电压极性判断、A/D 转换、数码(液晶)显示等部分组成。 直流数字电压表主要完成对电位器或外部电压的测量与显示。因此,为了适应不同大小的的待测模拟电压信号,应该有测量量程的选择功能。ICL7107是双积分式三位半A/D 转换器,可构成基本量程200Mv,而扩展量程20V 可由电阻电位器分压,2V 量程可由运放放大。 2. 方案设计 (1)±5V 直流稳压电源 首先通过中心抽头的18V 电源变压器,输出电压经过四个二极管组成的桥式整流电路整流后通过电容滤波,然后通过三端稳压管LM7805和KV7905分别对正负电压进行稳压,在对输出电压进行滤波,从而得到较为稳定的±5V 直流稳压电源。 (2)2 13 直流数字电压表 将输入电压分别通过电阻电位器和μA741运放放大器进行缩小和放大,将输出信号输入到ICL7107 A/D 转换器V-IN 端,经过A/D 转换电路、参考电压电路、复位电路、时钟电路等电路完成数据转换及传输,最后通过2 13 数码管进行显示。 三、单元电路分析与设计 1.单元电路原理分析 电源: (1) 电源变压器

基于单片机高精度直流电压表设计

前言 (2) 一、设计任务及方案分析 (3) 1、设计任务具体要求 (3) 2、设计总方案论证 (3) 二、硬件电路设计 (4) 1、数据输入模块电路设计 (4) 2、运算放大电路及通道选择电路设计 (5) 3、AD转换模块电路设计 (6) 4、单片机控制模块电路设计 (7) 5、LCD1602液晶显示模块电路设计 (8) 三、系统软件流程设计 (9) 1、系统主程序流程框图 (9) 2、系统部分程序如下: (10) 四、系统调试结果 (11) 五、实习收获与感受 (12)

基于51单片机的数字直流电压检测仪的设计 前言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。 众所周知,在当今的社会中电已成为人们日常生产,生活中一个必不可缺的因素。电的发现和应用极大的节省了人类的体力劳动和脑力劳动,使人类的力量长上了翅膀,使人类的信息触角不断延伸。而在这其中,电压,电流等已成为描述电的一些重要参数。 在电气测量中,电压是一个很重要的参数。如何准确地测量模拟信号的电压值,一直是电测仪器研究的内容之一。目前,市场上的主要使用的电压表有:指针式电压表和数字电压表两种。由于传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,因此,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信等优点已使数字电压表成为现在电子测量的主要应用产品。数字电压表是通用仪器中使用较广泛的一种测试仪器,很多电量或非电量经变化后都用可数字电压表完成测试。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,显示出强大的生命力。 本设计主要研究的是以51系列单片机为核心的电压测量系统,能够在单片机的控制下完成对电压信号采集,能够根据采样值进行毫伏值与伏值量程自动转换。采用4位半双积分A/D转换器,在20000字(2V满量程)范围内,保证转换精度1字,相当于14bitA/D转换器,相比于其他数字电压表使用的A/D转换器,具有精度高的特点。并且测量结果可通过液晶屏显示出来,使用液晶屏显示具有功耗低,使用简单,焊接电路方便等特点。显示准确可靠,误差小。基本能够满足生产的要求。

单片机课程设计报告——数字电压表[1]剖析

数字电压表 单片机课程设计报告 班级: 姓名: 学号: 指导教师: 2011 年3 月29 日

数字电压表电路设计报告 一、题目及设计要求 采用51系列单片机和ADC设计一个数字电压表,输入为0~5V线性模拟信号,输出通过LED显示,要求显示两位小数。 二、主要技术指标 1、数字芯片A/D转换技术 2、单片机控制的数码管显示技术 3、单片机的数据处理技术 三、方案论证及选择 主要设计方框图如下: 1、主控芯片 方案1:选用专用转化芯片INC7107实现电压的测量和实现,用四位数码管显示出最后的转换电压结果。缺点是京都比较低,内部电压转换和控制部分不可控制。优点是价格低廉。 方案2:选用单片机AT89C51和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。缺点是价格稍贵;优点是转换京都高,且转换的过程和控制、显示部分可以控制。 基于课程设计的要求和实验室能提供的芯片,我选用了:方案2。 2、显示部分 方案1:选用4个单体的共阴极数码管。优点是价格比较便宜;缺点是焊接时比较麻烦,容易出错。 方案2:选用一个四联的共阴极数码管,外加四个三极管驱动。这个电路几乎没有缺点;优点是便于控制,价格低廉,焊接简单。 基于课程设计的要求和实验室所能提供的仪器,我选用了:方案2。

四、电路设计原理 模拟电压经过档位切换到不同的分压电路筛减后,经隔离干扰送到A/D 转换器进行A/D 转换。然后送到单片机中进行数据处理。处理后的数据送到LED 中显示。同时通过串行通讯与上位通信。硬件电路及软件程序。而硬件电路又大体可分为A/D 转换电路、LED 显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;程序的设计使用汇编语言编程,利用Keil 和PROTEUS 软件对其编译和仿真。 一般I/O 接口芯片的驱动能力是很有限的,在LED 显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED ,此时就需要增加LED 驱动电路。驱动电路有多种,常用的是TTL 或MOS 集成电路驱动器,在本设计中采用了74LS244驱动电路。 本实验采用AT89C51单片机芯片配合ADC0808模/数转换芯片构成一个简易的数字电压表,原理电路如图1所示。该电路通过ADC0808芯片采样输入口IN0输入的0~5 V 的模拟量电压,经过模/数转换后,产生相应的数字量经过其输出通道 D0~D7传送给AT89C51芯片的P0口。AT89C51负责把接收到的数字量经过数据处理,产生正确的7段数码管的显示段码,并通过其P1口传送给数码管。同时它还通过其三位I/O 口P1.0、P1.1、P1.2、P1.3产生位选信号,控制数码管的亮灭。另外,AT89C51还控制着ADC0808的工作。其ALE 管脚为ADC0808提供了1MHz 工作的时钟脉冲;P2.4控制ADC0808的地址锁存端 (ALE);P2.1控制ADC0808的启动端(START);P2.3控制ADC0808的输出允许端(OE);P2.0控制ADC0808的转换结束信号(EOC)。 电路原理图如下所示,三个地址位ADDA,ADDB,ADDC 均接高电平+5V 电压,因而所需测量的外部电压可由ADC0808的IN7端口输入。由于ADC0808

简易数字电压表(单片机课程设计)

课程设计说明书 简易数字电压表的设计 院(系) 专业机械电子工程 班级二班 学生姓名 指导老师 2015 年 3月 13 日 课程设计任务书 兹发给机械电子工程(2)班学生课程设计任务书,内容如下:

1.设计题目:简易数字电压表的设计 2.应完成的项目: (1)可测0~5V的8路电压输入值; (2)在LED数码管上轮流显示; (3)单路选择显示; (4)利用功能键可以实现滚动显示,显示启动/停止等; 3.参考资料以及说明: [1]刘瑞新.单片机原理及应用教程[M].北京:机械工业出版社, 2003.7 [2]张俊,钟知原,王日根.简易数字电压表的设计[J].科协论坛:下半月,2012(8)34-35 [3]赵静,刘少聪,丁浩.王莉莎.基于单片机的数字电压表的设计[J].数字技术与应用,2011(6):121-125 [4]魏立峰.单片机原理及应用技术[M].北京大学出版社,2005年 [5]谭浩强.C语言程序设计(第二版)[M].北京:清华大学出版社,2005.12 4.本设计任务书于2015年3月2日发出,应于2015年3月13日前完成,然后进行答辩。 专业教研室、研究所负责人审核年月日 指导教师签发年月日 课程设计评语:

课程设计总评成绩: 课程设计答辩负责人签字: 年月日

摘要 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。 本实验设计主要讲述了数字电压表的设计过程,主要包括硬件设计和程序设计,硬件主要包括以STC89C51单片机为主要控制电路、数据采样电路、显示电路等,是基于51单片机开发平台实现的一种数字电压表系统。该设计采用STC89C51单片机作为控制核心,驱动控制四块数码管显示被测电压,以ADC0809为模数转换数据采样,实现被测电压的数据采样,使得该数字电压表能够测量0-5V之间的直流电压值。 关键词:STC89C51、ADC0809、显示电路、数据采样

基于单片机的数字电压表设计

课程设计 题目: 基于单片机的数字电压表设计 专业:电气工程及其自动化 班级: 学号: 学生姓名: 指导教师: 2010年9月8日

数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。 关键词:数字电压表 A/D 转换器 PC 电压测量 Abstract Digital voltage meter (Digital V oltmeter) referred to as DVM, it is the use of digital measuring technology, the continuous analog (DC input voltage) into a non-continuous, discrete digital form and to display the instrument.Analog voltage meter features a traditional single, low accuracy, can not meet the digital age, using the single chip digital voltage meter, from the high precision, anti-interference ability, scalability, Ji Cheng convenience, and PC can communicate in real time.At present, by a variety of single A / D converter consisting of digital voltage meter, has been widely used in electronic and electrical measurement, industrial automation, instrumentation, automated test systems, intelligent measurement, showing strong vitality.At the same time, the DVM extension to the various general and specific digital instruments, but also the power and non-power measurement up to a new level.This chapter focuses on single-chip A / D converter, and they form by the microcontroller-based digital voltmeter works. Keywords: digital voltmeter A / D converter voltage measurement PC

直流数字电压表毕业设计

毕业设计 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计指导教师:杨喜录 电子信息工程系印制 二○一二年九月

宝鸡职业技术学院毕业设计任务书 姓名:孟冬冬 专业:电气自动化 班级:电气1001班 设计课题:数字电压表的设计 指导教师:杨喜录 电子信息工程系印制 二○一二年九月

引言 数字电压表是采用数字化电路测量的电压仪表。它以其高准确度、高可靠性、高分辨率、高性价比、读数清晰方便、测量速度快、输入阻抗高等优良特性而倍受人们的青睐。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。因此对数字电压表作全面深入的了解是很有必要的。传统的模拟式(即指针式)电压表已有100多年的发展史,虽然不断改进与完善,仍无法满足现代电子测量的需要,数字电压表自1952年问世以来,显示强大的生命力,现已成为在电子测量领域中应用最广泛的一种仪表。

数字电压表简称DVM (Digital Voltmeter ),它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等领域,显示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。智能化数字电压表则是最大规模集成电路(LSI )、数显技术、计算机技术、自动测试技术(ATE )的结晶。一台典型的直流数字电压表主要由输入电路、A/D 转换器、控制逻辑电路、计数器(或寄存器)、显示器,以及电源电路等级部分组成。它的数字输出可由打印机记录,也可以送入计算机进行数据处理。 系统概述 数字电压表是将被测模拟量转换为数字量,并进行实时数字显示的数字系统。 该系统(如图1所示)可由MC14433--32 1位A/D 转换器、MC1413七路达林顿驱动器阵列、CD4511 BCD 到七段锁存-译码-驱动器、能隙基准电源MC1403和共阴极LED 发光数码管组成。

简易数字电压表的设计

一、设计题目:简易数字电压表的设计 二、设计目的 自动化专业的专业实践课程。本课程的任务是使学生通过“简易数字电压表的设计”的设计过程,综合所学课程,掌握目前自动化仪表的一般设计要求,工程设计方法,开发及设计工具的使用方法,通过这一设计实践过程,锻炼学生的动手能力和分析,解决问题的能力;积累经验,培养按部就班,一丝不苟的工作个对所学知识的综合应用能力。 三、设计任务及要求 设计电压表并实现简单测量。具有以下基本功能: ⑴可以测量0~5V的8路输入电压值; ⑵可在四位LED数码管上轮流显示或单路选择显示; ⑶测量最小分辨率为0.019V; ⑷.测量误差约为±0.02V; ⑸带有一定的扩展功能; 目录 第一章摘要 (4) 第二章智能仪表目前的发展状况 (4) 第三章设计目的 (6) 第四章设计要求 (6) 第五章设计方案与比较论证 (6) 5.1 单片机电路设计 (6) 5.2 电源方案 (8) 5.3 显示方案 (9) 5.4 A/D采样方案 (10) 5.5串口通讯方案 (12) 5.7 高压,短路报警 (14) 5.8 键盘 (14) 第六章方案设计 (15) 6.1 硬件设计 (15)

6.2 软件设计 (16) 第七章性能测试 (18) 电压测试 (18) 第八章结果分析 (19) 第九章设计体会 (19) 参考文献 (20) 附录 (20) 元器件清单 (20) 程序清单 (20) 第一章摘要 本报告介绍了基于AT89S52单片机为核心的、以AD0809数模转换芯片采样、以1602液晶屏显示的具有电压测量功能的具有一定精度的数字电压表。在实现基础功能要求之上扩展了串口通讯、时钟功能、高压报警、短路测试、电阻测量、交流电压峰峰值和周期测试等功能,使系统达到了良好的设计效果和要求。 关键词:AT89S52单片机模数转换液晶显示扩展功能 ABSTRACT:The report describes the AT89S52 based on the microcontroller as the core, AD0809 digital-to-analog converter chip sampling, to 1602 LCD display with voltage measurement function with a certain precision of digital voltage meter. In achieving functional requirements based upon the expansion of serial communications, high-pressure alarm, short circuit, electrical resistivity measurement, AC voltage and the peak of cycle testing and other functions, allowing the system to achieve good results and the design requirements. Keywords : AT89S52 SCM analog-to-digital conversion functions LCD expansion 第二章智能仪表目前发展状况 在自动化控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展的。常规的自动化仪器仪表适应常规控制系统的要求,它们以经典控制理论和现代控制理论为基础,以控制对象的数学模型为依据。当今,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然和必须。本文将就自动化仪器仪表的智能化的状况与进展,以及当今对智能仪器仪表研究、开发热点做概要的分析与表述。作者建议人们关注自动化仪器仪表智能化技术的进展,关注仪器仪表装置

基于某STC89C52的数字电压表设计报告材料

荆楚理工学院 单片机课程设计成果 学院: 电子信息工程学院班级: 13电气2班 学生姓名:xxx学号:xxxxxxxxxxxxxxxx 设计地点(单位)单片机实验室D1302 设计题目:数字电压表 完成日期:2015年7月3日 指导教师评语: _________________________________ 成绩(五级记分制): 教师签名:

摘要 电压表是测量仪器中不可缺少的设备,目前广泛应用的是采用专用集成电路实现的数字电压表。本系统以STC89C52单片机为核心,以逐次逼近式A/D转换器ADC0809、数码管显示器为主体,设计了一款简易的数字电压表,能够测量0~5V的直流电压。 该设计大体分为以下几个部分,同时,各部分选择使用的主要元器件确定如下: 1、单片机部分。使用常见的STC89C52单片机,同时根据需要设计单片机电路。 2、测量部分。该部分是实验的重点,要求将外部采集的模拟信号转换成数字信号,通过单片机的处理显示在显示器上。根据需要本设计采用逐次逼近型A ∕D转换器ADC0809进行模数转换。 3、数码管显示部分。其中一位为整数部分,其余位小数部分。 关键词:STC89C52 模数转换数码管显示

目录 1.方案设计与论证 (4) 1.1方案设计 (4) 1.2方案论证 (4) 2.系统硬件电路设计 (4) 2.1系统原理框图 (4) 2.2 A/D转换电路 (5) 2.3单片机主控电路 (5) 2.4电压显示电路 (7) 2.5总体电路设计 (8) 3.系统测试 (10) 3.1测试方法与结果 (10) 3.2测试结论 (11) 3.3误差分析 (11) 4.设计总结 (11) 参考文献 (13) 附录 (14)

积分式直流数字电压表

积分式直流数字电压表 摘要:51系列单片机具有两个以上16通道定时器(TIME0和TIME1),每个通道可选择为输入捕获、输出捕获和PWM方式来测量脉宽,8路8位A/D转换器。当需大于8位的A/D转换时,可以用片内16位的定时器外接运放、比较器和多路开关实现双积分A/D转换。TL082是JFETINPUT运放;LM358作为比较器;MC4066是多路开关。51单片机P1口的P10、P11、P12作为输出,控制MC4066多路开关的输入选择;INT0作为中断输入口,捕捉LM358比较器的输出电平跳变。 关键字:双积分A/D,输出比较,输入捕捉,分辨率

一、系统方案论证与比较 为了完成上面的设计要求,将整个积分式直流数字万用表的设计分为四部分:积分、过零比较部分,控制部分,显示部分和供电部分。原理图如图1.1所示。 图G-1-1 1、单片机的选择 方案一:采用ATMEL公司生产的8位单片机AT89C51作为双积分A/D转换器的核心,此次单片机价格相对便宜,容易购买。此设计中控制功能比较多,因此需要用到的输入输出口比较多, AT89C51足可以满足控制要求,且选用此单片机不需外接扩展电路,因此节省了资源,降低了成本;并且可以达到很高的精度和实现此次设计的各种要求。 方案二:采用MOTOROLA公司生产的8位单片机MC68HC908GP32作为双积分A/D 转换器的核心,该单片机只具有两个输入输出口,虽然也能满足以上各种要求,但需要外接扩展电路,这不但在使用上增加了难度而且也增加了设计成本,浪费了资源。使电路边的比较复杂,在实际调试中也增加了难度。 鉴于以上分析,拟选择方案一。 2、积分器、过零比较器电路 方案一:该方案的系统框图如图1.2所示。运放为LM311、比较器为LM339、多路开关为MC14052。MC68HC908GP32单片机的PTD5、PTD4作为输出控制MC14052多路开关的输入选择。PTD7作为输入口,捕捉LM339比较器的输出跳变。C为积分电容,常取0.1μF左右的聚丙烯电容,R为积分电阻,可取100K左右,Vi为输入电压,-E为负的基准电压。此电路只对输入信号进行了一次信号放大,也就是只进行了一次积分。此电路,积分波形不明显,不容易在示波器上调试出来。 方案二:该方案的系统原理图如图1.3所示。C1为积分电容,常取0.22μF 左右的聚丙烯电容,R2为积分电阻,可取500k左右,U2A为积分运放,U2A、C1、R2构成了积分器,U2B是过零检测运放。VIN为输入电压,VREF为基准电压,AGND 为转换器的参考零点。VREF和参考零点以R9、R10、R11分压产生。TL082是JFETINPUT运放;LM358作为比较器;MC4066是多路开关。此电路有自己单独的基准电压,并且它的基准电压根据测量的不同范围的电压,可以进行调节,因此更

51单片机数字电压表设计

基于51单片机的数字电压表设计 二级学院铜陵学院 专业自动化 班级 组号 组员 指导教师

简易的数字电压表的设计 目录 一课程设计任务书·····························································································································错误!未定义书签。 1.1 设计题目、目的····················································································································错误!未定义书签。 1.2 题目的基本要求和拓展功能··························································································错误!未定义书签。 1.3 设计时间及进度安排··········································································································错误!未定义书签。 二设计内容············································································································································错误!未定义书签。 2.1 元器件选型······························································································································错误!未定义书签。 2.2 系统方案确定·························································································································错误!未定义书签。 2.3 51单片机相关知识··············································································································错误!未定义书签。 2.4 AD转换器相关知识··············································································································错误!未定义书签。 三数字电压表系统设计 (7) 3.1系统设计框图 (8) 3.2 单片机电路 (9) 3.3 ADC采样电路 (10) 3.4显示电路 (11) 3.5供电电路和参考电压·························································································································································· 3.6 数字电压表系统电路原理图·········································································································································四软件部分 4.1 主程序 4.2 显示子程序 五数字电压表电路仿真 5.1 仿真总图 5.2 仿真结果显示 六系统性能分析 七心得体会 - 2 -

相关文档
最新文档