(第三版)生物化学下册课后习题答案

(第三版)生物化学下册课后习题答案
(第三版)生物化学下册课后习题答案

⒒糖蛋白中寡糖与多肽链的连接形式有几种类型?

答:糖蛋白中寡糖与多肽链的,简称糖肽键。糖肽链的类型可以概况为:

①N-糖苷键型:寡糖链(GlcNAC的β-羟基)与Asn的酰胺基、N-未端的a-氨基、Lys或Arg 的W-氨基相连。

②O-糖苷键型:寡糖链(GalNAC的α-羟基)与Ser、Thr和羟基赖氨酸、羟脯氨酸的羟基

相连。

③S-糖苷键型:以半胱氨酸为连接点的糖肽键。

④酯糖苷键型:以天冬氨酸、谷氨酸的游离羧基为连接点。

⒓N-连寡糖和O-连寡糖的生物合成有何特点?

答:N-连寡糖和O-连寡糖的生物合成特点分别是N-糖链的合成是和肽链的生物合成同时

进行的,而O-糖链的合成是在肽链合成后,对肽链进行修饰加工时将糖基逐个连接上去的。

第34章DNA的复制和修复

⒈生物的遗传信息如何由亲代传给子代?

答:在细胞分裂间期,DNA分子边解旋边复制,分别以亲代DNA的两条母链为模板,以核

中游离的脱氧核苷酸为原料,根据碱基互补配对原则,合成两条子链,它们分别与相应的

模板链螺旋化就形成了两个与亲代DNA 一样的子代DNA,在生物传种接代的过程中,亲代

将复制出的一份DNA通过配子传给子代,从而实现了亲子代间遗传信息的传递。接下来,

在子代个体发育的过程中,将利用DNA(gene)来指导自身蛋白质的合成,从而表现出与亲代相似的性状。

也有一些生物如某些病毒,是通过将亲代的RNA复制后传给子代的方式进行遗传信息的传

递。

⒉何谓DNA的半保留复制?是否所有的DNA复制都以半保留的方式进行?(双链DNA通常都以半保留方式复制。)

答:DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各

自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制(semiconservative replication)。

并非所有的DNA复制都以半保留的方式进行,但双链DNA通常都以半保留方式复制。

⒊若使15N标记的大肠杆菌在14N培养基中生长三代,提取DNA,并用平衡沉降法测定DNA 密度,其14N-DNA分子与14N-15N杂合DNA分子之比应为多少?

答:这两者之比为1:3。

⒋比较DNA聚合酶Ⅰ、Ⅱ和Ⅲ性质的异同。DNA聚合酶Ⅳ和Ⅴ的功能是什么?有何生物学

意义?

答:在 E.coli中,共发现了3种DNA聚合酶,即DNA聚合酶Ⅰ、Ⅱ、Ⅲ。

DNA聚合酶Ⅰ是个多功能酶,具有5’--→3’聚合功能;3’--→5’外切功能以及3’--→5’外切功能。DNA聚合酶Ⅱ与DNA聚合酶Ⅰ功能相似,但没有5’--→3’外切功能。DNA聚合酶Ⅲ与DNA聚合酶Ⅱ功能相同,但其聚合活性比DNA聚合酶Ⅰ高1000倍,是E.coliDNA复制中的最主要酶。

DNA聚合酶Ⅳ和Ⅴ是在1999年才被发现的,它涉及DNA的错误倾向修复(errorprone repair)。当DNA受到较严重损伤时, 即可诱导产生这两个酶,使修复缺乏准确性(accuracy),因而出现高突变率。其生物学意义在于高突变率虽会杀死许多细胞,但至少可以克服复制障碍, 使少数突变的细胞得以存活。

⒌DNA复制的精确性、持续性和协同性是通过怎样的机制实现的?

答:DNA聚合酶Ⅲ由10个亚基组成,这些亚基将催化DNA合成、校对和夹位DNA等功能有机地组合在一起,保证了DNA复制的精确性、持续性和协同性。

⒍何谓DNA的半不连续复制?何谓冈崎片断?试述冈崎片断合成的过程?

答:DNA的双螺旋结构中的两条链是反向平行的,当复制开始解链时,亲代DNA分子中一条母链的方向为5′~3′,另一条母链的方向为3′~5′。DNA聚合酶只能催化5′~3′合成方向。在以3′~5′方向的母链为模板时,复制合成出一条5′~3′方向的前导链,前导链的前进方向与复制叉的行进方向一致,前导链的合成是连续进行的。而另一条母链仍以3′~5′方向作为模板,复制合成一条5′~3′方向的随从链,因此随从链会成方向是

与复制叉的行进方向相反的。随从链的合成是不连续进行的,先合成许多片段,即冈崎片段。最后各段再连接成为一条长链。由于前导链的合成连续进行的,而随从链的合成是不连续进

行的,所以从总体上看DNA的复制是半不连续复制。

DNA复制时,在滞后链上,较短的DNA片段(大约1000-2000个核苷酸)是在分段合成引

物的基础上,非连续合成的,这些不连续的DNA片段最先由日本科学家冈崎在电子显微镜

下发现,故称为冈崎片断(Okazaki fragment)。

引发体在滞后链上沿5'→3'方向不停的移动(这是一种相对移动,也可能是滞后链模板在移动),在一定距离上反复合成RNA引物。DNA聚合酶Ⅲ从RNA引物的3,-OH 端合成冈崎片段。

⒎DNA复制时双链是如何解开的?比较类型Ⅰ和类型Ⅱ拓扑异构酶的作用特点和生理功能。

答:DNA复制起始的体外实验表明需要6种蛋白,Dna A、Dna B、Dna C、组蛋白样蛋白(HU)回旋酶及单链结合蛋白(SSB)形成起始复合物。Dna A单体首先结合到复制起始点上4个含9 bp的重复顺序上。然后20~40个Dna A单体结合到复制起始点形成一个核心。在Dna A蛋白的作用下位于复制起始点右侧的3个含13 bp的重复顺序开始解链形成开放复合体。Dna B/Dna C在复制起始区充当了起始的引发体(primosome)。Dna B?Dna C复合体转变为Dna B 六聚物,形成复制叉。Dna B提供解旋酶(helicase)活性,使DNA解旋,可能它识别复制

叉上潜在的单链结构,从13 bp的重复顺序上取代出Dna A,并开始解螺旋。Dna B在复制起始区域以很少的量(1-2六聚物)担负着催化作用。在那儿Dna B还具有激活Dna G引发酶的能力。解旋反应还需要另外两种蛋白,旋转酶(Gyrase)和SSB(单链结合蛋白)。旋转酶也就是Top Ⅱ,其作用是解旋,即让一条链绕着另一条链旋转。若没有这步反应,解

开双链就会产生DNA的扭曲。SSB可使已形成的单链处于稳定状态。

拓扑异构酶Ⅰ(Topo Ⅰ),将环状双链DNA的一条链切开一个口,切口处链的末端绕螺旋

轴按照松弛超螺旋的方向转动,然后再将切口封起。拓扑酶I松弛超螺旋不需ATP参与。

拓扑异构酶Ⅱ(Topo Ⅱ),它的作用特点是切开环状双链DNA的两条链,分子中的断端经

切口穿过而旋转,然后封闭切口。Topo Ⅱ在ATP参与下,将DNA分子从松弛状态转变为负

超螺旋,为DNA分子解链后进行复制及转录作好准备。

⒏天然双链闭环DNA(cccDNA)的比超螺旋(δ)为-0.05,复制时解螺旋酶将双链撑开,如果反

应系统中无旋转酶,当比超螺旋达到+0.05时,DNA的扭曲张力将阻止双链解开,此时已解

开的双链占DNA分子的百分数是多少?

答:此时已解开的双链占DNA分子的百分数是9.52%。

⒐何谓复制体?试述其主要成分的功能。

答:与DNA复制有关的酶和蛋白质因子由30多种,他们在复制叉上形成离散的复合物,彼

此配合,进行高度精确的复制,这种结构称为复制体。

复制体的主要成分有,Dna A、Dna B、Dna C、组蛋白样蛋白(HU)回旋酶、单链结合蛋白(SSB)、引物合成酶、RNA聚合酶、DNA旋转酶,Dam甲基化酶以及DNA聚合酶等。复制体在DNA 复制叉上进行的基本活动包括:双链的解开,RNA引物的合成,DNA链的延长,切除引物,填补缺口,连接相邻的DNA片断,切除和修复尿嘧啶和错配碱基。

⒑DNA的复制过程可分为哪几个阶段?其主要特点是什么?复制的起始是怎样控制的?

答:DNA的复制过程包括复制的起始、延伸和终止三个阶段。

(1)复制的起始

引发:当DNA的双螺旋解开后,合成RNA引物。

引发体沿着模板链5’→3’方向移动(与冈崎片段合成的方向正好相反,而与复制叉移动

的方向相同),移到一定位置上即可引发RNA引物的合成。

(2)DNA链的延伸

前导链只需要一个RNA引物,后随链的每一个冈崎片段都需要一个RNA引物,链的延长反

应由DNA pol.Ⅲ催化。

复制体沿着复制叉方向前进合成DNA。

DNA polⅠ的5,→3,外切活力,切除RNA引物。

DNApolⅠ的5,→3,合成活性补齐缺口。

DNA ligase,动物、真核由ATP供能,原核由NAD供能。

(3)DNA合成的终止

环状DNA、线性DNA,复制叉相遇即终止。

DNA复制的调控主要是起始阶段的调控。原核生物DNA复制的调控与其生长环境有关,真

核生物DNA复制的调控与细胞周期蛋白等多种蛋白质因子有关,机制十分复杂,但复制起

始点必须全甲基化后复制才能发生。

⒒真核生物DNA聚合酶有哪几种?它们主要功能是什么?

答:真核生物DNA聚合酶有α、β、γ、δ等五种。

真核生物的DNA复制是在DNA聚合酶α与DNA聚合酶δ互配合下催化进行的,还有一

些酶及蛋白质因子参与反应。DNA Polα与引发酶共同起引发作用,然后由DNA Polδ催化前导链及随从链的合成。在链的延长中,有PCNA(增殖细胞核抗原)参与,保障连续性DNA Pol的性质与DNA Polδ有相似之处,在有些情况下,它可代替DNA Polδ起作用,例如在DNA损伤时,催化修复合成。DNA Polγ是线粒体中DNA复制酶。

DNA Polδ5′→3′外切酶活性可能在切除引物RNA中有作用。

真核生物DNA聚合酶的主要功能见下表:

5′→3′聚合作用

3′→5′外切作用αβγδ e

+

- ++

细胞内定位功能核

复制、引发核

修复线粒体

复制核

复制核

复制

- +

+ +

+ +

⒓真核生物染色体DNA的端粒有何功能?它们是如何合成的?

答:真核生物线形染色体的末端具有一种特殊的结构,称为端区或端粒。端区结构中有核苷酸重复序列,一般在一条链上为TxGy,互补链为CyAx,x与y大约在1-4范围内,人的端粒区含有TTAGGG重复序列。

端区具有保护DNA双链末端,使其免遭降解及彼此融合的功能。端区的平均长度随着

细胞分裂次数的增多及年龄的增长而变短,可导致核生物染色体稳定性下降,并导致衰老。

其分子机制在于,线形DNA分子不能从末端核苷酸外合成RNA引物,如此染色体将逐代缩短。但是在生殖细胞、胚胎细胞和肿瘤细胞中,由于有端粒酶,所以并不出现这种情况。

端粒酶是一种由RNA和蛋白质组成的酶,RNA和蛋白质都是酶活性必不可少的组分。

可看作是一种反转录酶。此酶组成中的RNA可作为模板,催化合成端区的DNA片段。端粒酶催化合成端区,在保证染色体复制的完整性上有重要意义。

⒔哪些因素能引起DNA损伤?生物机体是如何修复的?这些机制对生物机体有何意义?

答:一些物理化学因子如紫外线、电离辐射和化学诱变剂均可引起DNA损伤,破坏其结构与功能。然而在一定条件下,生物机体能使这种损伤得到修复。

紫外线可使DNA分子中同一条链上两个相邻的胸腺嘧啶碱基之间形成二聚体(TT),两个T 以共价键形成环丁烷结构。CT、CC间也可形成少量二聚体(CT、CC),使复制、转录受阻。细胞内具有一系列起修复作用的酶系统,可以除去DNA上的损伤,恢复DNA的双螺旋结构。目前已知有4种酶修复系统:光复活、切除修复、重组修复、SOS反应诱导的修复,后三种

不需要光,又称为暗修复。

1.直接修复

1949年已发现光复活现象,可见光(最有效400nm)可激活光复活酶,此酶能分解由于紫

外线形成的嘧啶二聚体。高等哺乳动物没有此酶。

2.切除修复

在一系列酶的作用下,将DNA分子中受损伤部分切除,并以完整的那一条链为模板,合成

出切去部分,DNA恢复正常结构。

3.结构缺陷的修复:

(1)核酸内切酶识别DNA损伤部位,在其附近将其切开。

(2)核酸外切酶切除损伤的DNA。

(3)DNA聚合酶修复。

(4)DNA连接酶连接。

4.无嘌呤无嘧啶——碱基缺陷或错配——脱碱基(N-糖苷酶):

甲基磺酸甲酯可使鸟嘌呤第7位氮原子烷基化,活化β-糖苷键,造成脱嘌呤作用;酸也能

使DNA脱嘌呤。

DNA复制时,DNA聚合酶对dTTP和dUTP分辨力不高,有少量dUTP掺入DNA链。细胞中的尿嘧啶-N-糖苷酶可以切掉尿嘧啶。腺嘌呤脱氨形成次黄嘌呤时也可以被次黄嘌呤-N-糖苷酶切掉次黄嘌呤。对于无嘌呤无嘧啶的损伤有两种修复方法:

(1)AP核酸内切酶切开,核酸外切酶切除,DNA聚合酶修复,DNA连接酶连接。

(2)插入酶插入正确碱基。

5.重组修复

切除修复发生在DNA复制之前,而当DNA发动复制时尚未修复的损伤部位,可以先复制,

再重组修复。

在重组修复过程中,DNA链的损伤并未除去。

重组修复至少需要4种酶组分。重组基因recA编码一种分子量为40000的蛋白质,它具有

交换DNA链的活力。RecA蛋白被认为在DNA重组和重组修复中均起关键作用。recB、recC 基因分别编码核酸外切酶V的两个亚基。此外,修复合成还需要DNA聚合酶和连接酶。

6.易错修复和应急反应(SOS反应)

诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生存而出现的一系列诱导性修复。

SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和易错的修复。

避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产

生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。

易错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于易错的修复。

SOS反应是由RecA蛋白和LexA阻遏物相互作用引起的。RecA蛋白不仅在同源重组中起重要

作用,而且它也是SOS反应的最初发动因子。在有单链DNA和ATP存在时,RecA蛋白被激活而表现出蛋白水解酶的活力,它能分解λ噬菌体的阻遏蛋白和LexA蛋白。LexA蛋白(22Kd)许多基因的阻遏物,当它被RecA的蛋白水解酶分解后就可以使一系列基因得到表达其中包

括紫外线损伤的修复基因uvrA、uvrB、uvrC(分别编码核酸内切酶的亚基)以及recA和lexA 基因本身,还有单链结合蛋白基因ssb,与λ噬菌体DNA整合有关的基因himA、与诱变作用有关的基因umuDC,与细胞分裂有关的基因sulA,ruv,和lon,以及一些功能不清楚的

基因dinA,B,D,F等。

DNA的修复机制对保证遗传信息在传递过程中的忠实性,连续性具有重要的意义。

⒕何谓应急反应(SOS)和易错修复?它们之间是什么关系?SOS反应对生物机体有何意义?

答:诱导修复是细胞DNA受到严重损伤或DNA复制系统受到抑制的紧急情况下,为求得生

存而出现的一系列诱导性修复。

SOS反应诱导的修复系统包括避免差错的修复(无差错修复)和易错的修复。

避免差错的修复:SOS反应能诱导光复活切除修复和重组修复中某些关键酶和蛋白质的产

生,从而加强光复活切除修复和重组修复的能力,这属于避免差错的修复。

易错的修复:SOS反应还能诱导产生缺乏校对功能的DNA聚合酶,它能在DNA损伤部位进行复制而避免了死亡,可是却带来了高的突变率,这属于易错的修复。

易错修复是应急反应(SOS)中的一种。

SOS反应广泛存在于原核生物和真核生物,它为生物在极为不利的环境中求得生存提供了机

会。

⒖何谓突变?突变与细胞癌变有何联系?

答:基因突变是指由于DNA碱基对的置换、增添或缺失而引起的基因结构的变化,亦称点

突变。在自然条件下发生的突变叫自发突变,由人工利用物理因素或化学药剂诱发的突变叫

诱发突变。基因突变是生物变异的主要原因,是生物进化的主要因素。在生产上人工诱变是

产生生物新品种的重要方法。

根据基因结构的改变方式,基因突变可分为碱基置换突变和移码突变两种类型。

基因突变有可能破坏DNA复制和细胞分裂的正常调控机制,引起细胞癌变。

⒗DNA复制时两条链发生错配的概率是否相等?两条链错配修复的概率是否相等?

答:DNA复制时两条链发生错配的概率不相等。两条链错配修复的概率也不相等。

⒘为什么引起SOS反应的化合物通常都是致癌剂?

答:由于癌变有可能是通过SOS反应诱变造成的,因此能引起SOS反应的化合物通常都具

有致癌作用。

⒙试述Ames试验的原理。

答:B.N.Ames等经十余年努力,于1975年建立并不断发展完善的沙门氏菌回复突变试

验,亦称Ames试验。该法比较快速、简便、敏感、经济,且适用于测试混合物,反映多种

污染物的综合效应。Ames试验的原理是:

鼠伤寒沙门氏菌(Salmonella typhimurium)的组氨酸营养缺陷型(his-)菌株,在含微量

组氨酸的培养基中,除极少数自发回复突变的细胞外,一般只能分裂几次,形成在显微镜下才能见到的微菌落。受诱变剂作用后,大量细胞发生回复突变,自行合成组氨酸,发育成肉眼可见的菌落。某些化学物质需经代谢活化才有致变作用,在测试系统中加入哺乳动物微粒

体酶,可弥补体外试验缺乏代谢活化系统之不足。

鉴于化学物质的致突变作用与致癌作用之间密切相关,故此法现广泛应用于致癌物的筛选。

第35章DNA的重组

⒈DNA重组有何生物学意义?是否可以说没有DNA重组就没有生物进化?

答:DNA分子内或分子间发生遗传信息的重新组合,称为遗传重组。

DNA重组能迅速增加群体的遗传多样性,使有利突变与不利突变分开,通过优化组合积累

有意义的信息。DNA重组参与许多重要的生物化学过程,为DNA损伤或自制障碍提供修复

机制。某些基因的表达受DNA重组的调节。基因发育过程也受到基因加工的控制。另外,

DNA重组对生物进化起着关键性作用。

可以说没有DNA重组就没有生物进化。

⒉是分析DNA复制、修复和重组三者之间的关系。

答:DNA复制是DNA修复和重组的基础,修复保证了DNA复制的准确性,重组是修复的方

式之一。

⒊DNA重组可分为哪几种类型?它们的主要特点是什么?

答:DNA重组有3种类型,分别是同源重组、特异位点重组和转座重组。

同源重组发生是依赖大范围的DNA同源序列的联会。重组过程中,两个染色体或DNA分子交换对等的部分。其特点是:需要重组的蛋白质参与;蛋白质因子对DNA碱基序列的特异性要求不高;真核生物染色质的状态影响重组的频率。

特异位点重组的特点:重组依赖于小范围同源序列的联会,发生精确的断裂、连接,DNA 分子并不对等交换。

转座重组的特点:完全不依赖于序列间的同源性而使一段DNA序列插入另一段中,但在形

成重组分子时往往是依赖于DNA复制而完成重组过程。

⒋什么是同源重组?它有何功能?

答:同源重组又叫一般性重组,它是由两条同源区的DNA分子,通过配对、链的断裂和再

连接,而产生片段交换的过程。

同源重组的功能是在减数分裂中使四联体某些位置的非姊妹染色单体之间可以发生交换。

⒌简要说明Holliday模型。

答:一对同源染色体有4个染色单体,每一染色单体是一条DNA双链,所以一对同源

染色体有4条DNA双链。在晚偶线期和早粗线期染色体配对时,同源非姊妹染色单体的DNA 分子配合在一起;核酸内切酶识别DNA分子上的相应断裂点(breakage point),在断裂点的地方把磷酸二酯键切断,使两个非姊妹DNA分子各有一条链断裂;两断链从断裂点脱开,

螺旋局部放松,单链交换准备重接;在连接酶的作用下,断裂以交替方式跟另一断裂点相互

联结,形成一个交联桥(cross-bridge),这结构又称Holliday中间体(Holliday intermediate);这交联桥不是静态的,可以靠拉链式活动沿着配对DNA分子向左右移动,其中互补碱基间

形成的氢键从一条亲本链改为另一条亲本链,于是移动后在两个亲本DNA分子间留下较大片段的异源双链DNA,这种结构又称为Holliday结构;随后这交联桥的两臂环绕另外两臂旋

转成为十字形,并在交联部分断开,消除交联体,恢复为两个线性DNA分子,即形成Holliday 结构的异构体;断开方向或沿东西轴进行,或沿南北方向进行;如沿东西方向切断,即上连、下连,则产生的两个异源双链的两侧基因为AB和ab,仍保持亲代类型,如沿南北方向切割,即左连、右连,则两侧基因为Ab和aB,产生两个重组类型,但不论是那种情况,即Holliday 结构断裂是否导致旁侧遗传标记的重组,它们都含有一个异源双链DNA区,有关的两核苷

酸区段分别来自不同的亲本,从而由原来的G-C、A-T配对变为G-A、C-T非配对。

⒍细菌基因转移有哪几种方式?它们有何生物学意义?

答:细菌的基因转移方式有转化、转导、溶原性转换、接合和原生质体融合等五种方式。

细菌可通过细胞间基因转移,并通过基因重组以适应随时改变的环境。

⒎参与同源重组主要的酶和辅助因子有哪些?简要说明其作用机制。

答:参与同源重组主要的酶和辅助因子有:Rec A蛋白、Rec BCD酶、Ruv A 蛋白、Ruv B 蛋白、Ruv C 蛋白、DNA 聚合酶和DNA连接酶。

Rec A蛋白,能促使两个同源DNA分子的碱基配对,形成杂种分子。Rec A蛋白首先与单链DNA结合(约每分子可结合5个核苷酸),形成一条DNA-蛋白质细丝(需消耗ATP)。于是Rec A蛋白即被活化而可将双螺旋解旋和分离,同时企图将它结合的单链与被解旋区域退火,

如此继续下去,直到找到互补顺序。只要一旦有一小部份被真正“退火”,ATP供应的能量就会继续驱使配对反应趋于完成,其方向是5’→3’(单链部分)。当新的杂交双链形成时,Rec A蛋白即从原来的单链掉下来。

Rec BCD酶首先结合在又螺旋的游离端上,然后利用ATP供给的能量沿着双螺旋向前推进。

在其行经之处,一路上解旋并又复旋。但由于解旋的速度快于复旋速度,所以解旋的双链区

就越来越长。

Ruv A 蛋白识别Holliday联结体的交叉点,Ruv A 蛋白四聚体结合其上形成四方平面的构象,

使得分支点易于移动,Ruv A蛋白还帮助Ruv B 蛋白六聚体环结合在双链DNA上。Ruv B是一种解旋酶,可推动分支移动。同源重组最后由Ruv C可将Holliday联结体切开,并由DNA 聚合酶和DNA连接酶进行修复合成。

⒏何谓特异位点重组?其作用特点是什么?

答:位点专一性重组这类重组在原核生物中最为典型。它发生在特殊的序列对之间,这种

重组依赖于小范围同源序列的联会。在重组对之间的短的同源序列是供重组蛋白识别用的,

它对同源性的要求不象同源性重组那么重要,蛋白质和DNA、蛋白质和蛋白质之间的作用

更为关键。重组时发生精确的切割、连接反应,DNA不失去,不合成。两个DNA分子并不交换对等的部分,有时是一个DNA分子整合到另一个DNA分子中,因此又将这种形式的重

组称为整合式重组(integrative recombination)。例如l噬菌体DNA通过其att位点和大肠杆菌DNA的attB位点之间专一性重组而实现整合过程。在重组部分有一段15 bp的同源序列,这一同源序列是重组的必要条件,但不是充分条件,还须位点专一性的蛋白质因子参与催化。

这些蛋白质因子不能催化其他任何两条不论是同源的还是非同源序列间的重组,这就保证了l噬菌体DNA整合方式的专一性和高度保守性。这一重组不需要RecA蛋白质的参与。

⒐说明λ噬菌体DNA的整合和切除过程。

答:这是一种特异位点重组,其基本过程如下:attB由称为BOB’的序列组成,而attP由POP'组成。O是核心序列,是attB和attP所共同的。而其两侧的序列是B,B’和P,P’,被称为臂。噬菌体DNA是环状的,重组时被整合入细菌染色体中,成为线性序列。前病毒

的两侧是两个新的杂种att位点,左侧称为attL,由BOP’组成,而右侧为attR,由POB’组成。可见,整合和切出并不涉及相同的一对序列:整合需要识别attP和attB,而切出要求识别attL和attR。因此,重组位点的识别就决定了位点专一性重组的方向──整合或切出。

虽然位点专一重组是可逆的,但反应的方向取决于不同环境条件,这对决定噬菌体的生命力

周期是非常性重要的。整合的。整合酶和IHF对整合和切出都是是必需的,而切出酶在控制

反应方向上起重要作用──它对切出是必须的,但能抑制整合。在切除的环化过程中如果发

生错误,前噬菌体可能失去某些基因而代之以其相邻的细菌基因。因为整合位点处于细菌染

色体的gal和bio基因之间,切除过程中噬菌体DNA偶尔会带走gal基因,生成λgal(或称λdb)。λgal或λbio转导(感染)新的宿主时常常把gal或bio基因带到新的宿主中去,所

以把λgal或λbio这些带有某些宿主基因的噬菌体称为转导噬菌体(transducing phage)。

⒑何谓鞭毛相转变?它如何控制鞭毛基因的表达?

答:鼠伤寒沙门杆菌由鞭毛蛋白决定的H抗原有两种,分别为H1鞭毛蛋白和H2鞭毛蛋白。在单菌落的沙门氏菌中经常出现少数呈另一H抗原的细菌,这种现象称为鞭毛相转变。

沙门氏菌H片段倒位决定鞭毛相转变hix为反向重复序列,它们之间的H片段可在Hin控制下进行特异位点重组(倒位)。H片段上有两个启动子P,其一驱动hin基因表达,另一正向时驱动H2和rH1基因表达,反向(倒位)时H2和rH1不表达。

⒒试总结免疫球蛋白基因重组的规则。

答:免疫球蛋白由两条轻链(L链)和两条重链(H链)组成,它们分别由三个独立的基因族

编码,其中两个编码轻链(λ链和κ链),一个编码重链。重链基因的V-D-J重排和轻链基因的V-J重排均发生在特异位点上。免疫球蛋白基因重组的规则如下:

a)λ链的重组:每个C片段前有J跟随;只在V和J-C之间发生一次重组(V和J的重组)。b)κ链的重组:一条κ轻链也由两部分组装而成,但在C基因的组织过程中有所不同。

一组5个J片段包含500-700个碱基对并被Cκ外显子上的一个2-3kb的内显子所隔离。在

鼠中,中心J片段是无功能的(ΨJ3)。一个Vκ片段可以被连接到任何一条J片段上去。

无论用的是哪个J片段,都可以成为原始可变外显子的终端部分。整合J片段左边的每个J 片段都会缺失掉。而右边的J片段都会被作为可变和不可变外显子之间的内显子的一部分。

c) 重链基因V、D和J片段的重组: 重链的可变区由V和J基因及第三个D基因片段编码;V-D-J连接由两个阶段组成,第一个阶段是D片段和一个JH片段重组,然后是一个VH片段

再和DJH片段重组。这个重构导致了邻近的CH片段(包含几个外显子)的表达。重组只发

生在间隔为12 bp与间隔23 bp的不同信号序列之间,称为12-23规则。

⒓免疫球蛋白基因重组过程中产生的P核苷酸和N核苷酸是如何来的?它们产生的意义和

需要付出的代价是什么?

答:免疫球蛋白基因在重组过程中,RAG1/RAG2复合物切开七核苷酸与基因接头处的一

条链,形成3,-OH、5,-P未端。游离的3,-OH攻击另一条链的酯键,在基因片段

末端形成发夹结构。然后复合物进一步将发夹结构切开,单链切开的位置往往不是原来通过

转酯反应连接的位置,多出的核苷酸与末端序列相同,但方向相反,称为P核苷酸。末端可以被外切酶切除一些核苷酸,也可以由脱氧核苷酸转移酶外加一此核苷酸,称为N核苷酸。在接头处随机插入或删除核苷酸可以增加抗体基因的多样性,但如果插入或删除核苷酸数不

是3的倍数,就将改变阅读框架而使基因失活。

⒔何谓转座重组?它有何生物学意义?

答:由插入序列和转座子介导的基因移位或重排称为转座重组。转座重组的生物学意义有:

可引起基因突变——插入或切离;改变染色质的结构(缺失、倒位等);可以插入新基(ampR、terR等);在靶序列上引入新的转座子序列,原来序列保持不变;在靶序列上造成同向重复

序列;产生新的变异,有利于进化。

⒕细菌的转座因子有几种?它们的结构有何特点?

答:微生物的某些DNA片段作为一个独立单位可在染色体上移动,此种移动甚至可发生在

不同种细胞之间。这种可移动的DNA片段称之为转座因子。细菌的转座因子有两种类型:

插入序列(insert sequence,IS)和转座子(transposon,Tn)。

插入序列不含任何宿主基因,是最简单的转座子,它们是细菌染色体或质粒DNA的正常组成部分。所有插入序列的两端都有反向重复。

转座子除编码转座功能有关的基因外还携带抗性或其它标记基因。按结构可分为组合因子和

复合因子。

⒖何谓Shspiro中间体?何谓共整合体?它们之间有何关系?

答:转座酶识别转座子的末端反向重复序列并且在其3,端切开,同时在靶部位交错切

开单链,它的5,端突出末端与转座子的3,端连接,形成Shspiro中间体。

在复制转座过程中,由转座酶分别切割转座子的供体和受体DNA分子,转座子的末端与受

体DNA分子连接,并将转座子复制一份拷贝,由此生成的中间体即共整合体(cointegrat,)。共整合体可以理解为是一种特殊的Shspiro中间体。

⒗为什么真核生物转座因子可分为自主因子和非自主因子?它们转座的生物效应是否相

同?

答:真核生物由于有核存在,其转录和翻译在时空是的隔开的。因此,真核生物细胞内只要

存在转座酶,任何序列片段只要存在该酶识别的反向重复末端均可发生转移,而无需由转移序列自身编码这些酶。因此真核生物转座因子可分为自主因子和非自主因子。

它们转座的生物效应是不同的。自主因子能自主发生转座,而非自主因子能抑制邻近基因的

表达,它本身不能转座,但在自主因子存在时,可发生转座。

⒘比较玉米的Ac-Ds系统和Smp-dSmp系统的特点。

答:在Ds-Ac系统中,大部分自主因子AC的长度由含5个外显子的单个基因组成,其

产物是转座酶,它的末端有11bp的IR和8bp的DR,DR是由靶位点重复而成。

各种Ds因子的长度和序列都不相同,但和Ac相关。其末端同样有11bp的IR。Ds比Ac短,其缺失的长度不同。Ac/Ds发生的转座是通过非复制机制,并且伴随着它们从供体位置的消

失。

Spm和En自主因子实际上是相同的。它们仅在不到10个位置上有差异。就像其它的转座

子一样,末端含有13bp的IR,此重复序列对于转座是必须的,末端缺失就会形成转座的缺

陷型。与Spm相关的转座子在其它的植物中也有发现,它们的结构相似,属于同一个家族。

它们末端IR都邻接着靶DNA重复而产生的3bp的DR。末端的IR称为转座的CACTA群。

这个家族所有的非自主因子(dSpm是缺陷的Spm)都和Spm因子本身的结构密切相关。它

们是tnpA缺失了外显子。

Spm的插入能控制位点基因的表达,受体位点可能受到正的的或负的调控。一个Spm-可抑制基因座(Spm- suppressible locus)受到抑制而不能表达。一个spm- 依赖性座位(spm- dependent locus)只有在spm的帮组下才表达。当被插入的因子是一个dSpm时,对转移功能的抑制或依赖由一个自主性Spm来提供。这两个相反作用的基础是什么呢?

一个dSpm-可抑制等位基因中其外显子内插入了一个dSpm,人们对这个结构会立即产生疑问,一个基因其外显子中插入了一个dSpm它怎么能表达!这个dSpm序列能在转录本中利

用这个序列的末端被剪切掉。这个剪切事件可以使mRNA序列中留下一个变化。这样,就

解释了它所编码的蛋白性质发生改变的原因。同样某些插入的Ds也可从转录本中被剪切掉。TnpA为原称为Spm因子,它提供了抑制功能。缺陷型因子的存在可能使它所插入的基因表

达减少,但并不消失。然而诱导一个具有一个有功能的tnpA基因的自发因子可能会抑制靶

基因的表达。抑制作用是TnpA结合于缺陷因子中的靶位点的能力产生的,从而阻断了正在

进行的转录。

一个dSpm-依赖性等位基因在其附近(而不在基因中)含有一个插入序列。这个插入序列提

供了一个增强子,它可以激活位于受体座位的基因的启动子。

在dSpm因子上的抑制和依赖的存在取决于一个自主因子Spm因子tnpA基因的反式作用产物与这个因子末端的顺式作用位点间的相互作用。因此在蛋白质和此因子末端之间的单个相

互作用不是抑制就是激活受体基因上游或者受体基因中的靶座位。无论靶座位点否依赖这种

因子。

Spm因子从完全活化到隐蔽在此范围内以各种状态存在。隐蔽因子是沉默的,既不转座也不激活dspm因子。一个潜伏的因子可以通过和完全活化的Spm因子的相互作用而转变或恢复

成活性状态。失活是由于在转录起始是附近的序列被甲基化而导致的。

⒙果蝇P因子在杂种不育中起何作用?杂种不育与物种形成有何关系?

答:在和M雌果蝇杂交中P型雄果蝇的任何一条染色体都能导致不育。重组染色体的贡献

表明,在每条P型雄果蝇染色体中的各区域也都导致不育。这表明P雄果蝇具有大量的P 因子(P factors),这个因子存在于很多不同的染色体位置上。这些位置在P品系的个体之间也是不同的。而在M雌果蝇的染色体上都没有这种P因子。通过对杂种不育果蝇的W突变体的DNA作图发现,不育是P因子的存在所致导的。所有的突变都是由于W位点插入了DNA片段。这个插入顺序被称为P因子(P element)。

杂种不育减少了品种间的杂交,是新种形成途径的一个步骤。

如果杂种不育系统是在某些地理位置通过转座产生的。另一些因子可能是在其它某些地理位

置产生的不同系统。两个不同区域的果蝇同是两个不同的系统而将产生杂种不育。若这一表现使它们之间杂种不育那么群体将出现隔离,进一步的隔离可能还会发生,多个杂种不育系

统导致它们之间不能交配而形成新种。

第36章RNA的生物合成和加工

⒈比较四类聚合酶性质和作用的异同(四类聚合酶是:DNA指导的DNA聚合酶,DNA指导的RNA聚合酶,RNA指导的RNA聚合酶,RNA指导的DNA聚合酶)

答:DNA指导的DNA聚合酶是以DNA为复制模板,从将DNA由5'端点开始复制到3'端的酶。DNA指导的DNA聚合酶的共同特点是:(1)需要提供合成模板;(2)不能起始新的DNA 链,必须要有引物提供3'-OH;(3)合成的方向都是5'→3'(4)除聚合DNA外还有其它功能。所有原核和真核的DNA聚合酶都具有相同的合成活性,都可以在3'-OH上加核苷酸使链延伸,其速率为1000 Nt/min。加什么核苷酸是根据和模板链上的碱基互补的原则而定的。

DNA指导的RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。RNA聚合酶(RNA polymerase)的作用是转录RNA。有的DNA指导的RNA聚合酶有比较复杂的亚基结构。

RNA指导的RNA聚合酶或RNA复制酶是在某些RNA病毒中有以病毒RNA为模板催化RNA 合成的酶。RNA复制酶催化的合成反应是以RNA为模板,由5′向3′方向进行RNA链的合成。RNA复制酶缺乏校对功能的内切酶活性,因此RNA复制的错误率较高,RNA复制酶只是特异地对病毒的RNA起作用,而宿主细胞的RNA一般并不进行复制。

RNA指导的DNA聚合酶是反转录酶,具有三种酶活性,即RNA指导的DNA聚合酶,RNA 酶,DNA指导的DNA聚合酶。

⒉原核生物RNA聚合酶是如何找到启动子的?真核生物聚合酶与之相比有何异同?

答:原核生物RNA聚合酶是在δ亚基引导下识别并结合到启动子上的。不同类型的δ亚基识别不同类型的启动子。

真核生物RNA聚合酶自身不能识别和结合到启动子上,而需要在启动子上由转录因子和RNA 聚合酶装配成活性转录复合物才能起始转录。

⒊何谓启动子?保守序列与共有序列的概念是否一样?Pribnow框与启动子之间是何关系?答:启动子是指RNA聚合酶识别、结合和开始转录的一段DNA序列。

保守序列与共有序列的概念的含意基本相同。保守序列间相似度高,但不一定相同,面共有序列是相同的,共有序列可理解为是一种特殊的保守序列。

Pribnow框是启动子序列的一部分。

⒋真核生物三类启动子各有何特点?

答:真核生物有三种RNA聚合酶:RNA聚合酶I、II、III,分别转录rRNA、mRNA、tRNA和小分子RNA。与之对应,有三种类型的启动子。

类型I:Ⅰ类启动子负责转录编码核糖体RNA的多顺反子转录本。脊椎动物RNA聚合酶I的启动子有两部分组成,包括转录起点附近的核心启动子(core promoter) ,和起点5’上游100bp左右的上游控制元件(upstream control element,UCE)。核心启动子从-45到+20,负责转录的起始。UCE从-180延伸到-107,此区可增加核心元件的转录起始的效率。

RNA Pol Ⅰ需要2种辅助因子:UBF1(上游结合因子1)是一个单链多肽,它可以和核心区UCE的G.C丰富区结合。SL1因子,SL1含有4个蛋白,其中之一称TATA框结合蛋白(TBP)。SL1本身对这种启动子来说并非是特异的,但一旦UBF1和DNA结合了,那么SL1就可以协

同结合在DNA上。当这两个因子都结合上了RNA聚合酶才能和核心启动子结合起始转录。

类型II:RNA聚合酶Ⅱ的启动子

RNA聚合酶Ⅱ的启动子有三个保守区:

(1)、TATA框(Hogness框)

中心在-25至-30,长度7bp左右。

碱基频率:T82 A97 A85 A63 (T37 )A83 A50(T37 )(全为A-T,少数含有一个G-C对)。此序列功能:使DNA双链解开,并决定转录的起点位置,失去TATA框,转录将可能在许多

位点上开始。

TATA框的改变或缺失,直接影响DNA与酶的结合程度,会使转录起始点偏移,因此,TATA 是绝大多数真核基因正确表达所必需的。

由于RNA聚合酶分子有相对固定的空间结构,同此框的结合位点和转录反应催化位点的距

离,决定了起始位点的正确选择。启动子特定序列和酶的正确结构,这两者把酶置于一种正

确的构象中,决定了识别的正确性和转录起始的正确性。

(2)、CAAT框

中心在-75处,9bp,共有序列GGT(G)CAATCT

功能:与RNA聚合酶结合。

(3)、GC框

在CAAT框上游,序列GGGCGG,与某些转录因子结合。

CAAT和GC框均为上游序列,对转录的起始频率有较大影响。

类型III :是由不同的转录因子以不同的方法来识别的。5S RNA和tRNA都属于RNA 聚合酶Ⅲ启动子,但它们比较特殊,位于起始位点的下游的转录区内,因此也称为下游启动子(downstream promoter)或基因内启动子(intragenenic promoter)或称为内部控制区(internal control region ,ICR)。snRNA基因的启动子和常见的启动子一样位于起始位点的上游,称为上游启动子(upstream type 0f promoter)。下游启动子又可分为 1 型和2型。1型内部启动子含有两个分开的boxA(T G G C N N A G T G G)和boxC(C G G T C G A N N C C)序

列。而Ⅱ型内部启动子含有两个分开的boxA和boxB。2型内部启动子中boxA和boxB之间的距离较宽。通常有功能的此类启动子中的两个box就不能紧紧连在一起。在1型内部启动子中(5SRNA基因启动子)TFⅢA结合在C框上,使TFⅢC结合在C框下游。在Ⅱ型内部启

动子中TF ⅢC的结合使TFⅢB依次结合在起始位点的近上游。TF ⅢB结合在起始位点上并和TF ⅢC相连。RNA聚合酶Ⅲ的上游启动子有3个上游元件,这些元件仅在snRNA 启动子中被发现,有的SnRNA是由RNA聚合酶Ⅱ转录,有的是由RNA聚合酶Ⅲ转录。这些

上游元件在一定程度上和polⅡ的启动子相似。

TATA元件看来和特异的聚合酶结合上游启动子转录起始发生在起始点上游的一个很短的区

域中,且含有TATA框。次近端序列元件(proximal sequence element,PSE)和八聚体(OCT)元件的存在大大增加了转录效率,结合在这些元件上的转录因子相互协同作用。TATA元件是供TBP识别的,TBP亚基本身识别DNA序列,其结合的其他蛋白有的可和RNA聚合酶Ⅲ结合,有的对RNA聚合酶Ⅱ特异,这就可以解释为什么RNA聚合酶Ⅲ和这些启动子特异结合。TBP及其结合蛋白的功能是使RNA聚合酶Ⅲ正确地结合在起始位点上。

⒌何谓终止子和终止因子?依赖于rho 的转录终止信号是如何传递给RNA聚合酶的?

答:提供转录终止信号的一段DNA 序列,叫终止子。协助RNA 聚合酶识别终止子的蛋白

质辅助因子,叫终止因子。

Rho结合在新生成的RNA链上,借助消解NTP所获得的能量沿RNA链移动。RNA酶遇到终止子时发生暂停,使Rho得以追上酶,并与之相互作用,造成释放RNA。

⒍何谓时序调控?何为适应调控?分别对原核生物和真核生物的转录调控举例加以说明。

答:在细胞的生长、发育和分化过程中,遗传信息的表达可按一定的时间程序发生变化,而

且随着细胞内外环境条件的改变而加以调整,这就是时序调控和适应调控。

例子1:真核RNA 聚合酶Ⅱ不能单独识别、结合启动子,而是先由基本转录因子TF Ⅱ D 组成成分TBP 识别TATA 盒或启动元件,并有TF Ⅱ A 参与结合,形成TF ⅡD- 启动子复合物;继而在TG ⅡAF 等参与下,RNA 聚合酶Ⅱ与TF Ⅱ D 、TF Ⅱ B 聚合,形成一个功能性的前起始复合物。在几种基本转录因子中,TF Ⅱ D 是唯一具有位点特异的DNA 结合能力的转录因子,在上述有序的组装过程起关键性指导作用。这样形成的前起始

复合物尚不稳定,也不能有效启动mRMA 转录。然后由结合在增强子上的转录激活因子直

接或间接与TF Ⅱ D 结合,从而影响前起始复合物的形成、稳定性以及RNA 聚合酶的活性。

例子2:在没有乳糖存在时,乳糖操纵子处于阻遏状态。此时,Ⅰ基因列在P启动序列操纵下表达的乳糖阻遏蛋白与O序列结合,故阻断转录启动。阻遏蛋白的阻遏作用并非绝对,

偶有阻遏蛋白与O序列解聚。因此,每个细胞中可能会有寥寥数分子β半乳糖苷酶、透酶生成。当有乳糖存在时,乳糖操纵子即可被诱导。真正的诱导剂并非乳糖本身。乳糖经透酶

催化、转运进入细胞,再经原先存在于细胞中的少数β-半乳糖苷酶催化,转变为别乳糖。

后者作为一种诱导剂分子结合阻遏蛋白,使蛋白构型变化,导致阻遏蛋白与O序列解离、发生转录,使β-半乳糖苷酶分子增加1000倍。

⒎简要说明原核生物和真核生物转录调控的主要特点。

答:原核生物和真核生物转录调控的主要特点有:

原核生物功能相关基因常组织在一起构成操纵子,作为基因表达和调节的单位,真核生物不组成操纵子,每个基因都有自己的基本启动子和调节单元,单独进行转录,相关基因间也可进行协同调节;原核生物只有少数种类的调节单元,真核生物调节单元众多,包括组成型元件、可诱导元件以及增强子等;无论是原核还是真核生物,其转录受反式调节因子所调节;

真核生物的转录调节涉及到染色质改型,原核生物不存在染色质水平的调节。

⒏转录调节因子的结构有何特点?

答:转录调节因子分类。转录因子,分为两类:①基本转录因子是RNA聚合酶结合启动子所必需的一组因子,为所有mRNA转录起动共有②特异转录因子为个别基因转录所必需,

决定该基因的时间、空间特异性表达,包括转录激活因子和抑制因子。

所有转录因子至少包括两个结构域:DNA结合域和转录激活域;此外,很多转录因子还包

含一个介导蛋白质-蛋白质相互作用的结构域,最常见的是二聚化结构域。①DNA结合域通常由60-100个氨基酸残基组成。最常见的DNA结合域结构形式是锌指结构和碱性α螺旋。类似的碱性DNA结合域多见于碱性亮氨酸拉链和碱性螺旋-环-螺旋。②转录激活域——由

30-100个氨基酸残基组成。根据氨基酸组成特点,转录激活域又有酸性激活域、谷氨酰胺

富含区域及脯氨酸富含区域。③介导二聚化的结构域——二聚化作用与亮氨酸拉链、螺旋-环-螺旋结构有关。

⒐比较启动子上游元件增强子和绝缘子的作用特点。

答:增强子是远离转录起始点、决定基因的时间、空间特异性表达、增强启动子转录活性的DNA序列,其发挥作用的方式通常与方向、距离无关,可位于转录起始点的上游或下游。

从功能上讲,没有增强子存在,启动子通常不能表现活性;没有启动子时,增强子也无法发

挥作用。

绝缘子是一种长约几十到几百个核苷酸对的调控序列,通常位于启动子同邻近基因的正调控

元件(增强子)或负调控元件(沉默子)之间(图5-22)。绝缘子本身对基因的表达既没有正效应,

也没有负效应,其作用只是不让其他调控元件对基因的活化效应或失活效应发生作用。

⒑什么是染色质的结构域?它有哪些控制位点?

答:染色质上具有特定结构和功能的区域,叫染色质的结构域。它有3种类型的控制位点:基因座控制区,绝源子,基质附着位点。

⒒目前有哪些重要的RNA合成抑制剂已在临床上用作抗癌药物抗病毒药物和治疗艾滋病的

药物?其作用机制是什么?

答:目前在临床上应用的RNA合成抑制剂可分为3类,一是嘌呤和嘧啶类似物,如6 –巯基嘌呤、5 –尿嘧啶等,它们可作为核苷酸代谢颉颃物而抑制核苷酸前体的合成;二是DNA 模板功能的抑制物如烷化剂、放线菌素等,它们通过与DNA结合而改变DNA的功能;三是RNA酶抑制剂,如利福霉素、利链菌素等,它们与RNA酶结合并影响其功能。

⒓为什么RNA转录后加工比任何生物大分子合成后的加工过程都更复杂?

答:由于RNA,特别是真核生物的RNA分子在转录后必须在其头和尾部加上帽子和多

聚尾巴结构;5,端往往有调控序列,基因往往是被内含子隔断的断裂基因,在转录后必须

进行剪切、拼接和重编码。因此与其它生物大分子相比,其合成后的加工过程都更复杂。

⒔试述的snoRNA结构和作用。

答:核仁小RNA(snoRNA),是近来生物学研究的热点,由内含子编码。富含AT,有boxC和boxD结构元素。核仁小RNA有多种功能,反义snoRNA指导rRNA核糖甲基化。

核仁小RNA与其它RNA的处理和修饰有关,如核糖体和剪接体核小RNA、gRNA等。核仁小RNA是一个与特性化的非编码RNA相关的大家族。

⒕为什么真核生物要先转录内含子然后再将其切除?

此题目本身值得商榷,理由如下:

关于内含子的功能,有2种不同看法。一种见解认为,内含子是在进化中出现和消失的,内

含子如果有功能,只不过是有利于物种的进化选择。例如细菌丢失了内含子,可以使染色体变小和复制速度加快。真核生物保留内含子,则可以产生外显子移动,有利于真核生物在适应环境改变时能合成功能上有差异而结构上只有微小差异的蛋白质。另一些学者则力图证明内含子在基因表达中有调控功能。例如,现在已知道某些遗传性疾病,其变异是发生在内含子而不在外显子。有些内含子在调控基因表达的过程中起作用,有些内含子还能为酶编码。为了更精细地研究内含子,现在对内含子的分类有两种方法。

1.按基因的类型分为四类

第I类内含子:主要存在于线粒体、叶绿体及某些低等真核生物的rRNA基因。

第Ⅱ类内含子:也发现于线粒体、叶绿体,但转录产物是mRNA。

I、Ⅱ类内含子中,已发现相当一部分是属于自身剪接的内含子,由RNA分子起酶的作用而催化剪接(见下述)。

第Ⅲ类内含子:是常见的形成套索结构后剪接的内含子,大多数mRNA的基因有此类内含子。

第Ⅳ类内含子:是tRNA的基因及其初级转录产物中的内含子,剪接过程需酶及ATP。

2.从中断基因线性表达的方式,有人又把内含子分为翻译前、翻译绕过、翻译后删除三种:翻译前删除内含子:就是上述典型的、常见的内含子,在RNA加工中被除去;

翻译绕过式内含子:这些内含子不被剪接删除,但一般不翻译。在特定条件下却可翻译出有

调控功能的、在原有外显子插入了一段氨基酸序列的蛋白质;

翻译后删除内含子:这是把蛋白质翻译后加工也算人内含子的概念中来。例如图1⒈17胰岛素的C肽是不存在于有活性的胰岛素分子上的,如按这一定义,C基因也可认为是内含子。类似的翻译后加工情况,在真核生物是很常见的。

⒖RNA拼接可分为哪几种类型?其作用特点是什么?

答:RNA拼接的类型有:

(1)类型Ⅰ自我拼接。特点是只要1价、2价阳离子和鸟苷存在即可自行发生,无需供给

能量和酶的催化。

(2)类型Ⅱ自我拼接。特点是能自我拼接,但不需要鸟苷。

(3)核mRNA拼接体的拼接。特点是由内含子自我催化完成。

(4)核tRNA的酶促拼接。特点是需要内切酶和连接酶等,需要消耗能量。

⒗RNA拼接和编辑对真核生物的进化有何作用?

答:RNA拼接和编辑是在生物进化历史是形成的,RNA拼接和编辑可消除移码突变等基因突

变的危害,增加了基因产物的多样性,还可能使基因产物获得新的结构和功能,有利于生物进化。

⒘校正tRNA可以消除错义、无义和移码突变带来的危害,但它是否会将正确的密码子翻

译错误?

答:对基因或密码子反密码子上发生某种突变,能以"代偿"或校正原有突变所产生的不良后

果的tRNA称为校正tRNA,这种tRNA上反密码子的突变称为校正突变。校正突变可为二类:一是发生在同一基因内,但不在该基因的同一部位,称为基因内突变校正(Intragenic suppression);二是发生在另一基因内,称为基因间突变校正(Intergenic suppression)。

在某些情况下,校正tRNA可能会将正确的密码子翻译错误。

⒙简要说明RNA功能的多样性。

答:RNA在遗传信息的翻译中起着决定作用;RNA具有重要的催化功能和其它持家功能;RNA转录后加工和修饰依赖于各类小RNA和其蛋白质复合物;RNA对基因表达和细胞功能

有重要的调节作用;RNA在生物进化中起重要的作用。

⒚RNA复制酶如何调节病毒RNA复制与翻译、正链与负链合成的关系?

答:又称RNA指导的RNA聚合酶,为以RNA为模板合成RNA的酶,存在于某些RNA病毒中,其底物和作用方式均与DNA指导的RNA聚合酶相似。

RNA聚合酶通常由多个亚基组成,有复杂的高级结构。RNA聚合酶是通过其高级结构的变化

来调节病毒RNA复制与翻译、正链与负链合成的。

⒛逆转录病毒前病毒的长末端重复是如何形成的?它有何意义?

答:逆转录病毒前病毒的长末端重复是在逆转录过程中,负链DNA重复合成U/3 –R/ - U5形成的。

这些长末端重复可帮助转录病毒以类似转座的方式整合进宿主DNA中。

21.为什么逆转座子只存在于真核生物中?它有何生物学意义?

答:在转座过程中需要以RNA为中间体,经逆转录再分散到基因组中的转座子,叫逆转座

子。由于只有真核生物能完全满足逆转座子存在的条件(逆转录酶、整合酶,重复序列等),所以逆转座子只存在于真核生物中。

逆转座子的生物学意义:影响所在位点或邻近基因的活性;成为基因组的不稳定因素,促进基因重组;促进生物进化。

第37章遗传密码

⒈DNA分子的哪些性质使其适宜作为遗传信息的携带物质?

答:DNA是由4种脱氧核苷酸残基按一定顺序彼此用3’,5’-磷酸二酯键相连构成的长链。

大多数DNA含有两条这样的长链,按腺膘呤与胸腺嘧啶配对、鸟膘呤与胞嘧啶配对的原则

形成彼此互补的双中螺旋结构,因此,可以其中的任一条链为模版,复制出跟亲代一样的子

代DNA链,将遗传信息传递给下一代;组成DNA的4种脱氧核苷酸,每3个组,可组成64个密码子,足以编码存在于生物中的氨基酸;另外,相较于RNA等其它生物大分子,DNA 的理化性质比较稳定。

DNA分子的这些性质使其适宜作为遗传信息的携带物质。

⒉RNA的主要功能是什么?RNA转录后的一系列加工有何生物意义?

答:RNA的主要功能是通过转录和翻译,将生物贮藏在DNA中的遗传信息传递给蛋白质,

从而实现遗传信息的生物学功能。

RNA转录后的一系列加工可使RNA转录后的初产物变成成熟的、有功能的RNA,有些加工还可改变RNA携带的遗传信息。

⒊Crick等如何证明遗传密码的基本单位是核苷酸三联体?

答:Crick等研究T4噬菌体γⅡ位点A和B 两个顺反子变异的影响,这两个基因与噬菌

体能否感染大肠杆菌κ菌株有关。吖啶类染料是扁平的杂环分子,可插入DNA两碱基对之间而引起DNA插入或丢失核苷酸。该位点缺失一个核苷酸或插入一个核苷酸的突变体缺失两个或插入两个核苷酸的突变体重组得到的重组体是严重缺陷性的,不能感染大肠杆菌

κ菌株,该位点缺失三个核苷酸或插入三个核苷酸的突变体能表现正常的功能,但该位点缺失四个核苷酸或插入四个核苷酸的突变体却是严重缺陷性的。据此,Crick等证明遗传密码

的基本单位是核苷酸三联体。

⒋如何理解基因与蛋白质的共线性?RNA的拼接、剪辑与再编码对共线性概念有何影响?

答:根据“中心法则”,基因中DNA的组成顺序决定了转录后RNA的组成顺序,RNA的组成顺序决定了翻译成的蛋白质的组成顺序,这就是基因与蛋白质的共线性关系。

RNA的拼接、剪辑与再编码可能会改变基因携带的遗传信息的表达,产生新的遗传信息,

纠正译码环节的一些错误,是对基因与蛋白质的共线性关系的发展和补充。

⒌遗传密码是如何破译的?

答:第一个用实验给遗传密码以确切解答的是德国出生的美国生物化学家尼伦贝格

(M.W.Nirenberg,1927—)。1961年他和另一位德国科学家马太(Heinrich Matthaei)在美国国家卫生研究院的实验室内发现了苯丙氨酸的密码是RNA上的尿嘧啶(UUU)。他们在用

大肠杆菌的无细胞提取液研究蛋白质的生物合成问题时发现:当向这个提取液中加进核酸,

则合成了蛋白质;当用由单一的尿嘧啶组成的核酸长链加进这个提取液中,则产生了由单一苯丙氨酸组成的多肽长链。这个结果立即震动了科学界。但是测定其他氨基酸的密码需要各

种各样的碱基组合,而当时这种组合并不是很容易得到的,它需要一种多核苷酸磷酸化酶。

美国另一位西班牙血统的生物化学家奥乔亚(Ochoa,Severo,1905—)于1955年发现了多核苷酸磷酸化酶(PNP酶)帮助了尼伦贝格合成了同聚核苷酸——多聚U(PolyU)(奥乔亚因发现此酶而获得1959年诺贝尔生理学或医学奖)。当他将多聚U作为模板加入到无细胞

体系中时,那就是只有加有标记苯丙氨酸所产生的那一试管蛋白质沉淀具有放射性。而加其他标记氨基酸的各管则均无放射性进入沉淀。于是,第一个密码便被破译出来,即UUU是苯丙氨酸的密码子。用同样的方式以其他多聚核苷酸作为模板,又测出CCC是脯氨酸的密码子,AAA是赖氨酸的密码子。多聚G的氨基酸密码子当时用此法测定时遇到困难,未能

测出。

在取得第一阶段突破性成果之后,尼伦贝格用混合的核苷酸制备人工合成的mRNA模板,分别测试其作用。

用2种或3种不同的核苷酸制备mRNA模板时,PNP酶合成的产物都是杂聚物,其中核苷酸的顺序是随机的,无法预测。但各种三联体出现的相对几率则是可以推算出来的。在测定了各种标记氨基酸参入蛋白质的量之后,将其相对参入量和三联体出现的几率加以比较,即可知道每种三联体相对应的是那一种氨基酸。

此法的应用有局限性,密码子中不同核苷酸的比例固然可以推测出来,但是它们的排序却不能确定;尽管如此编码的范围还是大大缩小了。后来又发现有些密码子具有重复性,即一种氨基酸可以有多种密码子,但是每一种密码子只编码一种氨基酸。

为了搞清密码子中核苷酸顺序,尼伦贝格巧妙地设计了第三阶段的实验。他采用的是核糖体结合法新技术,并加入的模板一律改为具有一定顺序的单个三联体。实验仍在无细胞体系中

进行。他们的小组合成了全部64种单个的、顺序固定的三联体密码。实验结果能使50种密码子所对应的氨基酸能确定下来。实验中发现,有三个密码子并不编码任何氨基酸,后来知道它们是终止信号。还知道甲硫氨酸的密码子可兼作起始信号。完整的密码子表,到1963年由与尼伦贝格共获1968年诺贝尔生理学或医学奖的霍拉纳(Khorana,Har Gobind,1922—)利用其他技术加以确定的。

⒍何谓密码的简并行和变偶性?二者有何关系?

答:同一种氨基酸有两个或多个密码子的现象,叫密码的简并性。tRNA上的反密码子与mRNA 密码子配对时,密码子第一位、第二位碱基配对是严格的,第三位碱基可以有一定的变动,

这种现象,叫变偶性。

变偶性可理解为是对密码的简并性的一种修正。

⒎为什么只要32种tRNA就能识别通用遗传密码中61个编码氨基酸的密码子?而在线粒体

中只要22种tRNA就能识别全部氨基酸的密码子?

答:由于密码子变偶性的存在,只要32种tRNA就能识别通用遗传密码中61个编码氨基酸的密码子。

在线粒体中只要22种tRNA就能识别全部氨基酸的密码子,这是由于密码的通用性和变异

性造成的。

⒏何谓密码的通用性和变异性?试分析线粒体遗传密码的特点。

答:密码的通用性是指不同的生物密码子基本相同,即共用一套密码子。密码的变异性是指

线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。

哺乳动物mtDNA的遗传密码与通用遗传密码有以下区别:UGA不是终止信号,而是色氨酸

的密码;多肽内部的甲硫氨酸由AUG和AUA两个密码子编码,起始甲硫氨酸由AUG,AUA,AUU和AUC四个密码子编码;AGA,AGG不是精氨酸的密码子,而是终止密码子,线粒体

密码系统中有4个终止密码子(UAA,UAG,AGA,AGG);有4组密码子其氨基酸特异性只

决定于三联体的前两位碱基,它们由一种tRNA即可识别;线粒体密码子特殊的变偶规则使

它只要22种tRNA就可识别全部的氨基酸。

⒐为什么遗传密码的编排具有防错的效果?

答:在遗传密码表中,氨基酸的极性通常由密码子的第二位碱基决定,简并性由第三位碱基

决定。这种分相使得密码子中一个碱基被更换,其结果或是仍然编码欺上相同的氨基酸,或是以理化性质最接近的氨基酸取代。从而将基因突变的危害降至最低程度,即这样的编排有

一定的防错效果。

⒑举例说明遗传密码的翻译受上下文的影响。

答:在有些情况下,密码子的含义可随上下文的不同而改变。如在大肠杆菌中,有时缬氨酸

密码子GUG和亮氨酸密码子UUC也可被用作起始密码子,当其位于特殊mRNA翻译的起始位置时,可被起始tRNA所识别。

第38章蛋白质合成及转运

⒈mRNA的概念是如何形成的?如何证实的?

答:(一)信使RNA概念的提出

信使RNA(messenger RNA, mRNA)的发现在分子生物学的发展中是一重大事件。由于其在细

胞总RNA中所占比例很小,很难把它分离出来。mRNA的概念首先是从理论上提出来的,

然后再用实验得到证实。 F. Jacob和J. Monod早在1961年就提出mRNA的概念。他们认为,既然蛋白质是在胞质中合成的,而编码蛋白质的信息载体DNA却在胞核内,那么必定有一

种中间物质用来传递DNA上的信息。他们在研究大肠杆菌中与乳糖代谢有关酶类的生物合

成时发现,诱导物如异丙基硫代半乳糖苷(β-isopropylthiogalaotoside,IPTG)的加入,可以立刻使酶蛋白的合成速度增加上千倍。而诱导物一旦消失,又可使酶蛋白的合成立刻停止。

这个实验结果给人的启示是:蛋白质合成的模板是一种不稳定的物质,其半衰期很短。他们对这种信使物质的性质作了如下的预言:

a.信使是一种多核苷酸;

b.信使的碱基组成应与相应的DNA的碱基组成相一致;

c.信使的长度应是不同的,因为由它们所编码的多肽链的长度是不同的;

d.在多肽合成时信使应与核糖体作短暂的结合;

e.信使的半衰期很短,所以信使的合成速度应该是很快的。

所以,这样的信使可能是一种RNA。但是当时已发现的两种RNA(rRNA、tRNA)都不具备这些特性。各种生物的核糖体RNA的大小差异不大,碱基组成的变化也不大。tRNA除了有与rRNA相同的问题以外,它们的分子也太小。所以这两种RNA都不能胜任信使的功能。可喜的是当时已有人提出过,细胞内有可能存在第三种RNA。在被噬菌体T2感染后的大肠杆菌中,有人发现有一种新的RNA,它的代谢速度极快,分子大小也参差不齐,碱基组成又与

T2DNA相一致。这些特征都符合信使分子的要求。

(二)信使RNA的实验证明

信使RNA的概念提出后,还必须要用实验来证明这种概念是否正确。为此,S.Brenner,F. Jacob 和M. Monocl等人设计了一组实验。用噬菌体T2感染大肠杆菌后,发现几乎所有在细胞内

合成的蛋白质都不再是细胞本身的蛋白质,而是噬菌体所编码的蛋白质;这些蛋白质的合成

速度与细胞总RNA的合成速度无关;T2感染后不久,细胞中出现了少量半衰期很短的RNA,它们的碱基组成与DNA是一致的。上述这些特性都与他们预言的信使分子特性十分符合。

那么噬菌体的感染又是怎样将细胞内蛋白质合成的方向改变了呢?当时曾提出了两种假设。

一种认为T2的感染引起了一类新的核糖体的合成,不同的核糖体控制不同的蛋白质的合成;

另一种假设认为核糖体并不具有这种特异性,它的功能只不过是从mRNA接受遗传信息而已。Brenner,Jacob,Meselson等人支持后一种看法。于是他们又设计了一组实验来解决这

个问题。

他们将大肠杆菌接种在含有重标记(15N和13C)的培养基上,再用T2感染。感染后立刻将细菌转移到含有轻同位素(14N和12 C)的培养基上。再将T2感染前与感染后的细菌破碎,分离出核糖体,用密度梯度超离心技术将带有重同位素的核糖体与带有轻同位素的核糖体分开。

他们还用32P或用14C-尿苷去标记RNA,并用35S-甲硫氨酸去标记新合成的蛋白质。这些

实验表明:

a.T2感染后并无轻标记核糖体出现,说明在T2感染后并未引起新核糖体的合成。

b.T2感染后,诱发了新的RNA的合成。大多数放射性标记的RNA出现在重标记核糖体中。这种新合成的RNA代谢速度极快。

c.35S标记的蛋白质只暂时出现在重标记核糖体中,说明新合成的蛋白质是在早就存在的

核糖体中合成的。

以后,S. spiegelman又用分子杂交技术证明:经T2感染后的新合成的RNA可以与T2DNA相杂交,但细胞内的其他RNA则不能与T2DNA杂交。

⒉核糖体的基本结构与功能有哪些?

答:核糖体有的游离在胞质中,称为游离核糖体(free ribosome)。有的附着在内质网表面,参与构成RER,称为固着核糖体或膜旁核糖体(fixed Ribosome)。

无论哪种核糖体,在执行功能时,即进行蛋白质合成时,常3-5个或几十个甚至更多聚集并与mRNA结合在一起,由mRNA分子与小亚基凹沟处结合,再与大亚基结合,形成一串,称为多聚核糖体(游离多聚核糖体及固着多聚核糖体),Polyribosome或Polysome。

核糖体是由大、小二个亚基组成的不规则颗粒。大亚基侧面观是低面向上的倒圆锥形,底面不是平的,边缘有三个突起,中央为一凹陷,似沙发的靠背和扶手。小亚基是略带弧形的长条,一面稍凹陷,一面稍外突,约1/3处有一细缢痕,将其分成大小两个不等部份。小亚基趴在大亚

基上,似沙发上趴了一只小猴。大小亚基凹陷部位彼此对应相结合,就形成了一个内部空间。

此部位可容纳mRNA、tRNA及进行氨基酸结合等反应。

此外,在大亚基内有一垂直的通道为中央管,所合成的多肽链由此排放,以免受蛋白酶的

分解。一般真核细胞中,106-107个/细胞,原核细胞中15-18×103个/细胞,蛋白质合成旺盛

的细胞可达1×1012个/细胞。

核糖体是蛋白质合成的场所。单个核糖体上存在四个活性部位,在蛋白质合成中各有专一的

识别作用:A部位,氨基酸部位或受位:主要在大亚基上,是接受氨酰基-tRNA的部位;P部位,肽基部位或供位:主要在小亚基上,是释放tRNA的部位;肽基转移酶部位(肽合成酶),简称T 因子,位于大亚基上,催化氨基酸间形成肽键,使肽链延长;GTP酶部位,即转位酶,简称G因子,对GTP具有活性,催化肽键从供体部位→受体部位。

另外,核糖体上还有许多与起始因子、延长因子、释放因子以及各种酶相结合的位点。

⒊假定以下列mRNA片断为模板,合成的多肽有何氨基酸序列:

5'GGUUUCAUGGACGAAUAAGUGAUAAUAU3'

答:根据不同的阅读框,该mRNA片断合成的多肽氨基酸序列有:

1 GGU UUC AUG GAC GAA UAA GUG AUA AUA 27

1 Gly Phe Met Asp Glu End Val Ile Ile

2 GUU UCA UGG ACG AAU AAG UGA UAA UAU 28

1 Val Ser Trp Thr Asn Lys End End Tyr

3 UUU CAU GGA CGA AUA AGU GAU AAU 26

0 Phe His Gly Arg Ile Ser Asp Asn 7

⒋按下列单链:

5'TCGTCGACGATGATCATCGGCTACTCG3'

试写出

①DNA复制时,另一种单链的序列;

②转录成的mRNA序列;

③合成的多肽序列。

答:①DNA复制时,另一种单链的序列:CGAGTAGCCGATGATCATCGTCGACGA

②转录成的mRNA序列:UCGUCGACGAUGAUCAUCGGCUACUCG

③合成的多肽序列:

1 UCG UCG ACG AUG AUC AUC GGC UAC UCG 27

1 S S T M I I G Y S

若按第2阅读框翻译,中间有终止密码子,故不可能按这种方式合成多肽。

3 GUC GAC GAU GAU CAU CGG CUA CUC 26

0 V D D D H R L L 7

⒌试设想一下,在转译过程中,在哪些环节上保证了所合成的多肽的正确无误?

答:转译又称“翻译”。即以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

转译的过程是:细胞核中DNA的某一区段转录出来的mRNA从核孔穿出来进入细胞质中,

与核糖体结合起来进行蛋白质的合成。

在转译过程中,在这些环节上保证了所合成的多肽的正确无误:每一氨酰-tRNA合成酶识别一个特定的氨基酸和与此氨基酸对应的tRNA;氨酰-tRNA合成酶纠正酰化的错误;起始tRNA 识别翻译的起始点;tRNA上的反密码子与mRNA上的密码子配对,确保合成氨基酸顺序的

正确性。

⒍氨酰-tRNA合成酶有何功能?

答:氨酰-tRNA合成酶的功能是将正确的氨基酸装载到相应的tRNA分子上。

⒎tRNA有何功能?

答:在蛋白质生物合成过程中,tRNA主要起转运氨基酸的作用。

⒏嘌呤霉素如何抑制蛋白质合成?

答:嘌呤霉素(puromycin;PM ) 是一种蛋白质合成抑制剂,它具有与tRNA分子末端类似的结

大学生物化学习题-答案

生物化学习题 蛋白质 —、填空题 1. 氨基酸的等电点(pl)是指—水溶液中,氨基酸分子净电荷为0时的溶液PH值。 2. 氨基酸在等电点时,主要以_兼性一离子形式存在,在pH>pI的溶液中,大部分以负/阴离子形式存在,在pH

生物化学课后答案张丽萍

9 糖代谢 1.假设细胞匀浆中存在代谢所需要的酶和辅酶等必需条件,若葡萄糖的C-1处用14C 标记,那么在下列代谢产物中能否找到14C 标记。 (1)CO 2;(2)乳酸;(3)丙氨酸。 解答: (1)能找到14C 标记的CO 2 葡萄糖→→丙酮酸(*C 1) →氧化脱羧生成标记的CO 2。 (2)能找到14C 标记的乳酸 丙酮酸(*C 1)加NADH+H +还原成乳酸。 (3)能找到14C 标记的丙氨酸 丙酮酸(*C 1) 加谷氨酸在谷丙转氨酶作用下生成14C 标记的丙氨酸。 2.某糖原分子生成 n 个葡糖-1-磷酸,该糖原可能有多少个分支及多少个α-(1—6)糖苷键(*设:糖原与磷酸化酶一次性作用生成)?如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和H 2O ,将净生成多少mol ?ATP? 解答:经磷酸化酶作用于糖原的非还原末端产生n 个葡萄糖-1-磷酸, 则该糖原可能有n +1个分支及n +1个α-(1—6)糖苷键。如果从糖原开始计算,lmol 葡萄糖彻底氧化为CO 2和 H 2O, 将净生成33molATP 。 3.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别? 解答:(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H + 。 NADH+H +代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。 (2) 生成ATP 的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP 。 葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP (甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖1,6--二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol ATP 。在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H +进入呼吸链将生成2× ATP ,所以净生成7mol ATP 。 4.O 2没有直接参与三羧酸循环,但没有O 2的存在,三羧酸循环就不能进行,为什么?丙二酸对三羧酸循环有何作用? 解答:三羧酸循环所产生的3个NADH+H +和1个FADH 2需进入呼吸链,将H +和电子传递给O 2生成H 2O 。没有O 2将造成NADH+H +和FADH 2的积累,而影响三羧酸循环的进行。丙二酸是琥珀酸脱氢酶的竟争性抑制剂,加入丙二酸会使三羧酸循环受阻。 5.患脚气病病人丙酮酸与α–酮戊二酸含量比正常人高(尤其是吃富含葡萄糖的食物后),请说明其理由。 解答:因为催化丙酮酸与α–酮戊二酸氧化脱羧的酶系需要TPP 作酶的辅因子, TPP 是VB 1的衍生物,患脚气病病人缺VB 1, 丙酮酸与α–酮戊二酸氧化受阻, 因而含量比正常人高。 6.油料作物种子萌发时,脂肪减少糖増加,利用生化机制解释该现象,写出所经历的主要生化反应历程。 解答:油料作物种子萠发时,脂肪减少,糖増加,表明脂肪转化成了糖。转化途径是:脂肪酸氧化分解成乙酰辅酶A,乙酰辅酶A 经乙醛酸循环中的异柠檬酸裂解酶与苹果酸合成酶催化, 生成草酰乙酸,再经糖异生转化为糖。 7.激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失.利用生化机制解释该现象。 解答:激烈运动时, 肌肉组织中氧气供应不足, 酵解作用加强, 生成大量的乳酸, 会感到肌肉酸痛,经过代谢, 乳酸可转变成葡萄糖等其他物质,或彻底氧化为CO 2和 H 2O , 因乳酸含量减少酸痛感会消失。 8.写出UDPG 的结构式。以葡萄糖为原料合成糖原时,每增加一个糖残基将消耗多少ATP? 解答:以葡萄糖为原料合成糖原时 , 每增加一个糖残基将消耗3molATP 。过程如下: ATP G 6P ADP +--+垐?噲?葡萄糖(激酶催化), G 6P G 1P ----垐?噲?(己糖磷酸异构酶催化), 2G 1P UTP UDPG PPi PPi H O 2Pi --+++??→垐?噲?(UDPG 焦磷酸化酶催化), 再在糖原合成酶催化下,UDPG 将葡萄糖残基加到糖原引物非还原端形成α-1,4-糖苷键。

生物化学题库及答案大全

《生物化学》题库 习题一参考答案 一、填空题 1蛋白质中的苯丙氨酸、酪氨酸和__色氨酸__3种氨基酸具有紫外吸收特性,因而使蛋白质在 280nm处有最大吸收值。 2蛋白质的二级结构最基本的有两种类型,它们是_α-螺旋结构__和___β-折叠结构__。前者的螺距为 0.54nm,每圈螺旋含_3.6__个氨基酸残基,每个氨基酸残基沿轴上升高度为__0.15nm____。天然 蛋白质中的该结构大都属于右手螺旋。 3氨基酸与茚三酮发生氧化脱羧脱氨反应生成__蓝紫色____色化合物,而脯氨酸与茚三酮反应 生成黄色化合物。 4当氨基酸溶液的pH=pI时,氨基酸以两性离子离子形式存在,当pH>pI时,氨基酸以负 离子形式存在。 5维持DNA双螺旋结构的因素有:碱基堆积力;氢键;离子键 6酶的活性中心包括结合部位和催化部位两个功能部位,其中前者直接与底物结合,决定酶的 专一性,后者是发生化学变化的部位,决定催化反应的性质。 72个H+或e经过细胞内的NADH和FADH2呼吸链时,各产生3个和2个ATP。 81分子葡萄糖转化为2分子乳酸净生成______2________分子ATP。 糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶;果糖磷酸激酶;丙酮酸激酶9。 10大肠杆菌RNA聚合酶全酶由σββα'2组成;核心酶的组成是'2ββα。参

与识别起始信号的是σ因子。 11按溶解性将维生素分为水溶性和脂溶性性维生素,其中前者主要包括V B1、V B2、V B6、 V B12、V C,后者主要包括V A、V D、V E、V K(每种类型至少写出三种维生素。) 12蛋白质的生物合成是以mRNA作为模板,tRNA作为运输氨基酸的工具,蛋白质合 成的场所是 核糖体。 13细胞内参与合成嘧啶碱基的氨基酸有:天冬氨酸和谷氨酰胺。 14、原核生物蛋白质合成的延伸阶段,氨基酸是以氨酰tRNA合成酶?GTP?EF-Tu三元复合体的形式进 位的。 15、脂肪酸的β-氧化包括氧化;水化;再氧化和硫解4步化学反应。 二、选择题 1、(E)反密码子GUA,所识别的密码子是: A.CAU B.UG C C.CGU D.UAC E.都不对 2、(C)下列哪一项不是蛋白质的性质之一? A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 3.(B)竞争性抑制剂作用特点是:

生物化学习题【题库】

生物化学习题集 生物化学教研室 二〇〇八年三月

生物化学习题 第一章核酸的结构和功能 一、选择题 1、热变性的DNA分子在适当条件下可以复性,条件之一是() A、骤然冷却 B、缓慢冷却 C、浓缩 D、加入浓的无机盐 2、在适宜条件下,核酸分子两条链通过杂交作用可自行形成双螺旋,取决于() A、DNA的Tm值 B、序列的重复程度 C、核酸链的长短 D、碱基序列的互补 3、核酸中核苷酸之间的连接方式是:() A、2’,5’—磷酸二酯键 B、氢键 C、3’,5’—磷酸二酯键 D、糖苷键 4、tRNA的分子结构特征是:() A、有反密码环和 3’—端有—CCA序列 B、有密码环 C、有反密码环和5’—端有—CCA序列 D、5’—端有—CCA序列 5、下列关于DNA分子中的碱基组成的定量关系哪个是不正确的?() A、C+A=G+T B、C=G C、A=T D、C+G=A+T 6、下面关于Watson-Crick DNA双螺旋结构模型的叙述中哪一项是正确的?() A、两条单链的走向是反平行的 B、碱基A和G配对 C、碱基之间共价结合 D、磷酸戊糖主链位于双螺旋侧 7、具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交?() A、5’-GpCpCpAp-3’ B、5’-GpCpCpApUp-3’ C、5’-UpApCpCpGp-3’ D、5’-TpApCpCpGp-3’ 8、RNA和DNA彻底水解后的产物() A、核糖相同,部分碱基不同 B、碱基相同,核糖不同 C、碱基不同,核糖不同 D、碱基不同,核糖相同 9、下列关于mRNA描述哪项是错误的?() A、原核细胞的mRNA在翻译开始前需加“PolyA”尾巴。 B、真核细胞mRNA在 3’端有特殊的“尾巴”结构 C、真核细胞mRNA在5’端有特殊的“帽子”结构 10、tRNA的三级结构是() A、三叶草叶形结构 B、倒L形结构 C、双螺旋结构 D、发夹结构 11、维系DNA双螺旋稳定的最主要的力是() A、氢键 B、离子键 C、碱基堆积力 D德华力 12、下列关于DNA的双螺旋二级结构稳定的因素中哪一项是不正确的?() A、3',5'-磷酸二酯键 C、互补碱基对之间的氢键 B、碱基堆积力 D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键 13、Tm是指( )的温度 A、双螺旋DNA达到完全变性时 B、双螺旋DNA开始变性时 C、双螺旋DNA结构失去1/2时 D、双螺旋结构失去1/4时

生物化学课后习题答案

第二章糖类 1、判断对错,如果认为错误,请说明原因。 (1)所有单糖都具有旋光性。 答:错。二羟酮糖没有手性中心。 (2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。 答:凡具有旋光性的物质一定具有变旋性:错。手性碳原子的构型在溶液中发生了 改变。大多数的具有旋光性的物质的溶液不会发生变旋现象。 具有变旋性的物质也一定具有旋光性:对。 (3)所有的单糖和寡糖都是还原糖。 答:错。有些寡糖的两个半缩醛羟基同时脱水缩合成苷。如:果糖。 (4)自然界中存在的单糖主要为D-型。 答:对。 (5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。 答:对。 2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。 答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。如果包括α-异构体、 β-异构体,则又要乘以2=16 种。 戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。没有环状所以没有α-异 构体、β-异构体。 3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-

苷还是β -苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖? 答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4) 葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。 蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩 醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。4 种连接方式α→α,α→β,β→α, β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。 4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25 D 为+ °,求该平衡混合物中α-D- 甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25 D 为+ °,纯β-D-甘露糖的[α]25 D 为- °); 解:设α-D-甘露糖的含量为x,则 (1-x)= X=% 该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:= 5、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的 结构式。. 6、水解仅含D-葡萄糖和D-甘露糖的一种多糖30g,将水解液稀释至平衡100mL。此水解液 在10cm 旋光管中测得的旋光度α为+ °,试计算该多糖中D-葡萄糖和D-甘露糖的物质的 量的比值(α/β-葡萄糖和α/β-甘露糖的[α]25 D 分别为+ °和+ °)。 解:[α]25 D= α25 D /cL×100= ( 30×1)×100= 设D-葡萄糖的含量为x,则 +(1-x)= X=%

生化习题及答案

一.选择题 1.唾液淀粉酶应属于下列那一类酶( D ); A 蛋白酶类 B 合成酶类 C 裂解酶类 D 水解酶类 2.酶活性部位上的基团一定是( A ); A 必需基团 B 结合基团 C 催化基团 D 非必需基团 3.实验上,丙二酸能抑制琥珀酸脱氢酶的活性,但可用增加底物浓度的方法来消除其抑制,这种抑制称为( C ); A 不可逆抑制 B 非竟争性抑制 C 竟争性抑制 D 非竟争性抑制的特殊形式 4.动物体肝脏内,若葡萄糖经糖酵解反应进行到3-磷酸甘油酸即停止了,则此过程可净生成( A )ATP; A 0 B -1 C 2 D 3 5.磷酸戊糖途径中,氢受体为( B ); A NAD+ B NADP+ C FA D D FMN 6.高等动物体内NADH呼吸链中,下列那一种化合物不是其电子传递体( D ); A 辅酶Q B 细胞色素b C 铁硫蛋白 D FAD 7.根据化学渗透假说理论,电子沿呼吸链传递时,在线粒体内产生了膜电势,其中下列正确的是( A ); A 内膜外侧为正,内侧为负 B 内膜外侧为负,内侧为正 C 外膜外侧为正,内侧为负 D 外膜外侧为负,内侧为正 8.动物体内,脂酰CoA经β-氧化作用脱氢,则这对氢原子可生成( B )分子ATP; A 3 B 2 C 4 D 1 9.高等动物体内,游离脂肪酸可通过下列那一种形式转运( C ); A 血浆脂蛋白 B 高密度脂蛋白 C 可溶性复合体 D 乳糜微粒 10.对于高等动物,下列属于必需氨基酸的是(B ); A 丙氨酸 B 苏氨酸 C 谷氨酰胺 D 脯氨酸 11.高等动物体内,谷丙转氨酶(GPT)最可能催化丙酮酸与下列那一种化合物反应( D );

生物化学试题带答案

一、选择题 1、蛋白质一级结构的主要化学键就是( E ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 2、蛋白质变性后可出现下列哪种变化( D ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物就是( B ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的就是( A ) A、IMP B、AMP C、GMP D、XMP E、ATP 6、体内氨基酸脱氨基最主要的方式就是( B ) A、氧化脱氨基作用 B、联合脱氨基作用 C、转氨基作用 D、非氧化脱氨基作用 E、脱水脱氨基作用 7、关于三羧酸循环,下列的叙述哪条不正确( D ) A、产生NADH与FADH2 B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 8、胆固醇生物合成的限速酶就是( C ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶就是酵解过程中的限速酶( D ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

10、DNA二级结构模型就是( B ) A、α一螺旋 B、走向相反的右手双螺旋 C、三股螺旋 D、走向相反的左手双螺旋 E、走向相同的右手双螺旋 11、下列维生素中参与转氨基作用的就是( D ) A、硫胺素 B、尼克酸 C、核黄素 D、磷酸吡哆醛 E、泛酸 12、人体嘌呤分解代谢的终产物就是( B ) A、尿素 B、尿酸 C、氨 D、β—丙氨酸 E、β—氨基异丁酸 13、蛋白质生物合成的起始信号就是( D ) A、UAG B、UAA C、UGA D、AUG E、AGU 14、非蛋白氮中含量最多的物质就是( D ) A、氨基酸 B、尿酸 C、肌酸 D、尿素 E、胆红素 15、脱氧核糖核苷酸生成的方式就是( B ) A、在一磷酸核苷水平上还原 B、在二磷酸核苷水平上还原 C、在三磷酸核苷水平上还原 D、在核苷水平上还原 16、妨碍胆道钙吸收的物质就是( E ) A、乳酸 B、氨基酸 C、抗坏血酸 D、柠檬酸 E、草酸盐 17、下列哪种途径在线粒体中进行( E ) A、糖的无氧酵介 B、糖元的分解 C、糖元的合成 D、糖的磷酸戊糖途径 E、三羧酸循环 18、关于DNA复制,下列哪项就是错误的( D ) A、真核细胞DNA有多个复制起始点 B、为半保留复制 C、亲代DNA双链都可作为模板 D、子代DNA的合成都就是连续进行的

生物化学题库及答案

生物化学试题库 蛋白质化学 一、填空题 1.构成蛋白质的氨基酸有 20 种,一般可根据氨基酸侧链(R)的 大小分为非极性侧链氨基酸和极性侧 链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有 疏水性;而后一类氨基酸侧链(或基团)共有的特征是具有亲水 性。碱性氨基酸(pH6~7时荷正电)有两3种,它们分别是赖氨 基酸和精。组氨基酸;酸性氨基酸也有两种,分别是天冬 氨基酸和谷氨基酸。 2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋 白质分子中含有苯丙氨基酸、酪氨基酸或 色氨基酸。 3.丝氨酸侧链特征基团是-OH ;半胱氨酸的侧链基团是-SH ;组氨酸的侧链基团是 。这三种氨基酸三字母代表符号分别是 4.氨基酸与水合印三酮反应的基团是氨基,除脯氨酸以外反应产物 的颜色是蓝紫色;因为脯氨酸是 —亚氨基酸,它与水合印三酮的反 应则显示黄色。 5.蛋白质结构中主键称为肽键,次级键有、 、

氢键疏水键、范德华力、二硫键;次级键中属于共价键的是二硫键键。 6.镰刀状贫血症是最早认识的一种分子病,患者的血红蛋白分子β亚基的第六位 谷氨酸被缬氨酸所替代,前一种氨基酸为极性侧链氨基酸,后者为非极性侧链氨基酸,这种微小的差异导致红血蛋白分子在氧分压较低时易于聚集,氧合能力下降,而易引起溶血性贫血。 7.Edman反应的主要试剂是异硫氰酸苯酯;在寡肽或多肽序列测定中,Edman反应的主要特点是从N-端依次对氨基酸进行分析鉴定。 8.蛋白质二级结构的基本类型有α-螺旋、、β-折叠β转角无规卷曲 和。其中维持前三种二级结构稳定键的次级键为氢 键。此外多肽链中决定这些结构的形成与存在的根本性因与氨基酸种类数目排列次序、、 有关。而当我肽链中出现脯氨酸残基的时候,多肽链的αa-螺旋往往会中断。 9.蛋白质水溶液是一种比较稳定的亲水胶体,其稳定性主要因素有两个,分别是分子表面有水化膜同性电荷斥力 和。

生物化学课后答案_张丽萍

1 绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究: (1)生物机体的化学组成、生物分子的结构、性质及功能; (2)生物分子分解与合成及反应过程中的能量变化; (3)生物遗传信息的储存、传递和表达; (4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。 解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等6种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的4个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成4个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、 磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH )、羰基(C O )、羧基(—COOH )、巯基(—SH )、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。 生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 2 蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1) N-末端测定法:常采用2,4―二硝基氟苯法、Edman 降解法、丹磺酰氯法。 ①2,4―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2,4―二硝基氟苯(2,4―DNFB )反应(Sanger 反应),生成DNP ―多肽或DNP ―蛋白质。由于DNFB 与氨基形成的键对酸水解远比肽键稳定,因此DNP ―多肽经酸水解后,只有N ―末端氨基酸为黄色DNP ―氨基酸衍生物,其余的都是游离氨基酸。 ② 丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNS ―Cl )反应生成DNS ―多肽或DNS ―蛋白质。由于DNS 与氨基形成的键对酸水解远比肽键稳定,因此DNS ―多肽经酸水解后,只有N ―末端氨基酸为强烈的荧光物质DNS ―氨基酸,其余的都是游离氨基酸。 ③ 苯异硫氰酸脂(PITC 或Edman 降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC )反应(Edman 反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N ―末端的PTC ―氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去N ―末端氨基酸后剩下的肽链仍然是完整的。 ④ 氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的N 端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的N 端残基序列。 (2)C ―末端测定法:常采用肼解法、还原法、羧肽酶法。 肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除C 端氨基酸以游离形式存 在外,其他氨基酸都转变为相应的氨基酸酰肼化物。

生化练习题(带答案)

第一章蛋白质 选择题 1.某一溶液中蛋白质的百分含量为45%,此溶液的蛋白质氮的百分浓度为:E A.8.3% B.9.8% C.6.7% D.5.4% E.7.2% 2.下列含有两个羧基的氨基酸是:D A.组氨酸B.赖氨酸C.甘氨酸D.天冬氨酸E.色氨酸 3.下列哪一种氨基酸是亚氨基酸:A A.脯氨酸B.焦谷氨酸C.亮氨酸D.丝氨酸E.酪氨酸 4.维持蛋白质一级结构的主要化学键是:C A.离子键B.疏水键C.肽键D.氢键E.二硫键 5.关于肽键特点的错误叙述是:E A.肽键中的C-N键较C-N单键短 B.肽键中的C-N键有部分双键性质 C.肽键的羰基氧和亚氨氢为反式构型 D.与C-N相连的六个原子处于同一平面上 E.肽键的旋转性,使蛋白质形成各种立体构象 6.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有这种结构 B.有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 7.具有四级结构的蛋白质特征是:E A.依赖肽键维系四级结构的稳定性 B.在三级结构的基础上,由二硫键将各多肽链进一步折叠、盘曲形成 C.每条多肽链都具有独立的生物学活性 D.分子中必定含有辅基 E.由两条或两条以上具有三级结构的多肽链组成 8.含有Ala,Asp,Lys,Cys的混合液,其pI依次分别为6.0,2.77,9.74,5.07,在pH9环境中电泳分离这四种氨基酸,自正极开始,电泳区带的顺序是:B A.Ala,Cys,Lys,Asp B.Asp,Cys,Ala,Lys C.Lys,Ala,Cys,Asp D.Cys,Lys,Ala,Asp E.Asp,Ala,Lys,Cys 9.变性蛋白质的主要特点是:D A.粘度下降 B.溶解度增加

生物化学习题及答案_酶

酶 (一)名词解释 值) 1.米氏常数(K m 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号 1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid) 4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide) 6.CoA(coenzyme A) 7.ACP(acyl carrier protein) 8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是产生的,具有催化活性的。2.酶具有、、和等催化特点。3.影响酶促反应速度的因素有、、、、和。 4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。 5.与酶催化的高效率有关的因素有、、、 、等。 6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。它是酶。 8.转氨酶的辅因子为即维生素。其有三种形式,分别为、、,其中在氨基酸代谢中非常重要,是、和的辅酶。 9.叶酸以其起辅酶的作用,它有和两种还原形式,后者的功能作为载体。 10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到个多肽。 11.全酶由和组成,在催化反应时,二者所起的作用不同,其中决定酶的专一性和高效率,起传递电子、原子或化学基团的作用。12.辅助因子包括、和等。其中与酶蛋白结合紧密,需要除去,与酶蛋白结合疏松,可以用除去。13.T.R.Cech和S.Alman因各自发现了而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类、、、、、和。

生物化学试题及答案 (1)

121.胆固醇在体内的主要代谢去路是( C ) A.转变成胆固醇酯 B.转变为维生素D3 C.合成胆汁酸 D.合成类固醇激素 E.转变为二氢胆固醇 125.肝细胞内脂肪合成后的主要去向是( C ) A.被肝细胞氧化分解而使肝细胞获得能量 B.在肝细胞内水解 C.在肝细胞内合成VLDL并分泌入血 D.在肝内储存 E.转变为其它物质127.乳糜微粒中含量最多的组分是( C ) A.脂肪酸 B.甘油三酯 C.磷脂酰胆碱 D.蛋白质 E.胆固醇129.载脂蛋白不具备的下列哪种功能( C ) A.稳定脂蛋白结构 B.激活肝外脂蛋白脂肪酶 C.激活激素敏感性脂肪酶 D.激活卵磷脂胆固醇脂酰转移酶 E.激活肝脂肪酶 131.血浆脂蛋白中转运外源性脂肪的是( A ) (内源) 136.高密度脂蛋白的主要功能是( D ) A.转运外源性脂肪 B.转运内源性脂肪 C.转运胆固醇 D.逆转胆固醇 E.转运游离脂肪酸 138.家族性高胆固醇血症纯合子的原发性代谢障碍是( C ) A.缺乏载脂蛋白B B.由VLDL生成LDL增加 C.细胞膜LDL受体功能缺陷 D.肝脏HMG-CoA还原酶活性增加 E.脂酰胆固醇脂酰转移酶(ACAT)活性降低 139.下列哪种磷脂含有胆碱( B ) A.脑磷脂 B.卵磷脂 C.心磷脂 D.磷脂酸 E.脑苷脂

二、多项选择题 203.下列物质中与脂肪消化吸收有关的是( A D E ) A.胰脂酶 B.脂蛋白脂肪酶 C.激素敏感性脂肪酶 D.辅脂酶 E.胆酸 204.脂解激素是( A B D E ) A.肾上腺素 B.胰高血糖素 C.胰岛素 D.促甲状腺素 E.甲状腺素 206.必需脂肪酸包括( C D E ) A.油酸 B.软油酸 C.亚油酸 D.亚麻酸 E.花生四烯酸208.脂肪酸氧化产生乙酰CoA,不参与下列哪些代谢( A E ) A.合成葡萄糖 B.再合成脂肪酸 C.合成酮体 D.合成胆固醇 E.参与鸟氨酸循环 216.直接参与胆固醇合成的物质是( A C E ) A.乙酰CoA B.丙二酰CoA 217.胆固醇在体内可以转变为( B D E ) A.维生素D2 B.睾酮 C.胆红素 D.醛固酮 E.鹅胆酸220.合成甘油磷脂共同需要的原料( A B E ) A.甘油 B.脂肪酸 C.胆碱 D.乙醇胺 E.磷酸盐222.脂蛋白的结构是( A B C D E ) A.脂蛋白呈球状颗粒 B.脂蛋白具有亲水表面和疏水核心 C.载脂蛋白位于表面、VLDL主要以甘油三酯为核心、HDL主要的胆固醇酯为核心

生化课后习题答案

一绪论 1.生物化学研究的对象和内容是什么? 解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。 2.你已经学过的课程中哪些内容与生物化学有关。 提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。 3.说明生物分子的元素组成和分子组成有哪些相似的规侓。解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等 6 种是解答蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的 4 个电子可使碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成 4 个共价键的性质,使得碳骨架可形成线性、分支以及环状的多 O 种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(—NH2)、羟基(—OH)、羰基(C)、羧基(—COOH)、

巯基(—SH)、磷酸基(—PO4 )等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是20 种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端→C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过3′, 5′-磷酸二酯键相连,核酸链也具有方向性(5′、→3′ ),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。 二蛋白质化学 1.用于测定蛋白质多肽链N 端、C 端的常用方法有哪些?基本原理是什么? 解答:(1)N-末端测定法:常采用2, 4 ―二硝基氟苯法、Edman 降解法、丹磺酰氯法。①2, 4 ―二硝基氟苯(DNFB 或FDNB)法:多肽或蛋白质的游离末端氨基与2, 4 ―二硝基氟苯2, 4 ―DNFB)(反应(Sanger 反应)生成DNP―

生物化学题库(含答案).

蛋白质 一、填空R (1)氨基酸的结构通式为H2N-C-COOH 。 (2)组成蛋白质分子的碱性氨基酸有赖氨酸、组氨酸、精氨酸,酸性氨基酸有天冬氨酸、谷氨酸。 (3)氨基酸的等电点pI是指氨基酸所带净电荷为零时溶液的pH值。 (4)蛋白质的常见结构有α-螺旋β-折叠β-转角和无规卷曲。 (5)SDS-PAGE纯化分离蛋白质是根据各种蛋白质分子量大小不同。 (6)氨基酸在等电点时主要以两性离子形式存在,在pH>pI时的溶液中,大部分以__阴_离子形式存在,在pH

生物化学b2课后题答案汇总

蛋白质降解及氨基酸代谢: 1.氨基酸脱氨基后C链如何进入TCA循环.(30分) P315 图30-13 2.说明尿素形成机制和意义(40分) P311-314 概括精要回答 3.提高Asp和Glu的合成会对TCA循环产生何种影响?细胞会怎样应付这种状况?(30分) 参考答案: 核苷酸代谢及蛋白质合成题目及解答精要: 1.生物体内嘌呤环和嘧啶环是如何合成的?有哪些氨基酸直接参与核苷酸的合成? 嘌呤环(Gln+Gly+Asp)嘧啶环(Gln+Asp) 2.简要说明糖、脂肪、氨基酸和核苷酸代谢之间的相互联系? 直接做图,并标注连接点 生物氧化及电子传递题目及解答精要: 名词解释:(60分,10分一题) 甘油-3-磷酸穿梭:P139 需概括 苹果酸-天冬氨酸穿梭:P139 需概括 电子传递链:P119 解偶联剂:P137 化学渗透假说:P131 生物氧化:P114 两个出处,总结概括 问答题:(10分) 1.比较底物水平磷酸化和氧化磷酸化两者的异同? 参考答案: 也可自己概括 2.以前有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但不久即放弃使用,为什么?(10分)

参考答案: 3.已知有两种新的代谢抑制剂A和B:将离体的肝线粒体制剂与丙酮酸、氧气、ADP和无机磷酸一起保温,发现加入抑制剂A,电子传递和氧化磷酸化就被抑制;当既加入A又加入抑制剂B的时候,电子传递恢复了,但氧化磷酸化仍不能进行,请问:①.抑制剂A和B属于电子传递抑制剂,氧化磷酸化抑制剂,还是解偶联剂?②.给出作用方式和A、B类似的抑制剂?(20分) 参考答案: 糖代谢及其他途径: 题目及解答精要: 1.为什么糖原讲解选用磷酸解,而不是水解?(50分) P178 2.糖酵解、TCA循环、糖异生、戊糖磷酸途径和乙醛酸循环之间如何联系?(50分) 糖酵解(无氧),产生丙酮酸进入TCA循环(有氧)(10分) 糖异生糖酵解逆反应(1,3,10步反应单独代谢流程)(10分) TCA循环中草酰乙酸可进入唐异生(10分) 戊糖磷酸途径是糖酵解中G-6-P出延伸出来并又回去的一条戊糖支路(10分) 乙醛酸循环是TCA循环在延胡羧酸和L-苹果酸间的一条捷径(10分) 糖酵解题目及解答精要: 1.名词解释(每个10分) 糖酵解:P63 激酶:P68 底物水平磷酸化:笔记 2.问答题 ①为什么砷酸是糖酵解作用的毒物?(15分) P75 ②糖酵解中两个耗能阶段是什么?两个产能阶段是什么?三个调控位点在哪里?(15分) P80 表22-1 ③糖酵解中磷酸基团参与了哪些反应?(20分) 在1,3,6,7,8,10步参加了反应 ④当肌肉组织激烈活动时,与休息时相比需要更多的ATP。在骨骼肌里,例如兔子的腿肌或火鸡的飞行肌,需要的A TP几乎全部由厌氧酵解反应产生的。假设骨骼肌缺乏乳酸脱氢酶,它们能否进行激烈的体力活动,即能否借

生化课后题目及答案

2 蛋白质化学 2.测得一种血红蛋白含铁0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸1.65%和异亮氨酸2.48%,问其最低相对分子质量是多少? 解答: (1)血红蛋白: 55.8100100131000.426??=铁的相对原子质量最低相对分子质量==铁的百分含量 (2)酶: 因为亮氨酸和异亮氨酸的相对分子质量相等,所以亮氨酸和异亮氨酸的残基数之比为: 1.65%: 2.48%=2:3,因此,该酶分子中至少含有2个亮氨酸,3个异亮氨酸。 ()r 2131.11100159001.65M ??=≈最低 ()r 3131.11100159002.48M ??=≈最低 3.指出下面pH 条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点? (1)胃蛋白酶(pI 1.0),在pH 5.0; (2)血清清蛋白(pI 4.9),在pH 6.0; (3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0; 解答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动; (2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动; (3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动; α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。 6.由下列信息求八肽的序列。 (1)酸水解得 Ala ,Arg ,Leu ,Met ,Phe ,Thr ,2Val 。 (2)Sanger 试剂处理得DNP -Ala 。 (3)胰蛋白酶处理得Ala ,Arg ,Thr 和 Leu ,Met ,Phe ,2Val 。当以Sanger 试剂处理时分别得到DNP -Ala 和DNP -Val 。 (4)溴化氰处理得 Ala ,Arg ,高丝氨酸内酯,Thr ,2Val ,和 Leu ,Phe ,当用Sanger 试剂处理时,分别得DNP -Ala 和DNP -Leu 。 解答:由(2)推出N 末端为Ala ;由(3)推出Val 位于N 端第四,Arg 为第三,而Thr 为第二;溴化氰裂解,得出N 端第六位是Met ,由于第七位是Leu ,所以Phe 为第八;由(4),第五为Val 。所以八肽为:Ala-Thr-Arg-Val-Val-Met-Leu-Phe 。 7.一个α螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。 解答:180/3.6=50圈,50×0.54=27nm ,该片段中含有50圈螺旋,其轴长为27nm 。 8.当一种四肽与FDNB 反应后,用5.7mol/LHCl 水解得到DNP-Val 及其他3种氨基酸;

生物化学试题及答案(4)

生物化学试题及答案(4) 第四章糖代谢 【测试题】 一、名词解释 1.糖酵解(glycolysis)11.糖原累积症 2.糖的有氧氧化12.糖酵解途径 3.磷酸戊糖途径13.血糖(blood sugar) 4.糖异生(glyconoegenesis)14.高血糖(hyperglycemin) 5.糖原的合成与分解15.低血糖(hypoglycemin) 6.三羧酸循环(krebs循环)16.肾糖阈 7.巴斯德效应(Pastuer效应) 17.糖尿病 8.丙酮酸羧化支路18.低血糖休克 9.乳酸循环(coris循环)19.活性葡萄糖 10.三碳途径20.底物循环 二、填空题 21.葡萄糖在体内主要分解代谢途径有、和。 22.糖酵解反应的进行亚细胞定位是在,最终产物为。 23.糖酵解途径中仅有的脱氢反应是在酶催化下完成的,受氢体是。两个 底物水平磷酸化反应分别由酶和酶催化。 24.肝糖原酵解的关键酶分别是、和丙酮酸激酶。 25.6—磷酸果糖激酶—1最强的变构激活剂是,是由6—磷酸果糖激酶—2催化生成,该酶是一双功能酶同时具有和两种活性。 26.1分子葡萄糖经糖酵解生成分子ATP,净生成分子A TP,其主要生理意义在于。 27.由于成熟红细胞没有,完全依赖供给能量。 28.丙酮酸脱氢酶复合体含有维生素、、、和。 29.三羧酸循环是由与缩合成柠檬酸开始,每循环一次有次脱氢、 - 次脱羧和次底物水平磷酸化,共生成分子A TP。 30.在三羧酸循环中催化氧化脱羧的酶分别是和。 31.糖有氧氧化反应的进行亚细胞定位是和。1分子葡萄糖氧化成CO2和H2O净生成或分子ATP。 32.6—磷酸果糖激酶—1有两个A TP结合位点,一是ATP作为底物结合,另一是与ATP亲和能力较低,需较高浓度A TP才能与之结合。 33.人体主要通过途径,为核酸的生物合成提供。 34.糖原合成与分解的关键酶分别是和。在糖原分解代谢时肝主要受的调控,而肌肉主要受的调控。 35.因肝脏含有酶,故能使糖原分解成葡萄糖,而肌肉中缺乏此酶,故肌糖原分解增强时,生成增多。 36.糖异生主要器官是,其次是。 37.糖异生的主要原料为、和。 38.糖异生过程中的关键酶分别是、、和。 39.调节血糖最主要的激素分别是和。 40.在饥饿状态下,维持血糖浓度恒定的主要代谢途径是。 三、选择题

相关文档
最新文档