土壤中阳离子交换量的测定方法

土壤中阳离子交换量的测定方法
土壤中阳离子交换量的测定方法

土壤中阳离子交换量的测定方法

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。

阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。

测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。

方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。

主要仪器:架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。

试剂:

(1) 0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml 左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。

(2) 95%酒精。工业用,应无铵离子反应。

(3) 2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显酒红色)。

(4)定氮混合指示剂:分别称取0.1克甲基红和0.5克溴甲酚绿指示剂,放于玛瑙研钵中,并用100ml95%酒精研磨溶解。此液应用稀盐酸或氢氧化钠调节pH至

4.5。

(5) 纳氏试剂(定性检查用):称氢氧化钠134克溶于460ml蒸馏水中;称取碘化钾20克溶于50ml蒸馏水中,加碘化汞使溶液至饱和状态(大约32克左右)。然后将以上两种溶液混合即可。

(6) 0.05mol/L盐酸标准溶液:取浓盐酸4.17ml,用水稀释至1000ml,用硼酸标准溶液标定。

(7) 氧化镁(固体):在高温电炉中经500—600℃灼烧半小时,使氧化镁中可能存在的碳酸镁转化为氧化镁,提高其利用率,同时防止蒸馏时大量气泡发生。

(8) 液态或固态石蜡

操作步骤

称取通过60目筛的风干土样1.××克(精确到0.01g),有机质含量少的土样

可称2—5克,将其小心放入100ml离心管中。沿管壁加入少量EDTA—醋酸铵混合液,用带橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品呈均匀的泥浆状态。再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净带橡皮头的玻璃棒。

将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。然后将载土的离心管管口向下用自来水冲洗外部,用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。

最后用自来水冲洗管外壁后,在管内放入少量自来水,用带橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml左右,其中加2ml 液状石蜡(或取2克固体石蜡)、1克左右氧化镁。然后在定氮仪进行蒸馏,同时进行空白试验。

结果计算:

阳离子交换量(cmol/kg土)=M×(V-V0)/样品重

式中:V—滴定待测液所消耗盐酸毫升数。

V0—滴定空白所消耗盐酸毫升数。

M—盐酸的摩尔浓度

样品重—烘干土样质量。

土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生 物生物量碳,用一定体积的LK 2SO 4 溶液提取土壤,借用有机碳自动分析仪测定微 生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 实验试剂 1)无乙醇氯仿(CHCL 3 ); 2)L硫酸钾溶液:称取87g K 2SO 4 溶于1L蒸馏水中 3)工作曲线的配制:用L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 操作步骤 土壤的前处理(过筛和水分调节略) 熏蒸 称取新鲜(相当于干土,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO 2 ,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 抽真空处理 熏蒸结束后,打开真空干燥器阀门(应听到空气进入的声音,否则熏蒸不完

全,重做),取出盛有氯仿(可重复利用)和稀NaOH溶液的小烧杯,清洁干燥器,反复抽真空(5或6次,每次3min,每次抽真空后最好完全打开干燥器盖子),直到土壤无氯仿味道为止。同时,另称等量的3份土壤,置于另一干燥器中为不熏蒸对照处理。(注意:熏蒸后不可久放,应该快速浸提)※ 浸提过滤 从干燥器中取出熏蒸和未熏蒸土样,将土样完全转移到80ml聚乙烯离心管中,加入40ml L硫酸钾溶液(土水比为1:4,考虑到土样的原因,此部分熏蒸和不熏蒸土均为4g,即,4g土:16ml的硫酸钾溶液,当然这个加入量要根据TOC仪器的进入量决定)300r/min振荡30min,用中速定量滤纸过滤。同时作3个无土壤基质空白。土壤提取液最好立即分析,或—20℃冷冻保存(但使用前需解冻摇匀)(注意这部分很重要,有研究结果表明:提取液如果不立即分析,请保存在—20℃,否则将影响浸提液的效果,其次,过滤时不要用普通的定性或定量滤纸,以免长久杂质会堵塞仪器的管路,建议使用那种一次性塑料注射器,配一个的滤头,一个才1元)。 TOC仪器测定 吸取上述土壤提取液10ul(这个要根据仪器自己的性能决定,但是一般情况下,在测定土壤滤液时候,要对其进行稀释,如果不稀释,一方面超过原来仪器的标曲,另一方面可能堵塞仪器。)注入自动总有机碳(TOC)分析仪上,测定提取液有机碳含量。由于总有机碳分析仪型号较多,不同的型号则操作程序存在较大差异,这里以本实验室使用的有机碳分析仪(Shimadzu Model TOC---500,JAPAN)为例。 计算 SMBC=(E C CHCL3—E C CK)*TOC仪器的稀释倍数*原来的水土比/ 2 土壤微生物生物量氮(茚三酮比色法) 土壤微生物生物氮一般占土壤全氮的2%—7%,是土壤中有机—无机态氮转化的一个重要环节,关于土壤微生物氮的测定常见的熏蒸浸提法有两种,一是全氮测定法,另一个是茚三酮比色法,如下 基本原理(茚三酮比色法)

土壤阳离子交换量的测定

土壤阳离子交换量的测定 A. EDTA-乙酸铵盐交换法 1 方法提要 用0.005mol·L-1EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH 条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。 2 适用范围 本方法适用于各类土壤中阳离子交换量的测定。 3 主要仪器设备 3.1 电动离心机:转速3000 r/min~5000r/min; 3.2 离心管:100mL; 3.3 定氮仪; 3.4 消化管(与定氮仪配套)。 4 试剂 4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容; 4.2 95%乙醇(须无铵离子); 4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。 4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中; 4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定; 4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL; 4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研

土壤微生物量碳测定方法

土壤微生物量碳测定方法及应用 土壤微生物量碳(Soil microbial biomass)不仅对土壤有机质和养分的循环起着主要作用,同时是一个重要活性养分库,直接调控着土壤养分(如氮、磷和硫等)的保持和释放及其植物有效性。近40年来,土壤微生物生物量的研究已成为土壤学研究热点之一。由于土壤微生物的碳含量通常是恒定的,因此采用土壤微生物碳(Microbial biomass carbon, Bc)来表示土壤微生物生物量的大小。测定土壤微生物碳的主要方法为熏蒸培养法(Fumigation-incubation, FI)和熏蒸提取法(Fumigation-extraction, FE)。 熏蒸提取法(FE法) 由于熏蒸培养法测定土壤微生物量碳不仅需要较长的时间而且不适合于强酸性土壤、加 入新鲜有机底物的土壤以及水田土壤。Voroney (1983)发现熏蒸土壤用·L-1K 2SO 4 提取液提取 的碳量与生物微生物量有很好的相关性。Vance等(1987)建立了熏蒸提取法测定土壤微生物 碳的基本方法:该方法用·L-1K 2SO 4 提取剂(水土比1:4)直接提取熏蒸和不熏蒸土壤,提取 液中有机碳含量用重铬酸钾氧化法测定;以熏蒸与不熏蒸土壤提取的有机碳增加量除以转换 系数K EC (取值来计算土壤微生物碳。 Wu等(1990)通过采用熏蒸培养法和熏蒸提取法比较研究,建立了熏蒸提取——碳自动一起法测定土壤微生物碳。该方法大幅度提高提取液中有机碳的测定速度和测定结果的准确度。 林启美等(1999)对熏蒸提取-重铬酸钾氧化法中提取液的水土比以及氧化剂进行了改进,以提高该方法的测定结果的重复性和准确性。 对于熏蒸提取法测定土壤微生物生物碳的转换系数K EC 的取值,有很多研究进行了大量的 研究。测定K EC 值的实验方法有:直接法(加入培养微生物、用14C底物标记土壤微生物)和间接法(与熏蒸培养法、显微镜观测法、ATP法及底物诱导呼吸法比较)。提取液中有机碳的 测定方法不同(如氧化法和仪器法),那么转换系数K EC 取值也不同,如采用氧化法和一起法 K EC 值分别为(Vance等,1987)和(Wu等,1990)。不同类型土壤(表层)的K EC 值有较大不 同,其值变化为(Sparling等,1988,1990;Bremer等,1990)。Dictor等(1998)研究表 明同一土壤剖面中不同浓度土层土壤的转换系数K EC 有较大的差异,从表层0-20cm土壤的K EC 为,逐步降低到180-220cm土壤的K EC 为。 一、基本原理 熏蒸提取法测定微生物碳的基本原理是:氯仿熏蒸土壤时由于微生物的细胞膜被氯仿破 坏而杀死,微生物中部分组分成分特别是细胞质在酶的作用下自溶和转化为K 2SO 4 溶液可提取 成分(Joergensen,1996)。采用重铬酸钾氧化法或碳-自动分析仪器法测定提取液中的碳含量,以熏蒸与不熏蒸土壤中提取碳增量除以转换系数K EC 来估计土壤微生物碳。 二、试剂配制 (1)硫酸钾提取剂(·L-1):取分析纯硫酸钾溶解于蒸馏水中,定溶至10L。由于硫酸钾较难溶解,配制时可用20L塑料桶密闭后置于苗床上(60-100rev·min-1)12小时即可完全溶解。 (2) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:称取130℃烘2-3小时的K 2 Cr 2 O 7 (分析纯)9.806g 于1L大烧杯中,加去离子水使其溶解,定溶至1L。K 2Cr 2 O 7 较难溶解,可加热加快其溶 解。 (3) mol·L-1(1/6K 2Cr 2 O 7 )标准溶液:取经130℃烘2-3小时的分析纯重铬酸钾4.903g, 用蒸馏水溶解并定溶至1L。

离子交换柱层析原理

离子交换层析介质的应用 离子交换层析分离纯化生物大分子的过程,主要是利用各种分子的可离解性、离子的净电荷、表面电荷分布的电性差异而进行选择分离的。现已成为分离纯化生化制品、蛋白质、多肽等物质中使用最频繁的纯化技术之一。 子交换层析(Ion Exchange Chromatography 简称为IEC)是以离子交换剂为固定相,依据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换层析是目前生物化学领域中常用的一种层析方法,广泛的应用于各种生化物质如氨基酸、蛋白、糖类、核苷酸等的分离纯化。 1.离子交换层析的基本原理: 离子交换层析是通过带电的溶质分子与离子交换层析介质中可交换离子进行交换而达到分离纯化的方法,也可以认为是蛋白质分子中带电的氨基酸与带相反电荷的介质的骨架相互作用而达到分离纯化的方法。 离子交换层析法主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离,具有较高的分离容量。几乎所有的生物大分子都是极性的,都可使其带电,所以离子交换层析法已广泛用于生物大分子的分离、中等纯化及精制的各个步骤中。 由于离子交换层析法分辨率高,工作容量大,并容易操作,因此它不但在医药、化工、食品等领域成为独立的操作单元,也已成为蛋白质、多肽、核酸及大部分发酵产物分离纯化的一种重要的方法。目前,在生化分离中约有75%的工艺采用离子交换层析法。 2.离子交换层析介质: 离子交换层析的固定相是离子交换剂,它是由一类不溶于水的惰性高分子聚合物基质通过一定的化学反应共价结合上某种电荷基团形成的。离子交换剂可以分为三部分:高分子聚合物基质、电荷基团和平衡离子。电荷基团与高分子聚合物共价结合,形成一个带电的可进行离子交换的基团。平衡离子是结合于电荷基团上的相反离子,它能与溶液中其它的离子基团发生可逆的交换反应。平衡离子带正电的离子交换剂能与带正电的离子基团发生交换作用,称为阳离子交换剂;平衡离子带负电的离子交换剂与带负电的离子基团发生交换作用,称为阴离子交换剂。在一定条件下,溶液中的某种离子基团可以把平衡离子置换出来,并通过电荷基团结合到固定相上,而平衡离子则进入流动相,这就是离子交换层析的基本置换反应。通过在不同条件下的多次置换反应,就可以对溶液中不同的离子基团进行分离。下面以阴离子交换剂为例简单介绍离子交换层析的基本分离过程。 阴离子交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离子结合。待分离溶液中可能有正电基团、负电基团和中性基团。加样后,负电基团可以与平衡离子进行可逆的置换反应,而结合到离子交换剂上。而正电基团和中性基团则不能与离子交换剂结合,随流动相流出而被去除。通过选择合适的洗脱方式和洗脱液,如增加离子强度的梯度洗脱。随着洗脱液离子强度的增加,洗脱液中的离子可

土壤微生物量测定方法

土壤微生物量测定方法 一、土壤微生物生物量碳(氯仿熏蒸-K2SO4提取-碳分析仪器法) 1、试剂 (1)去乙醇氯仿制备:在通风橱中,将分析纯氯仿与蒸馏水按1 ? 2(v : v)加入分液漏斗中,充分摇动1 min,慢慢放出底层氯仿于烧杯中,如此洗涤3次。得到的无乙醇氯仿中加入无水氯化钙,以除去氯仿中的水分。纯化后的氯仿置于试剂瓶中,在低温(4℃)、黑暗状态下保存。 (2)氢氧化钠溶液[c(NaOH)= 1 mol L-1]:通常分析纯固体氢氧化钠中含有碳酸钠,与酸作用时生成二氧化碳,从而影响滴定终点判断和测定的准确度。配制时应先除去碳酸钠,根据碳酸钠不溶于浓碱,可先将氢氧化钠配成50%(w : v)的浓氧溶液,密闭放置3~4 d。待碳酸钠沉降后,取56 ml 50%氢氧化钠上清液(约19 mol L-1),用新煮沸冷却的除去二氧化碳的蒸馏水释稀到1 L,即为浓度1 mol L-1 NaOH溶液,用橡皮塞密闭保存。 (3)硫酸钾提取剂[c(K2SO4)= mol L-1]:取1742.5 g分析纯硫酸钾,用研钵磨成粉末状,倒于25 L塑料桶中,加蒸馏水至20 L,盖紧螺旋盖置于摇床(150 r min-1)上溶解24 h 即可。 (4)六偏磷酸钠溶液[ρ(Na)= 5 g 100 ml-1,pH ]:称取50.0 g分析纯六偏磷酸钠溶于800 ml高纯度去离子水中,用分析纯浓磷酸调节至pH ,用高纯度去离子水定容至1 L。要注意的是六偏磷酸钠溶解速度很慢应提前配制;由于其易粘于烧杯底部,若加热常因受热不均使烧杯破裂。 ) (5)过硫酸钾溶液[ρ(K2S2O8)= 2 g 100 ml-1]:称取20.0 g分析纯过硫酸钾,溶于高纯度去离子水中,定容至1 L。值得注意过硫酸钾溶液易被氧化,应避光存放且最多使用7 d。 (6)磷酸溶液[ρ(H3PO4)= 21 g 100 ml-1]:量取37 ml 分析纯浓磷酸(85%),慢慢加入到188 ml高纯度去离子水中即可。 (7)邻苯二甲酸氢钾标准溶液[ρ()= 1000 mg C L-1]):取2.1254 g经105℃烘2~3 h的分析纯邻苯二甲酸氢钾,溶于高纯度去离子水,定容至1 L。 2、仪器设备 碳–自动分析仪(Phoenix 8000)、容量瓶(100 ml)、振荡器(300 r min-1)、可调加液器(50 ml)、可调移液器(5 ml)、烧杯(盛滤液用)(50~100 ml)、聚乙烯提取瓶(100,150 ml),聚乙烯塑料桶(20 L,带螺旋盖),三角瓶(150 ml)、其它常规仪器。 3、操作步骤 ; (1)土样前处理 新鲜土壤应立即处理或保存于4℃冰箱中,测定前先仔细除去土样中可见植物残体(如根、茎和叶)及土壤动物(如蚯蚓等),过筛(孔径< 2 mm),彻底混匀。如果土壤过湿,应在室内适当风干,以手感湿润疏松但不结块为宜(约为饱和持水量的40%)。如果土壤过于干燥,用蒸馏水调节至饱和持水量的40%。将土壤置于密封的大塑料桶内在25℃条件下预培养7~15 d,桶内有适量水以保持相对湿度为100%,并在桶内放一小杯1 mol L-1 NaOH 溶液以吸收土壤呼吸产生的CO2。经过预培养的土壤应立即分析。如需保留,应放置于4℃

土壤微生物生物量碳及其影响因子研究进展(精)

土壤微生物生物量碳及其影响因子研究进展3 黄辉(1陈光水(1谢锦升(1黄朝法(2 (1.福建师范大学福州350007;2.福建省林业调查规划院福州350003 摘要:笔者较为全面地综述了国内外土壤微生物生物量碳的研究成果。笔者针对土壤微生物生物量碳主要受到碳氮限制、树种类型、土地利用方式、管理措施、土壤湿度和温度、土壤质地等因素的影响,提出了今后的研究应集中在以下几个方面:(1加强不同尺度土壤微生物生物量碳的影响因子及调控机理研究;(2进一步加强不同土壤类型下土壤微生物生物量碳动态及调控机理研究;(3对影响土壤微生物生物量碳高低不确定性的因子进行深入研究;(4加强其他因子对土壤微生物生物量碳影响的研究;(5探讨全球气候变化对土壤微生物生物量碳的影响。 关键词:微生物生物量碳;土壤;影响因子;全球变化 Adva nces on Soil Microbial Biomass Ca rbon a nd Its Effect Factor Huang Hui(1Che n Gua ngshui(1Xie J ingsheng(1Huang Chaof a(1 (1.Fujia n N or mal U niversity Fuzhou350007;2.Fujian Provincial Forest ry Survey a nd Planning Institute Fuzhou350003 Abstract:The aut hors review current knowledge of t he p roperty and deter mination of soil microbial biomass carbon a nd several f act ors cont rolling its dynamics bot h at home a nd abroad.By now,t here are several f ac2 t ors influe ncing soil microbial biomass carbon w hich include inhere nt p roperties of t he soil like texture,mois2 ture and temp erature a nd etc.Besides t hese,external f act ors(C a nd N limitation,sp ecies typ e,ma nageme nt measures and diff ere nces in la nd usealso cont rol on soil microbial biomass carbon.Despite intensive resear2 ches in recent years,t he uncertainties of soil microbial biomass still re main f or f urt her studies:(1St re ngt he2 ning eff ect f act ors of soil microbial biomass carbon a nd its cont rol mecha nism at diff erent scale;(2Paying

土壤阳离子交换综述

土壤中阳离子交换量测定综述 摘要; 土壤阳离子交换量是随着土壤在风化过程中形成,一些矿物和有机质被分解成极细小的颗粒。化学变化使得这些颗粒进一步缩小,肉眼便看不见。这些最细小的颗粒叫做“胶体”。每一胶体带净负电荷。电荷是在其形成过程中产生的。它能够吸引保持带正电的颗粒,就像磁铁不同的两极相互吸引一样。阳离子是带正电荷的养分离子,如钙(Ca)、镁(Mg)、钾(K)、钠(Na)、氢(H)和铵(NH4)。粘粒是土壤带负电荷的组份。这些带负电的颗粒(粘粒)吸引、保持并释放带正电的养分颗粒(阳离子)。有机质颗粒也带有负电荷,吸引带正电荷的阳离子。砂粒不起作用。阳离子交换量(CEC)是指土壤保持和交换阳离子的能力,也有人将它称之为土壤的保肥能力 关键词阳离子交换量:氯化钡 化钡一硫酸强迫交换法 正文. 2.1原理 氯化钡一硫酸强迫交换法f简称氯化钡法。下同1其原理是:土壤中存在的各种阳离子可被氯化钡(BaCl2)水溶液中的阳离子(Ba2+ ))等价交换。土壤B aCl2溶液处理。使之和Ba2+ 饱和,洗去剩余的B aC乜溶液后,再用强电解质硫酸溶液把交换到土壤中的Ba2+交换下来。由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。这样通过测定交换反应前后硫酸含量的变化,可以讣算出消耗硫酸的量,从而计算出阳离子交换量。 1.2.2操作步骤 A、称取过2mm筛孔土样2g至100 ml离心管,向管中加入30 ml BaC l2(0.5m olL-1)溶液,用带橡皮头玻璃棒搅拌3~5min后,以3000r/m讪转速离心至下层土壤紧实为止。弃其上清液,再加30mlBaC L溶液,重复上述操作。 B、在离心管内加50 ml蒸馏水,用橡皮头玻璃棒搅拌3~5min后,离心沉降,弃其上清液。重复数次。直至无氯离子f用硝酸银溶液检验1。 C、移取25. 00 ml 0.1 moIL-1。1(浓度需标定1的硫酸溶液至离心管中,搅拌分散土壤,用振荡机振荡15min后。将离心管内溶液全部过滤入250m1锥形瓶中,用蒸馏水冲洗离心管及滤纸数次,直至无硫酸根离子f用氯化钡溶液检验在锥形瓶中,加1~2滴酚酞指示剂,再用0. 1molL-1 f浓度需标定)标准氢氧化钠溶液滴定,溶液转为红色并数分钟不褪色为终点。 D、在锥形瓶中, 加1~ 2滴酚酞指示剂, 再用0.11molL- 1 (浓度需标定) 标准氢氧化钠溶液滴定, 溶液转为红色并数分钟不褪色为终点 E、CEC值计算: [C (H2 SO4 ) x 50-NxB(NaOH)] x 100/ (Wo×K2) 式中:CEC -土壤阳离子交换量。cmokg-1; C-标准硫酸溶液浓度,moIL-1: B-滴定消耗标准氢氧化钠溶液体积,ml Wo-称取昀土样重,g N-标准氢氧化钠溶液的浓度,m 01L。1 K2 -水分换算系数。 2试剂及设备

凯氏定氮法:土壤微生物量氮测定

土壤微生物量氮的测定方法 1.试剂配制: (1)混合催化剂:按照硫酸钾:五水硫酸铜:硒粉=100:10:1,称取硫酸钾100g、 五水硫酸铜10g、硒粉1g。均匀混合后研细,贮于瓶中。 (2)密度为1.84浓硫酸。 (3)40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶 解定容至1L。 (4)2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入20ml混合指示剂。(按体 积比100:2加入混合指示剂) (5)混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中, 用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。 (6)0.01mol的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至 1000ml,用基准物质标定之。 (7)0.5M K2SO4溶液:称取K2SO4 87.165g溶解于蒸馏水中,搅拌溶解,(可加 热)定容至1L。 (8)去乙醇氯仿的配制:在通风柜中,量取100毫升氯仿至500毫升的分液漏斗 中,加入200毫升的蒸馏水,加塞,上下振荡10下,打开塞子放气,而后加塞再振荡10下,反复3次,将分液漏斗置于铁架台上,静止溶液分层,打开分液漏斗下端的阀,将下层溶液(氯仿)放入200毫升的烧杯中,将剩余的溶液倒入水槽,用自来水冲洗。再将烧杯中的氯仿倒入分液漏斗中,反复3次。将精制后的氯仿倒入棕色瓶中,加入无水分析纯的CaCl2 10g,置于暗处保存。 2.试验步骤:。 (1)制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。 (2)测定:滤液要是不及时测定,需立即在-15℃以下保存,此滤液可用于微生物碳氮的测定。微生物碳测定只吸取2ml,采用重铬酸钾-硫酸亚铁滴定法测定。微生物氮吸取滤液10ml于消化管中,加入2g催化剂,在再加5ml浓硫酸,管口放一弯颈小漏斗,将消化管置于通风橱内远红外消煮炉的加热孔中。打开消煮炉上的所有加热开关进行消化,加热至微沸,关闭高档开关,继续加热。消煮至

土壤微生物生物量的测定(滴定法)(精)

1. 土壤微生物生物量的测定 (滴定法 一、实验目的和内容 土壤微生物生物量是指土壤中体积小于5~10μm 3活的微生物总量, 是土壤有机质中最活跃的和最易变化的部分。耕地表层土壤中,土壤微生物量碳(Bc 一般占土壤有机碳总量的 3%左右,其变化可直接或间接地反映土壤耕作制度和微生物肥力的变化,并可以反映土壤污染的程度。近 30年来,国外许多学者对土壤微生物生物量的测定方法进行了比较系统的研究,但由于土壤微生物的多样性和复杂性,还没有发现一种简单、快速、准确、适应性广的方法。目前广泛应用的方法包括:氯仿熏蒸培养法(FI 、氯仿熏蒸浸提法(FE 、基质诱导呼吸法(SIR 、精氨酸诱导氨化法和三磷酸腺苷(A TP 法。 氯仿熏蒸浸提法(FE 的原理是:土壤经氯仿熏蒸处理,微生物被杀死,细胞破裂后, 细胞内容物释放到土壤中,导致土壤中的可提取碳、氨基酸、氮、磷和硫等大幅度增加。通过测定浸提液中全碳的含量可以计算土壤微生物生物量碳。 二、实验材料和用具 仪器:培养箱;真空干燥器;真空泵;往复式振荡机(速率 200次每 min ; 1L 广口玻璃瓶;定量滤纸;紫外分光光度计; LNK-872型消煮炉(江苏省宜兴市科教仪器研究所试剂: 1. 无乙醇氯仿:市售的氯仿都含有乙醇(作为稳定剂 ,使用前必须除去乙醇。方法为:量取 500ml 氯仿于 1000ml 分液漏斗中,加入 50ml 硫酸溶液[ρ(H2SO 4=5%], 充分摇匀, 弃除下层硫酸溶液, 如此进行 3次。再加入 50ml 去离子水, 同上摇匀, 弃去上部的水分,如此进行 5次。将下层的氯仿转移存放在棕色瓶中,并加入约 20g 无水 K 2CO 3,在冰箱的冷藏室中保存备用。 2. 硫酸钾溶液 [c(K2SO4=0.5mol·L -1]称取硫酸钾(K 2SO 4,化学纯 87.10g ,先溶于

土壤阳离子交换量的测定

实验四土壤的阳离子交换量的测定 一、实验目的 1.了解土壤的阳离子交换量的内涵 2. 掌握土壤的阳离子交换量的测定原理和方法 二、实验原理 土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。 土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。在无机物中,粘土矿物是其主要部分。粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。 土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。 三、实验用品 电动离心机,离心管,锥形瓶,量筒,移液管,滴定管,试管 1N氯化钡溶液, 酚酞指示剂1%(W/V),硫酸溶液0.2N,土壤 四、实验操作 4.1 0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解在500ml煮沸后冷却的蒸馏水中。称取0.5克(分析天平上称)于105C烘箱中烘干后的邻苯二甲酸氢钾两份,分别放入250毫升锥形瓶中,加100毫升煮沸冷的蒸馏水,

蛋白纯化离子交换层析法

蛋白纯化离子交换层析 研究生的生活,单调的科研,重复的脚印,匆匆的轨迹,踩着早上的时光一如往常的走进实验室,摊开实验记录本,写上日期,就像每天写日记一样开始计划今天的实验日记,用笔似乎要绘制一副有关实验的画面。 如果你处在这样的科研氛围里,慢慢的就会体味到科学本身就像窗外的大自然一样的美,绿色撩人,诗意陶醉…… 今天,我们写下的实验日记——蛋白纯化离子交换层析法,文章详细的总结了离子交换层析的定义、离子交换层析的原理、离子交换剂的种类,似乎要提醒一下脑子要保持清醒了,不然,看完之后,你能分清楚阴阳离子交换剂的概念,熟知它们的区别么? ————你会创造规律科研生活的美 我,生在春天里,刚发芽的地方是实验室 知了也睡了,而我刷夜实验室 因为我在等待秋天收获的季节 虽然有可能错过成功的喜悦,却收获心灵上的成长

离子交换层析技术是以离子交换剂为固定相,常见的离子交换剂是由一类不溶于水的惰性高分子聚合物基质,通过共价键结合某种电荷基团,形成带电基质,带异性电荷的平衡离子能够通过静电力作用结合在电荷基质上,而平衡离子能够与样品流动相中的离子基团发生可逆交换而吸附在交换剂上,不同带电荷蛋白间结合吸附固定相的能力不同。离子交换技术就是根据蛋白质样品间带电性质的差别而进行分离的一种层析方法。 常见的离子交换剂有离子交换纤维素、离子交换树脂和离子交换葡聚糖凝胶。根据与高分子聚合物基质共价结合的电荷基团的性质不同,可以将离子交换剂分为阳离子交换剂和阴离子交换剂,在阳离子交换剂中,带正电荷的平衡离子能够和流动相中带正电荷的离子基团进行交换。例如DEAE纤维素阳离子交换剂,当纤维素交换剂分子上结合阳离子基团二乙氨乙基(DEAE)时,形成阳离子纤维素—O—C6 H14N+H,可与带负电荷的蛋白质进行结合,交换阴离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,又可以分为强酸型、中等酸型、弱酸型三类阳离子交换剂,强酸型离子交换剂在较大的pH范围内电荷基团完全解离,而弱酸型只能在较小的pH范围内完全解离,如结合羧甲基的离子交换剂在pH小于6时就失去了交换能力。 强酸型阳离子交换剂一般结合的基团有:磺酸甲基、磺酸乙基;中等酸型阳离子交换剂有:磷酸基团和亚磷酸基团;弱酸型离子交换剂有:酚羟基和羧基类; 在阴离子交换剂中,带负电荷的平衡离子能与流动相中带负电的离子基团进行交换,例如阴离子交换剂CM纤维素,当纤维素交换剂分子上结合羧甲基(CM)时,形成带有负电荷的阴离子(纤维素-O-CH2-COO一),可与带正电荷蛋白质结合,交换阳离子。 根据与高分子聚合物基质共价结合的电荷基团的解离度不同,可分为强碱型、中等碱型、弱碱型阴离子交换剂。一般结合季胺基团基质的交换剂为强碱型离子交换剂,结合叔胺、仲胺、伯胺等为中等或者弱碱型离子交换剂。 蛋白质是两性电解质,当溶液的pH值与蛋白质等电点相同时,蛋白质的静

土壤微生物测定方法

土壤微生物测定 土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。 测定指标: 1、土壤微生物量(MierobialBiomass,MB) 能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。它与土壤有机质含量密切相关。 目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。 因此碳量的大小就反映了微生物量的大小。 此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。受土壤水分状况影响较大,不适用强酸性土壤及刚施 用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。 熏蒸提取-容量分析法 操作步骤: (1)土壤前处理和熏蒸 (2)提取 -1K2SO 4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L 水比为1:4;w:v),振荡30min(300rev·min -1),用中速定量滤纸过滤于125mL塑料瓶中。熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。提取液应立即分析。 (3)测定 吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃ 磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL, 加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色 变 为蓝色,再变为红棕色,即为滴定终点。 (4)结果计算

实验九 土壤的阳离子交换量

实验题目:土壤的阳离子交换量 实验原理: 土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。 土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。在无机物中,粘土矿物是其主要部分。粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。 土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。 实验目的: 1.测定污灌区表层和深层土的阳离子交换总量。 2.了解污灌对阳离子交换量的影响。 仪器与试剂: 电动离心机离心管锥形瓶量筒移液管滴定管试管 1N氯化钡溶液酚酞指示剂1%(W/V)硫酸溶液0.2N 土壤实验过程: 1.0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解

土壤微生物数量测定方法整理

土壤微生物的分离鉴定及数量测定 (一)培养基的制备 Ⅰ测定微生物总量培养基: 1. 细菌培养基(牛肉膏蛋白胨琼脂培养基) 牛肉膏Beefextract 5.0g 蛋白胨Peptone 10.0g NaCI 5.0g 蒸馏水H20 1000m1 琼脂15~20g PH 7.2~7.4 制备步骤: ⑴在100 mL小烧杯中称取牛肉膏5.0g,蛋白胨10.0g,加50 mL蒸馏水,置电炉搅拌加热至牛肉膏,蛋白胨完全溶解. ⑵向小铝锅中加入500 mL蒸馏水,将溶解的牛肉膏,蛋白胨倒入铝锅中并用自来水洗2~3次.加入 5.0gNaC1,在电炉上边加热边搅拌. ⑶加入洗净的琼脂条,继续搅拌,加热至琼脂完全熔化,补足水量至1000 mL. ⑷用NaOH或HC1调至pH7.0. 用酸度计或用玻棒沾少许液体用精密pH试纸测定其pH值,并用10%NaOH 调至所需pH值,必要时用滤纸或脱脂棉过滤。一般比要求的pH高出0.2,因为高压蒸汽灭菌后,pH常降低。 ⑸根据不同需要,可将配好的培养基分装入配有棉塞的试管或三角瓶内。注意分装时避免培养基挂在瓶口或管口上引起杂菌污染。如液体培养基,应装试管高度的1/4左右;固体培养基装试管高度的1/5左右;装入三角瓶的量以三角瓶容量的一半为限。,塞好棉塞,装入小铁丝筐,然后用旧报纸将棉塞部分包好. 标签表明培养基的名称、配制日期等。 ⑹高压蒸汽灭菌,用0.1Mpa(15lb/in2)121℃灭菌(15-20)30min. 2. 放线菌培养基(改良高氏1号琼脂培养基) 可溶性淀粉20g KNO3 1g K2HPO40.5g MgSO4? 7H2O 0.5g NaCl 0.5g原0.05g FeSO4? 7H2O 0.01g pH 7.2-7.4 制备步骤: (1)计算根据配方计算各种药品所需要的量,然后再分别称量。 (2)称量准确称量各种成分。 (3)溶化配制时,先用少量冷水将淀粉调成糊状,倒入少许沸水中,在火上加热,边搅拌边依次逐一溶化其他成分,溶化后,补足水分到1000ml,调PH(可不调)。 (4)分装、包扎、灭菌。

土壤微生物生物量的测定方法(氯仿熏蒸)

土壤微生物生物量的测定方法 1土壤微生物碳的测定方法(熏蒸提取----仪器分析法) 1.1 基本原理 新鲜土样经氯仿熏蒸后(24h),土壤微生物死亡细胞发生裂解,释放出微生物生物量碳,用一定体积的0.5mol/LK2SO4溶液提取土壤,借用有机碳自动分析仪测定微生物生物量碳含量。根据熏蒸土壤与未熏蒸土壤测定有机碳的差值及转换系数(K EC),从而计算土壤微生物生物量碳。 1.2 实验仪器 自动总有机碳(TOC)分析仪(Shimadzu Model TOC—500,JANPAN)、真空干燥器、烧杯、三角瓶、聚乙烯熟料管、离心管、滤纸、漏斗等。 1.3 实验试剂 1)无乙醇氯仿(CHCL3); 2)0.5mol/L硫酸钾溶液:称取87g K2SO4溶于1L蒸馏水中 3)工作曲线的配制:用0.5mol/L硫酸钾溶液配制10ugC/L、30ugC/L、50ugC/L、 70ugC/L、100ugC/L系列标准碳溶液。(其实一般情况下, 仪器会自带的标曲,一般不用自己做的) 1.4 操作步骤 1.4.1 土壤的前处理(过筛和水分调节略) 1.4.2 熏蒸 称取新鲜(相当于干土10.0g,这个可以根据自己土样的情况而定)3份分别放入25ml小烧杯中。将烧杯放入真空干燥器中,并放置盛有无乙醇氯仿(约2/3)的15ml烧杯2或3只,烧杯内放入少量防暴沸玻璃珠,同时放入一盛有NaOH溶液的小烧杯,以吸收熏蒸过程中释放出来的CO2,干燥器底部加入少量水以保持容器湿度。盖上真空干燥器盖子,用真空泵抽真空,使氯仿沸腾5分钟。关闭真空干燥器阀门,于25℃黑暗条件下培养24小时。 1.4.2 抽真空处理

土壤微生物生物量的测定-熏蒸提取法-全国土壤质量标准化技术委员会

《土壤微生物生物量的测定-熏蒸提取法》Determination of soil microbial biomass ?Fumigation-extraction method 国家标准(征求意见稿) 编制说明 《土壤微生物生物量的测定-熏蒸提取法》编制组 二0一七年四月

项目名称:土壤微生物生物量的测定-熏蒸提取法 计划编号:20153803-T-326 项目负责单位:中国科学院亚热带农业生态研究所 项目负责人:吴金水 技术委员会:全国土壤质量标准化技术委员会(SAC/TC 404)

目录 1、立项背景 (1) 1.1 土壤微生物生物量的研究意义重大 (1) 1.2 土壤质量标准化与土壤科研工作的需要 (1) 2、任务来源 (3) 3、标准制定的原则和依据 (3) 3.1 原则 (3) 3.2确定依据 (4) 4、标准制定的主要技术内容及方法应用评价 (4) 4.1 适用范围 (4) 4.2 总体框架和主要内容 (4) 4.3熏蒸和提取 (5) 4.4 提取物中碳的测定 (6) 4.5 方法的评价 (8) 4.6方法的应用 (9) 5、与现行法律、法规、标准的协调性 (11) 6、对标准贯彻的建议 (11) 7、参考文献 (11)

1、立项背景 1.1 土壤微生物生物量的研究意义重大 土壤微生物生物量(soil microbial biomass)是指体积小于5×103μm3活体微生物总量,但不包括活的植物体,如植物根系等(吴金水等,2006;李振高等,2008)。土壤微生物生物量虽然只占土壤有机质的3%左右,但在有机物质、氮、磷、硫等转化和循环过程中起着关键的作用,不仅是土壤有机质中最活跃的组分,而且可作为土壤养分的储存库,是植物生长吸收利用养分的重要来源,与单个微生物个体数量指标相比,更能反映微生物在土壤中的实际数量与作用潜力。据估计植物吸收N、P、S 的60%,47%和28%分别来自微生物生物量N、P和S。 微生物是土壤中最为活跃的生命体之一,土壤微生物是土壤有机质和土壤养分( C, N, P, S 等) 循环转化的驱动力,参与有机质的分解、腐殖质的形成、养分的转化与循环等各个生物化学过程(林先贵,2010)。而且,微生物对土壤各种环境因子的变化极为敏感,因而土壤微生物量的变化常被作为土壤肥力、土壤环境污染等其他各种扰动对土壤健康质量影响的灵敏性指标。因此,土壤微生物生物量的研究为从整体上了解土壤微生物的演变与功能提供了一个有效的途径,其对于更好地把握与理解土壤健康的主要影响因素有极其重要的作用,对制定良好措施来提高土壤质量也有重要意义。 1.2 土壤质量标准化与土壤科研工作的需要 土壤微生物生物量是植物有效养分的储备库和来源,其对土壤碳、氮、磷和硫的植物有效性及在陆地生态系统中的循环具有重要的影响。土壤微生物生物量库的长期或是季节性变化,不仅可指示土壤质量的变化,而且对于了解土壤养分的动态变化也具有重要的作用,同时也可快速地监控并反映土壤管理的改变和污染的影响。土壤微生物生物量的定量分析是了解微生物对土壤有机质与养分循环和转化作用的重要方法。 土壤微生物生物量的测定方法有很多,既有传统方法,也有现代方法。20

离子交换层析

实验二离子交换层析纯化兔血清IgG 【原理】 DEAE-Sephadex A-50 (二乙氨基- 乙基- 葡萄糖凝胶A-50 )为弱碱性阴离子交换剂。用NaOH 将Cl - 型转变为OH - 型后,可吸附酸性蛋白。血清中的γ 球蛋白属于中性蛋白(等电点为pH6.85 ~7.5 ),其余均属酸性蛋白。pH7.2 ~7.4 的环境中。酸性蛋白均被DEAE-Sephadex A-50 吸附,只有γ 球蛋白便可在洗脱液中先流出,而其他蛋白则被吸附在柱上,从而便可分离获得纯化的IgG 。 【试剂与器材】 1. DEAE-Sephadex A-50 2.0.5mol/L HCl 和NaOH 3.0.1mol/L pH7.4 PBS 4.0.1mol/L Tris-HCl(pH7.4)

5.0.02 %NaN 3 6.PEG 7. 无水乙醇 8. 紫外分光光度计 9.1cm×20cm 玻璃层析柱 10. 自动部分收集器 【操作步骤】 1 .DEAE-Sephadex A-50 预处理称DEAE-Sephadex A-50 (下称A-50 )5g ,悬于500ml 蒸馏水内,1h 后倾去上层细粒。按每克A-50 加0.5mol/L NaOH 15ml 的比例,将浸泡于0.5mol/L NaOH 液中,搅匀,静置30min ,装入布氏漏斗(垫有 2 层滤纸)中抽滤,并反复用蒸馏水抽洗至pH 呈中性;再以0.5mol/L HCl 同上操作过程处理,最后以0.5mol/L NaOH 再处理一次,处理完后,将A-50 浸泡于0.1mol/L pH7.4 PBS 中过夜。

2 .装柱 ( 1 )将层析柱垂直固定于滴定架上,柱底垫一圆形尼龙纱,出水口接一乳胶或塑料管并关闭开关。 (2 )将0.1mol/L Tris-HCl(pH7.4) 沿玻璃棒倒入柱中至1/4 高度,再倒入经预处理并以同上缓冲液调成稀糊状的A-50 。待A-50 凝胶沉降2 ~3cm 高时,开启出水口螺旋夹,控制流速1ml/min ,同时连续倒入糊状A-50 凝胶至所需高度。 ( 3 )关闭出水口,待A-50 凝胶完全沉降后,柱面放一圆形滤纸片,以橡皮塞塞紧柱上口,通过插入橡皮塞之针头及所连接的乳胶或塑料管与洗脱液瓶相连接。 3 .平衡启开出水口螺旋夹,控制流速 4 滴/min ,使约2 倍床体积的洗脱液流出。并以pH 计与电导仪分别测定洗脱液及流出液之PH 值与离子强度,两者达到一致时关闭出水口,停止平衡。 4 .加样及洗脱启开上口橡皮塞及下口螺旋夹,使柱中液体缓慢滴出,当柱面液体与柱面相切时,立即关闭出水口,以毛细滴管沿柱壁加入样品(0.5ml 血清,体积应小于床体积的2% ,蛋白浓度以<100mg 为宜)。松开出水口螺旋夹使面样品缓慢进入柱内,至与柱面

相关文档
最新文档