导线的力学计算讲解

导线的力学计算讲解
导线的力学计算讲解

第二章导线应力弧垂分析

·导线的比载

·导线应力的概念

·悬点等高时导线弧垂、线长和应力关系

·悬挂点不等高时导线的应力与弧垂

·水平档距和垂直档距

·导线的状态方程

·临界档距

·最大弧垂的计算及判断

·导线应力、弧垂计算步骤

·导线的机械特性曲线

[内容提要及要求]

本章是全书的重点,主要是系统地介绍导线力学计算原理。通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。

第一节导线的比载

字体大小小中大

作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。在导线计算中,常把导线受到的机械荷载用比载表示。

由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。此外比载同样是矢量,其方向与外力作用方向相同。所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:

1.自重比载

导线本身重量所造成的比载称为自重比载,按下式计算

(2-1)

式中:g1—导线的自重比载,N/m.mm2;

m0一每公里导线的质量,kg/km;

S—导线截面积,mm2。

2.冰重比载

导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算:

(2-2)

式中:g2—导线的冰重比载,N/m.mm2;

b—覆冰厚度,mm;

d—导线直径,mm;

S—导线截面积,mm2。

图2-1覆冰的圆柱体

设覆冰圆筒体积为:

取覆冰密度,则冰重比载为:

3.导线自重和冰重总比载

导线自重和冰重总比载等于二者之和,即

g3=g1+g2(2-3)

式中:g3—导线自重和冰重比载总比载,N/m.mm2。

4.无冰时风压比载

无冰时作用在导线上每平方毫米的风压荷载称为无冰时风压比载,可按下式计算:

(2-3)

式中:g4—无冰时风压比载,N/m.mm2;

C—风载体系数,当导线直径d< 17mm时,C=1.2;当导线直径d≥17mm时,C=1.1;

v—设计风速,m/s;

d—导线直径,mm;

S—导线截面积,mm2;

a—风速不均匀系数,采用表2-1所列数值。

表2-1各种风速下的风速不均匀系数a

设计风速(m/s)20以下20-30 30-35 35以上

a 1.0 0.85 0.75 0.70

作用在导线上的风压(风荷载)是由空气运动所引起的,表现为气流的动能所决定,这个动能的大小除与风速大小有关外还与空气的容重和重力加速度有关。

由物理学中证明,每立方米的空气动能(又称速度头)表示关系为:,其中q —速度头(N /m2),v—风速(m/s),m—空气质量(kg/m3),当考虑一般情况下,假定在标准大气压、平均气温、干燥空气等环境条件下,则每立方米的空气动能为

实际上速度头还只是个理论风压,而作用在导线或避雷线上的横方向的风压力要用下式计算:

式中:P h—迎风面承受的横向风荷载(N)。式中引出几个系数是考虑线路受到风压的实际可能情况,如已说明的风速不均匀系数α和风载体型系数C等。另外,K表示风压高度变化系数,若考虑杆塔平均高度为15m时则取1;θ表示风向与线路方向的夹角,若假定风向与导线轴向垂直时,则θ=90°;F表示受风的平面面积(m2),设导线直径为d(mm),导线长度为L(m),则F=dL×10-3。

由此分析则导线的风压计算式为:

相应无冰时风压比载为:

5.覆冰时的风压比载

覆冰导线每平方毫米的风压荷载称为覆冰风压比载,此时受风面增大,有效直径为(d+2b),可按下式计算:

(2-5)

式中:g5—覆冰风压比载,N/m.mm2;

C—风载体型系数,取C=1.2;

6.无冰有风时的综合比载

无冰有风时,导线上作用着垂直方向的比载为g1和水平方向的比载为g4,按向量合成可得综合比载为g6,如图2-2所示:

图2-2无冰有风综合比载

则g6称为无冰有风时的综合比载,可按下式计算:

(2-6)

式中,g6—无冰有风时的综合比载,N/m.mm2。

7.有冰有风时的综合比载

导线覆冰有风时,综合比载g7为垂直比载g3和覆冰风压比载g5向量和,如图2-3所示,

图2-3覆冰有风综合比载

可按下式计算:

(2-6)

式中g7一有冰有风时的综合比载,N/m.mm2。

以上讲了7种比载,它们各代表了不同的含义,而这个不同是针对不同气象条件而言的,在以后导线力学计算时则必须明确这些比载的下标数字的意义。

[例2-1] 有一条架空线路通过Ⅳ类气象区,所用导线为LGJ一120/20型,试计算导线的各种比载。

解:

首先由书中附录查出导线LGJ一120/20型的规格参数为:计算直径d=15.07mm,铝、钢两部分组成的总截面积S=134.49mm2,单位长度导线质量m0=466.8kg/km。

由表1-8查出Ⅳ类气象区的气象条件为:覆冰厚度为b=5mm,覆冰时风速V=10m/s,最大风速V=25m/s,雷电过电压风速V=10m/s,内过电压时风速V=15m/s。下面分别计算各种比载。

(1)自重比载g1:

g1=9.80665 ×m0/S ×10-3

=9.80665×466.8/134.49×10-3

=34.04×10-3[N/m.mm2]

(2)覆冰比载g2:

g2(5)=27.728×b(d+b) /S ×10-3

=27.728×5(15.07+5)/134.49 ×10-3

=20.69×10-3[N/m.mm2]

(3)垂直比载g3:

g3(5)=g1+g2(5)=54.73×10-3[N/m.mm2]

(4)无冰时风压比载g4:

由表2-1查出当风速为20~30m/s时,α=0.85,当风速为20m/s以下时,α=1.0,风载体形系数C=1.2,由公式计算

g4(10)=0.6128×1.0×1.2×102/134.49×15.07×10-3 =8.24×10-3[N/m.mm2]

g4(15)=0.6128×1.0×1.2×152/134.49×15.07×10-3=18.54×10-3[N/m.mm2]

g4(25)=0.6128×1.0×1.2×252/134.49×15.07×10-3=43.77×10-3[N/m.mm2]

(5)覆冰时风压比载g5:

由表1-2查出α=1.0,已知C=1.2,则

g5(5,10)=0.6128×1.0×1.2(15.07+2×5)×102/S×10-3=13.71×10-3[N/m.mm2]

(6)无冰时综合比载g6:

几种风速下的比载由公式

计算,分别为

(7)覆冰时综合比载g7:

当重力加速度采用9.8值计算时,其结果只是微小差别。

第二节导线应力的概念

字体大小小中大

悬挂于两基杆塔之间的一档导线,在导线自重、冰重和风压等荷载作用下,任一横截面

上均有一内力存在。根据材料力学中应力的定义可知,导线应力是指导线单位横截面积上的

内力。因导线上作用的荷载是沿导线长度均匀分布的,所以一档导线中各点的应力是不相等

的,且导线上某点应力的方向与导线悬挂曲线该点的切线方向相同,从而可知,一档导线中其导线最低点应力的方向是水平的。

所以,在导线应力、弧垂分析中,除特别指明外,导线应力都是指档内导线最低点的水平应力,常用σ0表示。

关于悬挂于两基杆塔之间的一档导线,其弧垂与应力的关系,我们知道:弧垂越大,则导线的应力越小;反之,弧垂越小,应力越大。因此,从导线强度安全角度考虑,应加大导线弧垂,从而减小应力,以提高安全系数。

但是,若片面地强调增大弧垂,则为保证带电线的对地安全距离,在档距相同的条件下,则必须增加杆高,或在相同杆高条件下缩小档距,结果使线路基建投资成倍增加。同时,在线间距离不变的条件下,增大弧垂也就增加了运行中发生混线事故的机会。

实际上安全和经济是一对矛盾的关系,为此我们的处理方法是:在导线机械强度允许的范围内,尽量减小弧垂,从而既可以最大限度地利用导线的机械强度,又降低了杆塔高度。

导线的机械强度允许的最大应力称为最大允许应力,用σmax表示。架空送电线路设计技术规程规定,导线和避雷线的设计安全系数不应小于2.5。所以,导线的最大允许应力为:

(2-8)

式中[σmax]—导线最低点的最大允许应力,MPa;

T cal—导线的计算拉断力,N;

S—导线的计算面积,,

σcal—导线的计算破坏应力,MPa;

2.5—导线最小允许安全系数。

在一条线路的设计、施工过程中,一般说我们应考虑导线在各种气象条件中,当出现最大应力时的应

力恰好等于导线的最大允许应力,即可以满足技术要求。但是由于地形或孤立档等条件限制,有时必须把最大应力控制在比最大允许应力小的某一水平上以确保线路运行的安全性,即安全系数K>2.5。因此,我们把设计时所取定的最大应力气象条件时导线应力的最大使用值称最大使用应力,用σmax表示,则:

(2-9)

式中σmax—导线最低点的最大使用应力,MPa;

K—导线强度安全系数。

由此可知,当K=2.5时,有σmax=[σmax],这时,我们称导线按正常应力架设;当K>2.5时,则,这时σmax<[σmax],我们称导线按松弛应力架设。导线的最大使用应力是导线的控制应力之一,后边还要进行讨论。

工程中,一般导线安全系数均取2.5,但变电所进出线档的导线最大使用应力常是受变电所进出线构架的最大允许应力控制的;对档距较小的其他孤立档,导线最大使用应力则往往是受紧线施工时的允许过牵引长度控制;对个别地形高差很大的耐张段,导线最大使用应力又受导线悬挂点应力控制。这些情况下,导线安全系数均大于2.5的,为松弛应力架设。

导线的应力是随气象条件变化的,导线最低点在最大应力气象条件时的应力为最大使用应力,则其他气象条件时应力必小于最大使用应力。

第三节悬点等高时导线弧垂、线长和应力关系

字体大小小中大

二、平抛物线方程

平抛物线方程是悬链线方程的简化形式之一。它是假设作用在导线弧长上的荷载沿

导线在x轴上的投影均匀分布而推出的,在这一假设下,图2-6中导线所受垂直荷载变成

即用直线代替弧长,从而使积分简化,由此导出平面抛物方程为

(2-17)

相应导线的弧长方程式为:

(2-18)

实际上式(2-17)是式(2-14)取前一项的结果,式(2-18)是式(2-16)取前两项的结果,这恰说明它是悬链线方程的近似表达式。

当悬挂点高差h/≤10%时,用平抛物线方程进行导线力学计算,可以符合工程精度要求。

三、悬挂点等高时导线的应力、弧垂与

(一)导线的弧垂

将导线悬挂曲线上任意一点至两悬挂点连线在铅直方向上的距离称为该点的弧垂。一般所说的弧垂,均指档内最大弧垂(除了特别说明外)

1.最大弧垂计算

如图2-7所示的悬点等高情况。将式(2-13)中的x以代入,则得最大弧垂f的精确计算公式(悬链线式)如下

(2-19)

式中:f—导线的最大弧垂,m;

σ0—水平导线最低点应力,MPa ;

g—导线的比载,N/m.mm2;

—档距,m。

同理,在实际工程中当弧垂与档距之比≤10%时,可将式(2-17)中的x以代入,得最大弧垂的近似计算公式(平面抛物线计算式):

(2-20)

式(2-20)在线路设计中会经常用到。

2.任意一点的弧垂计算

如图2-7所示,

图2-7悬线等高时弧垂

任意一点的弧垂可表示为:

利用悬链线方程进行计算,可将式(2-13)和式(2-19)代入上式,经整理得:

(2-21) 式中—导线任一点D(x,y)到悬挂点A、B的水平距离;

若利用平抛物线方程,可将式(2-17)和式(2-20)进行计算,得到任意一点弧垂的近似计算式:

(2-22) (二)导线的应力

1.导线的受力特点

由于将导线视为柔索,则导线在任一点仅承受切向张力。因导线不同点处由于其自身重量不同,则切

向张力也是不同的,即导线的张力随导线的长度而变化。

但在线路设计中我们主要关心两个特殊点的受力情况:一是导线最低点受力;二是导线悬挂点受力。

导线的受力特点,由图2-6的受力三角形分析,导线在任一点受到的张力大小均可以分解为垂直分量和水平分量两个分力,其特点是:

①导线最低点处只承受水平张力,而垂直张力为零;

②导线任一点水平张力就等于导线最低点的张力;

③导线任一点张力的垂直分量等于该点到导线最低点之间导线上荷载(G)。

2.导线上任意一点的应力

如图2-6所示,导线悬挂点等高时,其导线的应力计算如下。

根据前述的导线受力条件,导线在任一点的张力T x为:

(2-23)

要消去不定量弧长L x,用导线其它已知数据表示,则由式(2-13)和式(2-15),即悬链线方程和弧长方程可以导出:

方程两边同乘以(gS)2得:

(2-24)

将方程式(2-24)代入式(2-23)中,且对应项相等关系,可得:

(2-25)

则得导线上任意一点处的轴向应力为:

(2-26)

此为导线应力计算中的重要公式,它表明导线任一点的应力等于导线最低点的应力再加上该点纵坐标与比载的乘积,且是个代数和。

根据式(2-23)还可以得到导线轴向应力的另一种计算公式,即:

即由受力三角形关系除以S直接得到,它表示导线任一点应力等于其最低点的应力和此点到最低点间导线上单位面积荷载的矢量和。

其形式还可以表示为:

(2-27)

式中α—导线任一点切线方向与x轴的夹角。式(2-26)和式(2-27)是计算导线应力的常用公式。

3.导线悬挂点的应力

导线悬挂点的轴向应力σA根据式(2-26)和式(2-27)可得到

式中符号意义同前。

4.一档线长

在不同气象条件下,作用在导线上的荷载不同,这还将引起导线的伸长或收缩,因此线长L也是一个变化量。尽管线路设计中很少直接用到这个量,但线路计算的诸多公式大都与它有关。

根据式(2-15),导线最低点至任一点的曲线弧长为:

悬挂点等高时,令x=代入上式得到半档线长,则一档线长为:

(2-29)

式中L—悬点等高时一档线长,m。

一档线长展开成级数表达式

(2-30)

在档距不太大时,可取上式中前两项作为一档线长的平抛物线近似公式

(2-31)

又可写成

(2-32)

第四节悬挂点不等高时导线的应力与弧垂

字体大小小中大

一、导线的斜抛物线方程

导线悬垂曲线的悬链线方程是假定荷载沿导线曲线孤长的均匀分布导出的,是精确的

计算方法。工程计算中,在满足计算精度要求的情况下,可以采用较简单的近似计算方法。

前述的平抛抛物方程是简化计算形式之一,但它用于悬挂点不等高且高差较大的情况进行

计算可能会造成较大误差。

为此,又引出了悬垂曲线的斜抛物线方程式,用于悬挂点不等高时的近似计算公式。

斜抛物线方程的假设条件为:作用在导线上的荷载沿悬挂点连线AB均匀分布,即用斜线代替弧长,如图2-8所示。这一假设与荷载沿弧长均匀分布有些差别,但实际上一档内导线弧长与线段AB的长度相差很小,因此这样的假设可以符合精度要求。

图2-8 悬挂点不等高示意图,图中诸多符号的含义后边另作说明。

在上述假设下,导线OD段的受力情况如图2-9所示。此时垂直荷重的弧长L x换成了x/cos,这相当于把水平距离x折算到斜线上。

图2-9OD段的受力图

根据静力学平衡条件,y轴向受力代数和为

对上式进行积分,并根据所选的坐标系确定积分常数为零,可得到导线悬垂曲线的斜抛物线方程为:

(2-33)

式中—高差角;

其他符号意义同前。

实际上,式(2-33)与式(2-17)相比差个关系,但相对于式(2-13)在应用于计算中仍然简明得多。

据弧长微分式,将

的关系代入可得斜抛物线方程下的弧长方程为(取前两项)

二、导线最低点到悬挂点的距离

此时是在讨论悬挂点不等高情况下的导线力学及几何关系。为此我们通过分析导线最低点到悬挂点之间的两种距离,即水平距离和垂直距离的几何关系,来导出使用斜抛物线方程下的导线应力、孤垂及线长的计算公式。如图2-8所示,将坐标原点选在导线最低点,显然,随着坐标原点的不同,方程的表达式也有所不同。

1.水平距离

用斜抛物线方程计算时,由式(2-33)可知导线最低点到悬挂点之间的水平距离和垂直距离的关系为

(2-34)

(2-35)

式中—最低点到悬挂点的垂直距离,m; 、

—最低点到悬挂点的水平距离,m; 其他符号意义同前。

悬挂点的高差:

其中档距;且高差与档距关系有,以及,则联立求解上二式得

(2-36)

(2-37)

其中

上式中f—档内导线最大弧垂(见后证明)。

另外是个代数量,据坐标关系,悬挂点B在导线最低点O的左侧时,它为负值。

导线最低点至档距中央距离为

(2-38)

2.垂直距离

将式(2-36)、式(2-37)分别代入式(2-34)、式(2-35)可得

(2-39)

(2-40)

三、悬挂点不等高时的最大弧垂

在悬挂点不等高的一档导线上作一条辅助线平行于AB,且与导线相切于D点,显然相切点的弧垂一定是档内的最大弧垂。通过证明可知最大弧垂处于档距的中央。

用抛物线方程确定导线上任一点D(x,y)点的弧垂f x,则在图2-8中C′点和A点的高差为:

弧垂f x为

(2-41)

式中—导线上任一点D(x,y)到导线悬挂点A、B的水平距离;

其它符号意义同前。

确定档内最大孤垂的另一方法是对导线上任一点弧垂的函数求导并令其为零(极值法),即对式(2

-41)求导,且,解出。

显然其结果就是导线最低点到档距中央的水平距离。由此得出结论:导线悬挂点等高时,档内最大孤垂一定在档距中央;而导线悬挂点不等高时,档内最大孤垂仍在档距中央。但注意若用悬链线方程推证,则悬挂点不等高时,最大孤垂并不真正在档距中央处,证明略。

最大弧垂出现在档距中央,即时,代入式(2-41)中,得到最大弧垂计算式为

(2-42)

四、导线的应力

导线上任意一点的轴向应力为

(2-43)

悬挂点A的应力为

(2-44)

悬挂点B的应力为:

(2-45)

五、一档线长

悬挂点不等高,一档线长用斜抛物线方程计算时,其精度不高,因此工程中采用悬链线方程导出的线长方程近似式作为斜抛物线线长的计算公式(证明略),即

(2-46)

第五节水平档距和垂直档距

字体大小小中大

一、水平档距和水平荷载

在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以

保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是

否满足要求。杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘

子串的作用。就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。

为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。

悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示:

则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。

图2-10水平档距和垂直档距

如上图所示:此时对A杆塔来说,所要承担的总风压荷载为

(2-47)

式中P—每米导线上的风压荷载N/m;

—杆塔的水平档距,m;

—计算杆塔前后两侧档距,m;

P—导线传递给杆塔的风压荷载,N。

因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。它表示有多长导线的水平荷载作用在某杆塔上。水平档距是用来计算导线传递给杆塔的水平荷载的。

严格说来,悬挂点不等高时杆塔的水平档距计算式为

只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S;

当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为:

无冰时(2-48)

有冰时(2-49)

式中S—导线截面积,mm2。

二、垂直档距和垂直荷载

如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担。

在平抛物线近似计算中,设线长等于档距,即

则(2-50)

式中G—导线传递给杆塔的垂直荷载,N;

g—导线的垂直比载,N/m.mm2;

—计算杆塔的一侧垂直档距分量,m;

—计算杆塔的垂直档距,m;

S—导线截面积,。

由图2-10可以看出,计算垂直档距就是计算杆塔两侧档导线最低点O1、O2之间的水平距离,由式(2-50)可知,导线传递给杆塔的垂直荷载与垂直档距成正比。其中

m1、m2分别为档和档中导线最低点对档距中点的偏移值,由式(2-38)可得

结合图2-10中所示最低点偏移方向,A杆塔的垂直档距为

综合考虑各种高差情况,可得垂直档距的一般计算为

(2-51)

式中g、σ0—计算气象条件时导线的比载和应力,N/m.mm2;MPa ;

h1、h2—计算杆塔导线悬点与前后两侧导线悬点间高差,m。

垂直档距表示了有多长导线的垂直荷载作用在某杆塔上。式(2-51)括号中正负的选取原则:以计算杆塔导线悬点高为基准,分别观测前后两侧导线悬点,如对方悬点低取正,对方悬点高取负。

式(2-50)中导线垂直比载g应按计算条件选取,如计算气象条件无冰,比载取g1,有冰,比载取g3,而式(2-51)中导线比载g为计算气象条件时综合比载。

垂直档距是随气象条件变化的,所以对同一悬点,所受垂直力大小是变化的,甚至可能在某一气象条件受下压力作用,而当气象条件变化后,在另一气象条件则可能受上拔力作用。

【例2-2】某一条110KV输电线路,导线为LGJ—150/25型,导线截面积为S=173.11mm2,线路中某杆塔前后两档布置如图2-11所示,

水力学基本概念

目录 绪论:1 第一章:水静力学1 第二章:液体运动的流束理论3 第三章:液流形态及水头损失3 第四章:有压管中的恒定流5 第五章:明渠恒定均匀流5 第六章:明渠恒定非均匀流6 第七章:水跃7 第八章:堰流及闸空出流8 第九章:泄水建筑物下游的水流衔接与消能9第十一章:明渠非恒定流10 第十二章:液体运动的流场理论10 第十三章:边界层理论11 第十四章:恒定平面势流11 第十五章:渗流12 第十六章:河渠挟沙水流理论基础12 第十七章:高速水流12 绪论:

1 水力学定义:水力学是研究液体处于平衡状态和机械运动状态下的力学规律,并探讨利用这些规律解决工程实际问题的一门学科。b5E2RGbCAP 2 理想液体:易流动的,绝对不可压缩,不能膨胀,没有粘滞性,也没有表面张力特性的连续介质。 3 粘滞性:当液体处在运动状态时,若液体质点之间存在着相对运动,则质点见要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性。可视为液体抗剪切变形的特性。<没有考虑粘滞性是理想液体和实际液体的最主要差别)p1EanqFDPw 4 动力粘度:简称粘度,面积为1m2并相距1m的两层流体,以1m/s做相对运动所产生的内摩擦力。 5 连续介质:假设液体是一种连续充满其所占空间毫无空隙的连续体。 6 研究水力学的三种基本方法:理论分析,科学实验,数值计算。第一章:水静力学 要点:<1)静水压强、压强的量测及表示方法;<2)等压面的应用;<3)压力体及曲面上静水总压力的计算方法。DXDiTa9E3d 7 静水压强的两个特性:1)静水压强的方向与受压面垂直并指向受压面2)任一点静水压强的大小和受压面方向无关,或者说作用于同一点上各方向的静水压强大小相等。RTCrpUDGiT 8 等压面:1)在平衡液体中等压面即是等势面2)等压面与质量力正交3)等压面不能相交4)绝对静止等压面是水平面5)两种互不

最新水力学常用计算公式文件.doc

1、明渠均匀流计算公式: Q=Aν=AC Ri 1 n y R (一般计算公式)C= 1 n R 1 6 C= (称曼宁公式)2、渡槽进口尺寸(明渠均匀流) Q=bh 2gZ 0 z:渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0.8~0.9 b:渡槽的宽度(米) h:渡槽的过水深度(米) φ:流速系数φ=0.8~0.95 3、倒虹吸计算公式: Q=mA2gz (m 3/秒) 4、跌水计算公式:

跌水水力计算公式:Q=εmB 3/2 2gH , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B—进口宽度(米);m—流量系数 5、流量计算公式: Q=Aν 式中Q——通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h 2 A——过水断面的面积,m 。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 3 (1)淹没出流:Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3

(2)实用堰出流:Q=εMBH 2 1

3 =侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 3 Q=εσMBH2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA2gH =流量系数×放水孔口断面面积×2gH 2)、有压管流

大学物理力学题库及答案(考试常考)

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ b ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0. (D) 2πR /T , 0. [ ] -12 O a p

导线应力弧垂分析(1-6节).

第二章导线应力弧垂分析 ·导线的比载 ·导线应力的概念 ·悬点等高时导线弧垂、线长和应力关系 ·悬挂点不等高时导线的应力与弧垂 ·水平档距和垂直档距 ·导线的状态方程 ·临界档距 ·最大弧垂的计算及判断 ·导线应力、弧垂计算步骤 ·导线的机械特性曲线 [内容提要及要求] 本章是全书的重点,主要是系统地介绍导线力学计算原理。通过学习要求掌握导线力学、几何基本关系和悬链线方程的建立;掌握临界档距的概念和控制气象条件判别方法;掌握导线状态方程的用途和任意气象条件下导线最低点应力的计算步骤;掌握代表档距的概念和连续档导线力学计算方法;了解导线机械物理特性曲线的制作过程并明确它在线路设计中的应用。 第一节导线的比载 作用在导线上的机械荷载有自重、冰重和风压,这些荷载可能是不均匀的,但为了便于计算,一般按沿导线均匀分布考虑。在导线计算中,常把导线受到的 机械荷载用比载表示。 由于导线具有不同的截面,因此仅用单位长度的重量不宜分析它的受力情况。此外比载同样是矢量,其方向与外力作用方向相同。所以比载是指导线单位长度、单位截面积上的荷载,常用的比载共有七种,计算公式如下:1.自重比载 导线本身重量所造成的比载称为自重比载,按下式计算 (2-1) 式中:g1—导线的自重比载,N/m.mm2; m0一每公里导线的质量,kg/km;

S—导线截面积,mm2。 2.冰重比载 导线覆冰时,由于冰重产生的比载称为冰重比载,假设冰层沿导线均匀分布并成为一个空心圆柱体,如图2-1所示,冰重比载可按下式计算: (2-2) 式中:g2—导线的冰重比载,N/m.mm2; b—覆冰厚度,mm; d—导线直径,mm; S—导线截面积,mm2。 图2-1覆冰的圆柱体 设覆冰圆筒体积为: 取覆冰密度,则冰重比载为: 3.导线自重和冰重总比载 导线自重和冰重总比载等于二者之和,即 g3=g1+g2(2-3) 式中:g3—导线自重和冰重比载总比载,N/m.mm2。 4.无冰时风压比载

第三章第3章给水排水管网水力学基础

第3章给水排水管网水力学基础 3.1 基本概念 3.2 管渠水头损失计算 3.3 非满流管渠水力计算 3.4 管道的水力等效简化 3.1基本概念 3.1.1管道内水流特征 Re=ρvd/μ 3.1基本概念 3.1.2有压流与无压流 有压流:水体沿流程整个周界与固体壁面接触,而无自由液面(压力流、管流) 无压流:水体沿流程一部分周界与固体壁面接触,其余与空气接触,具有自由液面(重力流、明渠流) 3.1基本概念 3.1.3恒定流与非恒定流 恒定流:水体在运动过程中,其各点的流速与压力不随时间而变化,而与空间位置有关的流动称为恒定流非恒定流:水体在运动过程中,其流速与压力不与空间位

置有关,还随时间的而变化的流动称为非恒定流3.1基本概念 3.1.4均匀流与非均匀流 均匀流:水体在运动过程中,其各点的流速与方向沿流程不变的流动称为均匀流 非均匀流:水体在运动过程中,其各点的流速与方向沿流程变化的流动称为非均匀流 3.1基本概念 3.1.5水流的水头与水头损失 水头:指的是单位质量的流体所具有的能量除以重力加速度,一般用h或H表示,常用单位为米(m) 3.1基本概念 3.1.5水流的水头与水头损失 水头损失:流体克服阻力所消耗的机械能

3.2管渠水头损失计算 3.2.1沿程水头损失计算 管渠的沿程水头损失常用谢才公式计算 对于圆管满流,沿程水头损失可用达西公式计算 沿程阻力系数 λλ228 (m) 2C g g v D l h f == R 为过水断面的里半径,及过水断面面积除以湿周,圆管满 流时R=0.25D 流体在非圆形直管内流动时,其阻力损失也可按照上述公式计算,但应将D 以当量直径de 来代替 3.2管渠水头损失计算 (m) l R C v il h 22 f ==Ri C v =

(参考)水力学计算说明书

水力学实训设计计算书 指导老师:柴华 前言 水力学是一门重要的技术基础课,它以水为主要对象研究流体运动的规律以及流体与边界的相互作用,是高等学校许多理工科专业的必修课。 在自然界中,与流体运动关联的力学问题是很普遍的,所以水力学和流体力学在许多工程领域有着广泛的应用。水利工程、土建工程、机械工程、环境工程、热能工程、化学工程、港口、船舶与海洋工程等专业都将水力学或流体力学作为必修课之一。 水力学课程的理论性强,同时又有明确的工程应用背景。它是连接前期基础课程和后续专业课程的桥梁。课程教学的主要任务是使学生掌握水力学的基本概念、基本理论和解决水力学问题的基本方法,具备一定的实验技能,为后续课程的学习打好基础,培养分析和解决工程实际中有关水力学问题的能力。水是与我们关系最密切的物质,人类的繁衍生息、社会的进化发展都是与水“唇齿相依、休戚相关”的。综观所有人类文

明,几乎都是伴着河、海而生的

通过学习和实训,应用水力学知识,为以后的生活做下完美的铺垫。

任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 任务三:绘制正常水位到汛前限制水位~相对开度~下泄流量的关系曲线;绘制汛前限制水位以上的水库水位~下泄流量的关系曲线。 任务四:溢洪道消力池深、池长计算:或挑距长度、冲刷坑深度和后坡校核计算 任务二:分析溢洪道水平段和陡坡段的水面曲线形式,考虑高速水流掺气所增加的水深,算出陡坡段边墙高。边墙高按设计洪水流量校核;绘制陡坡纵剖面上的水面线。 1.根据100年一遇洪水设计,已知驼峰堰上游水位25.20,堰顶高程18.70,堰底高程为17.45, 计算下游收缩断面水深h C, P=18.70-17.45=1.25m H=25.20-18.70=6.5m P/H=1.25÷6.5=0.19<0.8 为自由出流 m=0.32+0.171(P/H)^0.657 =0.442 设H =H,由资料可知溢洪道共两孔,每孔净宽10米,闸墩头为圆形,敦厚2米,边墩围半圆形,混凝土糙率为0.014.故查表可得: ζ 0=0.45 ζ k =0.7 ε=1-0.2(ζk+(n-1)ζ0)×H0/nb=0.92 H =(q/(εm(2g)^0.5))^2/3=6.77m E0=P+H0=6.77+1.25=8.02m 查表的:流速系数ψ=0.94

水力学第四版复习

水力学 一、概念 1.水力学:是一门技术学科,它是力学的一个分支。水力学的 任务是研究液体(主要是水)的平衡和机械运动的规律及其 实际应用。 2.水力学:分为水静力学和水动力学。 3.水静力学:关于液体平衡的规律,它研究液体处于静止(或 相对平衡)状态时,作用于液体上的各种力之间的关系。 4.水动力学:关于液体运动的规律,它研究液体在运动状态时, 作用于液体上的力与运动要素之间的关系,以及液体的运动 特性与能量转换等。 5.粘滞性:当液体处于运动状态时,若液体质点之间存在着相 对运动,则质点间要产生内在摩擦力抵抗其相对运动,这种 性质称为液体的粘滞性,此内摩擦力又称为粘滞力。 6.连续介质:一咱连续充满其所占据空间毫无空隙的连续体。 7.理想液体:就是把水看作绝对不可压缩、不能膨胀、没有粘 滞性、没有表面张力的连续介质。 8.质量力:通过所研究液体的每一部分质量而作用于液体的、 其大小与液体的质量与比例的力。如重力、惯性力。 9.单位质量力:作用在单位质量液体上的质量力。 10.绝对压强:以设想没有大气存在的绝对真空状态作为零点 计量的压强。p’>0

11.相对压强:把当地大气压Pa作为零点计量的压强。p 12.真空:当液体中某点的绝对压强小于当地压强,即其相对 压强为负值时,则称该点存在真空。也称负压。真空的大小用真空度Pk表示。 13.恒定流:在流场中任何空间点上所有的运动要素都不随时 间而改变,这种水流称为恒定流。 14.非恒定流:流场中任何空间点上有任何一个运动要是随时 间而变化的,这种水流称为非恒定流。 15.流管:在水流中任意取一微分面积dA,通过该面积周界上 的每一个点,均可作一根流线,这样就构成一个封闭的管状曲面,称为流管。 16.微小流束:充满以流管为边界的一束液流。 17.总流:有一定大小尺寸的实际水流。 18.过水断面:与微小流束或总流的流线成正交的横断面。 19.流量:单位时间内通过某一过水断面的液体体积。Q 20.均匀流:流线为相互平行的直线的水流 21.非均匀流:流线不是互相平行的直线的水流。按流线不平 行和弯曲的程度,可分为渐变流和急变流两种类型。 22.渐变流:当水流的流线虽然不是互相平行直线,但几乎近 于平行直线时称为渐变流(或缓变流)。所以渐变流的情况就是均匀流。 23.急变流:若水流的流线之间夹角很大或者流线的曲率半径

大学物理”力学和电磁学“练习题(附答案)

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

水力学

水力学模拟试题及答案 1、选择题:(每小题2分) (1)在水力学中,单位质量力是指() a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 答案:c (2)在平衡液体中,质量力与等压面() a、重合; b、平行 c、相交; d、正交。 答案:d (3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为 a、1 kN/m2 b、2 kN/m2 c、5 kN/m2 d、10 kN/m2 答案:b (4)水力学中的一维流动是指() a、恒定流动; b、均匀流动; c、层流运动; d、运动要素只与一个坐标有关的流动。 答案:d (5)有压管道的管径d与管流水力半径的比值d /R=() a、8; b、4; c、2; d、1。 答案:b (6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于 a、层流区; b、紊流光滑区; c、紊流过渡粗糙区; d、紊流粗糙区 答案:c (7)突然完全关闭管道末端的阀门,产生直接水击。已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为 a、1.54m b 、2.0m c 、2.45m d、3.22m 答案:c (8)在明渠中不可以发生的流动是() a、恒定均匀流; b、恒定非均匀流; c、非恒定均匀流; d、非恒定非均匀流。 答案:c (9)在缓坡明渠中不可以发生的流动是()。 a、均匀缓流; b、均匀急流; c、非均匀缓流; d、非均匀急流。 答案:b (10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为 a、缓流; b、急流; c、临界流;

大学物理复习题答案力学

大学物理力学复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.下列运动中,加速度a 保持不变的是 ( D ) A .单摆的摆动 B .匀速率圆周运动 C .行星的椭圆轨道运动 D .抛体运动。 2.某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 ( D ) A .匀加速直线运动,加速度沿x 轴正方向 B .匀加速直线运动,加速度沿x 轴负方向 C .变加速直线运动,加速度沿x 轴正方向 D .变加速直线运动,加速度沿x 轴负方向 3. 某物体作一维运动, 其运动规律为 dv kv t dt =-2, 式中k 为常数. 当t =0时, 初速为v 0,则该物体速度与时间的关系为 ( D ) A .v kt v =+2012 B .kt v v =-+2011 2 C .kt v v =-+201112 D .kt v v =+20 1112 4.质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) ( C ) A .dv dt B .v R 2 C .dv v dt R -??????+?? ? ? ???????? 1242 D . dv v dt R +2 t a t dt dx v 301532 -=-==

5、质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示 切向加速度,对下列表达式:(1) a dt dv =;(2) v dt dr =;(3) v dt ds =;(4) t a dt v d = ,下列判断正确的是 ( D ) A 、只有(1)(4)是对的; B 、只有(2)(4)是对的; C 、只有(2)是对的; D 、只有(3)是对的。 6.质点作圆周运动,如果知道其法向加速度越来越小,则质点的运动速度 ( A ) A 、 越来越小; B 、 越来越大; C 、 大小不变; D 、不能确定。 7、一质点在做圆周运动时,则有 ( C ) A 、切向加速度一定改变,法向加速度也改变; B 、切向加速度可能不变,法向加速度一定改变; C 、切向加速度可能不变,法向加速度不变; D 、切向加速度一定改变,法向加速度不变。 8.一质点在外力作用下运动时,下列说法哪个正确 ( D ) A .质点的动量改变时,质点的动能也一定改变 B .质点的动能不变时,质点的动量也一定不变 C .外力的功为零,外力的冲量也一定为零 D .外力的冲量为零,外力的功也一定为零 9、一段路面水平的公路,拐弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽 车不至于发生侧向打滑,汽车在该处的行使速率 ( C ) A .不得小于gR μ B .必须等于gR μ C .不得大于gR μ D .还应由气体的质量m 决定

水力学常用计算公式精选文档

水力学常用计算公式精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1、明渠均匀流计算公式: Q=A ν=AC Ri C=n 1R y (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=~ b :渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=~ 3、倒虹吸计算公式: Q=mA z g 2(m 3/秒) 4、跌水计算公式: 5、流量计算公式: Q=A ν 式中Q ——通过某一断面的流量,m 3/s ; ν——通过该断面的流速,m /h A ——过水断面的面积,m 2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3 gZ 2bh Q =跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=M ωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q=μA 02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算——薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =2 5或Q =(2-15) 淹没出流:Q =(25 )σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +(2-17) 2)梯形薄壁测流堰,其中θ应满足tan θ=4 1 ,以及b >3H ,即 自由出流:Q =g 22 3=2 3(2-18)

水力学试题带答案

水力学试题带答案

水力学模拟试题及答案 1、选择题:(每小题2分) (1)在水力学中,单位质量力是指() a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 答案:c (2)在平衡液体中,质量力与等压面() a、重合; b、平行 c、相交; d、正交。 答案:d (3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为 a、1 kN/m2 b、2 kN/m2 c、5 kN/m2 d、10 kN/m2 答案:b (4)水力学中的一维流动是指() a、恒定流动; b、均匀流动; c、层流运动; d、运动要素只与一个坐标有关的流动。 答案:d (5)有压管道的管径d与管流水力半径的比值d /R=() a、8; b、4; c、2; d、1。 答案:b (6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于 a、层流区; b、紊流光滑区; c、紊流过渡粗糙区; d、紊流粗糙区 答案:c (7)突然完全关闭管道末端的阀门,产生直接水击。已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为 a、1.54m b 、2.0m c 、2.45m d、3.22m 答案:c (8)在明渠中不可以发生的流动是() a、恒定均匀流; b、恒定非均匀流; c、非恒定均匀流; d、非恒定非均匀流。 答案:c (9)在缓坡明渠中不可以发生的流动是()。 a、均匀缓流; b、均匀急流; c、非均匀缓流; d、非均匀急流。 答案:b (10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为 a、缓流; b、急流; c、临界流;

水力学中常用的基本计算方法-推荐下载

水力学中常用的基本计算方法 水力学中经常会遇到一些高次方程,微分方程的求解问题。多年来,求解复杂高次方程的基本方法便是试算法,或查图表法,对于简单的微分方程尚可以用积分求解,而边界条件较为复杂的微分方程的求解就存在着较大的困难,但随着计算数学的发展及计算机的广泛使用,一门新的水力学分支《计 算水力学》应运而生,但用计算机解决水力学问题,还需 要了解一些一般的计算方法。在水力学课程中常用的有以下 几种,现分述于后。 一、高次方程式的求解方法: (一)二分法 1、二分法的基本内容:在区间[X1,X2]上有一单调连续函 数F(x)=0,则可绘出F(x)~X关系曲线。如果在两端点处函数值异号即F(x1)·F(x2)<0,(见图(一)),则方 程F(x)=0,在区间[X1,X2]之间有实根存在,其根的范围 大致如下:取 22 1 3x x x + = 1°若F(x2)·F(x3)>0, 则解ξ∈[X1,X3] 2°若F(x2)·F(x3)<0, 则解ξ∈[X3,X2] 3°若F(x2)·F(x3)=0, 则解ξ=X3 对情况1°,可以令x2=x3,重复计算。 对情况2°,可以令x1=x3,重复计算。

当规定误差ε之后,只要|x 1-x 2|≤ε,则x 1(或x 2)就 是方程F(x)=0的根。 显然,二分法的理论依据就是高等数学中的连续函数介 值定理。 它的优点是思路清晰,计算简单,其收敛速度与公比为 的等比级数相同;它的局限性在于只能求实根,而不能求 2 1 重根。 2、二分法的程序框图(以求解明渠均匀流正常水深为 例) 最后必须说明,二分法要求x 2值必须足够大,要保证 F 1·F 2<0,否则计算得不到正确结果。为了避免x 2值不够大, 产生计算错误,在程序中加入了判别条件F 1·F 2>0。也可以给 定x J 及步长△x ,让计算机选择x 2(x 2=x 1+△x)。 (二)牛顿法, 1、牛顿法的基本内容:设有连续函数F(x)=0,则可以绘 出F(x)~x 关系曲线,选取初值x o ,过点(x o ·F(x o ))作一切 线,其斜率为辅F '(x o ),切线与x 轴的交点是x 1, 则有: ) ()('1o o o x F x F x x - =再过(x 1,F(x 1)作切线,如此类推得到牛顿法的一个迭代序列: x n+l =x n -F(x n )/F '(x n ),令x n =x n +1,重复计算,直至满足给定 的精度要求,即|x n+1-x n |≤,从而得到方程F(x)=0的根。 牛顿法具有平方收敛速度,比较快,但计算工作量大,每 次运算除计算函数值外,还要计算微商值。对于牛顿法来讲,

大学物理习题集力学试题

练习一 质点运动的描述 一. 选择题 1. 以下四种运动,加速度保持不变的运动是( ) (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: ( ) (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为( ) (A) 12 m/s . (B) 11.75 m/s . (C) 12.5 m/s . (D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1,则以下说法正确的是( ) (A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示; (B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示; (C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零. 5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为( ) (A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题 1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 秒. 2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点. 则质点的加速度a = (SI);质点的运动方程为x = (SI). 3. 一质点的运动方程为r=A cos ω t i+B sin ω t j , 其中A , B ,ω为常量.则质点的加速度矢量 为 图1.1

水力学常用计算公式

1、明渠均匀流计算公式: Q=Aν=AC Ri C=n 1Ry (一般计算公式)C=n 1 R 61 (称曼宁公式) 2、渡槽进口尺寸(明渠均匀流) gZ 2bh Q = z :渡槽进口的水位降(进出口水位差) ε:渡槽进口侧向收缩系数,一般ε=0。8~0。9 b:渡槽的宽度(米) h :渡槽的过水深度(米) φ:流速系数φ=0。8~0.95 3、倒虹吸计算公式: Q =mA z g 2(m 3/秒) 4、跌水计算公式: 跌水水力计算公式:Q =εmB 2 /30g 2H , 式中:ε—侧收缩系数,矩形进口ε=0.85~0.95;, B —进口宽度(米);m —流量系数 5、流量计算公式: Q=Aν 式中Q —-通过某一断面的流量,m 3/s; ν——通过该断面的流速,m/h A —-过水断面的面积,m2。 6、溢洪道计算 1)进口不设闸门的正流式开敞溢洪道 (1)淹没出流:Q=εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)实用堰出流:Q=εMBH 2 3

=侧向收缩系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 2)进口装有闸门控制的溢洪道 (1)开敞式溢洪道。 Q =εσMBH 2 3 =侧向收缩系数×淹没系数×流量系数×溢洪道堰顶泄流长度×溢洪水深2 3 (2)孔口自由出流计算公式为 Q=MωH =堰顶闸门自由式孔流的流量系数×闸孔过水断面面积×H 其中:ω=be 7、放水涵管(洞)出流计算 1)、无压管流 Q =μA02gH =流量系数×放水孔口断面面积×02gH 2)、有压管流 Q =μA 02gH =流量系数×放水孔口断面面积×02gH 8、测流堰的流量计算—-薄壁堰测流的计算 1)三角形薄壁测流堰,其中θ=90°,即 自由出流:Q =1。4H 2 5或Q=1.343H 2.47(2—15) 淹没出流:Q=(1。4H 25)σ(2-16) 淹没系数:σ=2)13.0( 756.0--H h n +0.145(2-17) 2)梯形薄壁测流堰,其中θ应满足t anθ= 4 1 ,以及b >3H,即 自由出流:Q =0.42b g 2H 2 3=1.86bH 2 3(2—18)

导线应力弧垂分析

第二章导线应力弧垂分析 第五节水平档距和垂直档距 字体大小小中大 一、水平档距和水平荷载 在线路设计中,对导线进行力学计算的目的主要有两个:一是确定导线应力大小,以 保证导线受力不超过允许值;二是确定杆塔受到导线及避雷线的作用力,以验算其强度是 否满足要求。杆塔的荷载主要包括导线和避雷线的作用结果,以及还有风速、覆冰和绝缘 子串的作用。就作用方向讲,这些荷载又分为垂直荷载、横向水平荷载和纵向水平荷载三种。 为了搞清每基杆塔会承受多长导线及避雷线上的荷载,则引出了水平档距和垂直档距的概念。 悬挂于杆塔上的一档导线,由于风压作用而引起的水平荷载将由两侧杆塔承担。风压水平荷载是沿线长均布的荷载,在平抛物线近似计算中,我们假定一档导线长等于档距,若设每米长导线上的风压荷载为P,则AB档导线上风压荷载,如图2-10所示: 则为,由AB两杆塔平均承担;AC档导线上的风压荷载为,由AC两杆塔平均承担。 图2-10水平档距和垂直档距 如上图所示:此时对A杆塔来说,所要承担的总风压荷载为 (2-47) 令

则 式中P—每米导线上的风压荷载N/m; —杆塔的水平档距,m; —计算杆塔前后两侧档距,m; P—导线传递给杆塔的风压荷载,N。 因此我们可知,某杆塔的水平档距就是该杆两侧档距之和的算术平均值。它表示有多长导线的水平荷载作用在某杆塔上。水平档距是用来计算导线传递给杆塔的水平荷载的。 严格说来,悬挂点不等高时杆塔的水平档距计算式为 只是悬挂点接近等高时,一般用式其中单位长度导线上的风压荷载p,根据比载的定义可按下述方法确定,当计算气象条件为有风无冰时,比载取g4,则p=g4S; 当计算气象条件为有风有冰时,比载取g5,则p=g5S,因此导线传递给杆塔的水平荷载为: 无冰时(2-48) 有冰时(2-49) 式中S—导线截面积,mm2。 二、垂直档距和垂直荷载 如图2-10所示,O1、O2分别为档和档内导线的最低点,档内导线的垂直荷载(自重、冰重荷载)由B、A两杆塔承担,且以O1点划分,即BO1段导线上的垂直荷载由B杆承担,O1A段导线上的垂直荷载由A杆承担。同理,AO2段导线上的垂直荷载由A杆承担,O2C段导线上的垂直荷载由C杆承担。 在平抛物线近似计算中,设线长等于档距,即 则(2-50) 式中G—导线传递给杆塔的垂直荷载,N; g—导线的垂直比载,N/m.mm2;

水力学知识点讲解

《水力学》学习指南 中央广播电视大学水利水电工程专业(专科) 同学们,你们好!这学期我们学习的水力学是水利水电工程专业重要的技术基础课程。通过本课程的学习,要求大家掌握水流运动的基本概念、基本理论和分析方法,;能够分析水利工程中一般的水流现象;学会常见的工程水力计算。 今天直播课堂的任务是给大家进行一个回顾性总结,使同学们在复习水力学时,了解重点和难点,同时全面系统的复习总结课程内容,达到考核要求。 第一章 绪 论 (一)液体的主要物理性质 1.惯性与重力特性:掌握水的密度ρ和容重γ; 2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。 描述液体内部的粘滞力规律的是牛顿内摩擦定律 : 注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动 3.可压缩性:在研究水击时需要考虑。 4.表面张力特性:进行模型试验时需要考虑。 下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设 1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。 2.理想液体:忽略粘滞性的液体。 (三)作用在液体上的两类作用力 第二章 水静力学 水静力学包括静水压强和静水总压力两部分内容。通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。 (一)静水压强: 主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。 1.静水压强的两个特性: (1)静水压强的方向垂直且指向受压面 (2)静水压强的大小仅与该点坐标有关,与受压面方向无关, 2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。 (它是静水压强计算和测量的依据) 3.重力作用下静水压强基本公式(水静力学基本公式) p=p 0+γh 或 其中 : z —位置水头, p/γ—压强水头 (z+p/γ)—测压管水头 请注意,“水头”表示单位重量液体含有的能量。 4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑ 相对压强:p=γh,可以是正值,也可以是负值。要求掌握绝对压强、相对压强和真空度三者的概念 c p z =+γ dy du μ τ=

大学物理力学考试试题

大学物理力学考试试题 ————小数点的流浪整理 一.填空题: 1.设质点作平面曲线运动,运动方程为 ,则质点在任意t时刻的速度矢量 ______________________;切向加速度at =___________;法向加速度an =______________。 2.设某机器上的飞轮的转动惯量为63.6kg·m2,转动的角速度为314s1,在制动力矩的作用下,飞轮经过20秒匀减速地停止转动,则飞轮角加速度是 ____________,制动力矩__________。 3.质量为m1=16kg的实心圆柱体,半径r=15cm,可以绕其固定水平轴转动,如图,阻力忽略不计。一条轻柔绳绕在圆柱上,其另一端系一个质量为 m2=8.0kg的物体,绳的张力T___________。 4.质量为10kg的质点,在外力作用下,做曲线运动,该质点的速度为 ,则在t =1s到t =2s时间内,合外力对质点所做的功为 ____________________。 5.在光滑的水平面上有一木杆,其质量m1=1.0kg,长=40cm,可绕过其中点并与之垂直的轴转动。一质量为m2=10g的子弹,以v=200m s的速度射入杆端,其方向与杆及轴正交。若子弹陷入杆中,所得到的角速度是________ 。

6.如一质量20kg的小孩,站在半径为3m、转动惯量为450kg·m2的静止水平转台边缘上。此转台可绕通过转台中心的铅直轴转动,转台与轴间的摩擦不计。如果小孩相对转台以1m s的速率沿转台的边缘行走,转台的角速率为 __________. 7.一质量为m的地球卫星,沿半径为3RE的圆轨道运动,RE为地球的半径。已知地球的质量为ME。则:(1)卫星的动能是_____;(2)卫星的引力势能是_____;(3)卫星的机械能等于_____。 8.在光滑的水平面上,一根长L=2m的绳子,一端固定于O点,另一端系一质量m=0.5kg的物体。开始时,物体位于位置A,OA间距离d=0.5m,绳子处于松弛状态。现在使物体以初速度VA= 4m·s-1垂直于OA向右滑动,如图所示。设以后的运动中物体到位置B,此时物体速度的方向与绳垂直。则物体速度的大小VB =__________________。 9.一沿x方向的力,作用在一质量为3㎏的质点上,质点的运动方程为x=3t- 4t2+t3(SI),则力在最初4秒内的冲量值为______________。 二.计算题: 1.一长为l1 质量为M的匀质细杆,可绕水平光滑轴O在竖直平面内转动,如图所示。细杆由水平位置静止释放,试求: (1)杆达到竖直位置的角速度;

水力学计算题型

计算题类型 一、 点压强计算 1. 一封闭水箱自由液面上的绝对气体压强2 ' 0/25m kN p =, m h m h 2,421== ,求A 、B 两点的相对压强? (1) 涉及到的概念:等压面、等压面是水平面的条件、静压强基本方程。 (2) 解题思路:① 找等压面② 找已知点压强 ③利用静压强基本方程推求。 二、 静水总压力计算 1. 如图示,一平板闸门,两侧有水,左侧水深为3 m ,右侧水深为2 m ,求作用在单宽闸门上的静水总压力及作用点。 (1) 涉及到的概念:相对压强分布图、总压力:A gh P c ρ= (2) 压心: A y I y y c c C D + = (3) 解题思路:① 求出各分力 ② 合成求总压力作用点 ③ 注意,是力 的平衡还是力矩平衡

4. 如图示,一弧形闸门,其宽度 b=6m ,圆心角0 30=φ,半径m R 5.2=,闸门轴与水面齐平。求水对闸门的总压力及总压力对轴的力矩? (1) 涉及到的概念:水平分力 x c x A gh P ρ= 垂直分力 gV P z ρ= ,压立体图。 (2) 解题思路: ① 画压力体图 ② 画投影面压强分布图 ② 求解水平分力、垂直分力、总压力 2 2z x p P P += 、 总压力作用线 x z P P arctan =α 三、运动学 1 . 已知平面流动,2 22,2y x a u xy u y x -+==,a 为常数,试判断 该液流是 (1)是恒定流还是非恒定流? (2)是否满足不可压缩流体连续性微分方程,(流动是否存在)? (3)是均匀流还是非均匀流? (4)是有旋流还是无旋流? (一)涉及到的概念: 质点加速度表达式:z u u y u u x u u t u a x z x y x x x x ??+??+??+??= 恒定流( 0=??t u )非恒定流 ( 0≠??t u ) 恒定流 0=??+??+??=z u u y u u x u u a x z x y x x x ,0 ==z y a a 不可压缩流体连续性微分方程: 0=??+ ??+ ??z u y u x u z y x

大学物理力学测试题 2

《大学物理力学测试题》 一、选择题 1.下列力中不是保守力的是 ( ) A 重力 B 摩擦力 C 万有引力 D 静电力 2.对于一个物理系统来说,下列哪种情况下系统的机械能守恒( ) A 合外力为0 B 合外力不做功 C 外力和非保守内力都不做功 D 外力和保守内力都不做功 3.质量为m 的小球以水平速度v 与竖直墙做弹性碰撞,以小球的初速的方向 为x 轴的正方向,则此过程中小球动量的增量为 ( ) A mvi B 0i C 2mvi D 2mvi - 4.以下四个物理量中是矢量的是哪一个 ( ) A 动能 B 转动惯量 C 角动量 D 变力作的功 5.在卫星沿椭圆轨道绕地球运动过程中,下述不正确的说法是( ) A 动量守恒 B 角动量守恒 C 动量不守恒 D 动能不守恒 6.一运动质点的位置矢量为),(y x r ,则它的速度的大小是 ( ) (A ) dt dr ; (B ) dt r d ; (C )dt dy dt dx +; (D )22?? ? ??+??? ??dt dy dt dx 。 7.一质点的运动方程为()bt t b a at x -?? ? ??-+=1ln 1,其中a 、b 为常数,则此质点的速度表达式为( ) (A ))1ln(bt a --; (B ))1ln(bt a -; (C ) )1ln(bt b a --; (D ))1ln(bt b a -。 8.对于作用在有固定转轴的刚体上的力,以下说法不正确的是( )

(A)当力平行于轴作用时,它对轴的力矩一定为零; (B)当力垂直于轴作用时,它对轴的力矩一定不为零; (C)如果是内力,则不会改变刚体的角动量; (D)如果是内力,则不会改变刚体的角加速度。 9. 均匀细杆OM能绕O轴在竖直平面内自由转动,如图所示。今使细杆OM从 水平位置开始摆下,在细杆摆动到竖直位置的过程中,其角速度、角加速度的 变化是( ) Array(A)角速度增大,角加速度减小; (B)角速度增大,角加速度增大; (C)角速度减小,角加速度减小; (D)角速度减小,角加速度增大。 10.设人造地球卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地 球中心的() (A)角动量守恒,转动动能守恒; (B)角动量守恒,机械能守恒; (C)角动量不守恒,转动动能守恒; (D)角动量不守恒,机械能守恒; 11. 关于保守力,下面说法正确的是() (A)保守力做正功时,系统内相应的势能增加; (B) 质点运动经一闭合路径;保守力对质点做的功为零; (C)质点运动经一闭合路径;保守力对质点的冲量为零; (D) 根据作用力与反作用力的关系,相互作用的一对保守力所做功的 代数和必为零。 12.以下四种运动中,加速度保持不变的运动是()

相关文档
最新文档