第四章 专题强化3 电磁感应中的动力学及能量问题

第四章 专题强化3 电磁感应中的动力学及能量问题
第四章 专题强化3 电磁感应中的动力学及能量问题

专题强化3电磁感应中的动力学及能量问题

[学习目标] 1.掌握电磁感应中动力学问题的分析方法.2.理解电磁感应过程中能量的转化情况,能用能量的观点分析和解决电磁感应问题.

一、电磁感应中的动力学问题

电磁感应问题往往与力学问题联系在一起,处理此类问题的基本方法是:

(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.

(2)用闭合电路欧姆定律求回路中感应电流的大小.

(3)分析导体的受力情况(包括安培力).

(4)列动力学方程(a≠0)或平衡方程(a=0)求解.

例1如图1所示,空间存在B=0.5 T、方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2 m,电阻R=0.3 Ω接在导轨一端,ab是跨接在导轨上质量m =0.1 kg、接入电路的电阻r=0.1 Ω的导体棒,已知导体棒和导轨间的动摩擦因数为0.2.从零时刻开始,对ab棒施加一个大小为F=0.45 N、方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,过程中ab棒始终保持与导轨垂直且接触良好.(g=10 m/s2)

图1

(1)分析导体棒的运动性质;

(2)求导体棒所能达到的最大速度;

(3)试定性画出导体棒运动的速度-时间图象.

答案(1)做加速度减小的加速运动,最终做匀速运动(2)10 m/s(3)见解析图

解析(1)导体棒切割磁感线运动,产生的感应电动势:

E=BL v①

回路中的感应电流I=E

R+r

导体棒受到的安培力F安=BIL③

导体棒运动过程中受到拉力F、安培力F安和摩擦力F f的作用,根据牛顿第二定律有:

F -μmg -F 安=ma ④

由①②③④得:F -μmg -B 2L 2v

R +r

=ma ⑤

由⑤可知,随着速度的增大,安培力增大,加速度a 减小,当加速度a 减小到0时,速度达到最大,然后做匀速直线运动.

(2)当达到最大速度时,有F -μmg -B 2L 2v m

R +r =0

可得:v m =(F -μmg )(R +r )

B 2L 2

=10 m/s

(3)由(1)中分析可知,导体棒运动的速度-时间图象如图所示.

例2 如图2甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于斜面向下,导轨和金属杆的电阻可忽略,让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(重力加速度为g )

图2

(1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;

(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值. 答案 (1)见解析图

(2)BL v R g sin θ-B 2L 2v mR (3)mgR sin θB 2L 2

解析 (1)如图所示,ab 杆受重力mg ,方向竖直向下;

支持力F N ,方向垂直于导轨平面向上;安培力F 安,方向沿导轨向上. (2)当ab 杆的速度大小为v 时,感应电动势E =BL v , 则此时电路中的电流I =E R =BL v

R

ab 杆受到的安培力F 安=BIL =B 2L 2v

R

根据牛顿第二定律,有

mg sin θ-F 安=mg sin θ-B 2L 2v

R =ma

则a =g sin θ-B 2L 2v

mR

.

(3)当a =0时,ab 杆有最大速度v m ,即mg sin θ=B 2L 2v m R ,解得v m =mgR sin θ

B 2L 2

.

电磁感应动力学问题中,要把握好受力情况、运动情况的动态分析.

基本思路是:导体受外力运动―――→E =Bl v

产生感应电动势―――→I =E

R +r

产生感应电流―――→F =BIl

导体受安培力―→合外力变化―――→F 合=ma

加速度变化―→速度变化―→感应电动势变化……→a =0,v 达到最大值.

二、电磁感应中的能量问题 1.电磁感应现象中的能量转化

安培力做功????

?

做正功:电能――→转化

机械能,如电动机做负功:机械能――→转化电能――→电流

做功

焦耳热或其他形式的能量,如发电机 2.焦耳热的计算

(1)电流恒定时,根据焦耳定律求解,即Q =I 2Rt . (2)感应电流变化,可用以下方法分析:

①利用动能定理,求出克服安培力做的功W 安,即Q =W 安. ②利用能量守恒定律,焦耳热等于其他形式能量的减少量.

3.解决电磁感应现象中的常用方法

(1)动能定理

涉及的功有:重力做功、摩擦力做功、安培力做功、拉力做功等.

(2)能量守恒定律

涉及的能:重力势能、电能、内能等.

(3)功能关系

安培力做功?电能变化

滑动摩擦力做功?内能变化

重力做功?重力势能变化

弹力做功?弹性势能变化

例3如图3所示,足够长的平行光滑U形导轨倾斜放置,所在平面的倾角θ=37°,导轨间的距离L=1.0 m,下端连接R=1.6 Ω的电阻,导轨电阻不计,所在空间存在垂直于导轨平面向上的匀强磁场,磁感应强度B=1.0 T.质量m=0.5 kg、电阻r=0.4 Ω的金属棒ab垂直放置于导轨上,现用沿导轨平面且垂直于金属棒、大小为F=5.0 N的恒力使金属棒ab从静止开始沿导轨向上滑行且始终与导轨接触良好,当金属棒滑行s=2.8 m后速度保持不变.求:(sin 37°=0.6,cos 37°=0.8,g=10 m/s2)

图3

(1)金属棒匀速运动时的速度大小v;

(2)金属棒从静止到开始匀速运动的过程中,电阻R上产生的热量Q R.

答案(1)4 m/s(2)1.28 J

解析(1)金属棒匀速运动时产生的感应电流为I=BL v

R+r 由平衡条件有F=mg sin θ+BIL

联立并代入数据解得v=4 m/s.

(2)设整个电路中产生的热量为Q,由动能定理得Fs-mgs·sin θ-W安=1

2m v

2,而Q=W安,

Q R=R

R+r

Q,联立并代入数据解得Q R=1.28 J.

例4(多选)如图4所示,两根电阻不计的光滑平行金属导轨倾角为θ,导轨下端接有电阻R,匀强磁场垂直斜面向上.质量为m、电阻不计的金属棒ab在沿斜面向上且与棒垂直的恒力F

作用下沿导轨匀速上滑且始终与导轨接触良好,上升高度为h,重力加速度为g,在这个过程中()

图4

A.金属棒所受各力的合力所做的功等于零

B.金属棒所受各力的合力所做的功等于mgh和电阻R上产生的焦耳热之和

C.恒力F与重力的合力所做的功等于棒克服安培力所做的功与电阻R上产生的焦耳热之和D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热

答案AD

解析棒匀速上升的过程中,恒力F做正功、重力G做负功、安培力F安做负功.根据动能定理得:W=W F+W G+W安=0,故A对,B错;恒力F与重力G的合力所做的功等于棒克服安培力做的功,而棒克服安培力做的功等于回路中电能(最终转化为焦耳热)的增加量,故C 错,D对.

1.(电磁感应中的动力学问题)如图5所示,MN和PQ是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计,ab是一根与导轨垂直且始终与导轨接触良好的金属杆,开始时,将开关S断开,让杆ab由静止开始自由下落,过段时间后,再将S闭合,若从S 闭合开始计时,则金属杆ab的速度v随时间t变化的图象不可能是下图中的()

图5

答案 B

解析 S 闭合时,若金属杆受到的安培力B 2l 2v R >mg ,ab 杆先减速再匀速,D 项有可能;若

B 2l 2v

R =mg ,ab 杆匀速运动,A 项有可能;若B 2l 2v

R <mg ,ab 杆先加速再匀速,C 项有可能;由于

v 变化,mg -B 2l 2v

R

=ma 中a 不恒定,故B 项不可能.

2.(电磁感应中的动力学问题)(多选)如图6所示,有两根和水平方向成α(α<90°)角的光滑平行的金属轨道,上端接有滑动变阻器R ,下端足够长,空间有垂直于轨道平面向上的匀强磁场,磁感应强度为B ,一根质量为m 、电阻不计的金属杆从轨道上由静止滑下且始终与导轨接触良好.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m ,则( )

图6

A .如果

B 增大,v m 将变大

B .如果α变大(仍小于90°),v m 将变大

C .如果R 变大,v m 将变大

D .如果m 变小,v m 将变大 答案 BC

解析 金属杆由静止开始下滑的过程中,金属杆就相当于一个电源,与滑动变阻器R 构成一个闭合回路,其受力情况如图所示,

根据牛顿第二定律得: mg sin α-B 2L 2v R

=ma

所以金属杆由静止开始做加速度逐渐减小的加速运动,当a =0时达到最大速度v m ,即mg sin α=B 2L 2v m R ,可得:v m =mgR sin αB 2L 2

,故由此式知选项B 、C 正确.

3.(电磁感应中的能量问题)(多选)(2019·昆明市第一中学月考)如图7,一平行导轨静置于水平桌面上,空间中有垂直于导轨平面向下的匀强磁场,磁感应强度为B ,粗糙平行导轨间距为L ,导轨和阻值为R 的定值电阻相连,质量为m 的导体棒和导轨垂直且接触良好,导体棒的电阻为r ,导体棒以初速度v 0向右运动,运动距离s 后停止,此过程中电阻R 产生的热量为

Q ,导轨电阻不计,重力加速度为g ,则( )

图7

A .导体棒克服安培力做的功为R +r

R Q

B .通过电阻R 的电荷量为q =BLs

r +R

C .导体棒与导轨间产生的摩擦热为1

2m v 02-Q

D .导体棒与导轨间的动摩擦因数μ=v 202gs -r +R

mgsR Q

答案 ABD

解析 由功能关系可知,导体棒克服安培力做的功等于回路中产生的热量,R 上产生的热量为Q ,根据串联电路中焦耳热按电阻分配可知,W 安=Q 焦=R +r

R Q ,故A 正确;根据公式q

ΔΦr +R =BLs r +R

可知,故B 正确;由能量守恒可知,1

2m v 02=Q 焦+Q 摩,所以导体棒与导轨间

产生的摩擦热为Q 摩=12m v 02-R +r R Q ,故C 错误;由C 项分析可知,Q 摩=12m v 02

-R +r R

Q =

μmgs ,解得:μ=v 20

2gs -r +R mgsR

Q ,故D 正确.

4.(电磁感应中的力电综合问题)(2020·怀化市高二期中)如图8甲所示,足够长、电阻不计的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:

图8

(1)判断金属棒两端a 、b 的电势高低;

(2)磁感应强度B 的大小;

(3)0~1.5 s 内,电阻R 上产生的热量.

答案 (1)a 端电势低,b 端电势高 (2)0.1 T (3)0.26 J

解析 (1)由右手定则可知,ab 中的感应电流由a 流向b ,ab 相当于电源,则b 端电势高,a 端电势低.

(2)由题图乙x -t 图象可知,t =1.5 s 时金属棒的速度为: v =Δx Δt =11.2-72.1-1.5

m /s =7 m/s

金属棒匀速运动时所受的安培力大小为:F =BIL 又I =E

R +r ,E =BL v

根据平衡条件有:F =mg 联立并代入数据解得:B =0.1 T

(3)0~1.5 s 时间内,金属棒的重力势能减小,转化为金属棒的动能和电路的内能.设电路中产生的总焦耳热为Q

根据能量守恒定律有:mgx =1

2m v 2+Q

代入数据解得:Q =0.455 J

故R 产生的热量为Q R =R

R +r

Q =0.26 J

1.如图1所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都忽略不计.开始时,给ef 一个向右的初速度,则( )

图1

A .ef 将向右做非匀减速运动,最后停止

B .ef 将向右做匀减速运动,最后停止

C .ef 将向右做匀速运动

D .ef 将做往返运动 答案 A

解析 ef 向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到速度减小为0停止运动,由F =BIl =B 2l 2v

R =ma 知,ef 做的是加速度逐渐减小

的减速运动,故A 正确.

2.如图2所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动,t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,能正确描述上述过程的是( )

图2

答案 D

解析 导线框进入磁场的过程中,线框受到向左的安培力作用,根据E =BL v 、I =E

R 、F 安=

BIL 得F 安=B 2L 2v

R ,随着v 的减小,安培力F 安减小,根据F 安=ma 知,导线框做加速度逐

渐减小的减速运动.整个导线框在磁场中运动时,无感应电流,导线框做匀速运动,导线框离开磁场的过程中,线框受到向左的安培力,根据F 安=B 2L 2v

R =ma 可知,导线框做加速度

逐渐减小的减速运动,所以选项D 正确.

3.如图3所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置时的加速度大小关系为( )

图3

A .a 1>a 2>a 3>a 4

B .a 1=a 2=a 3=a 4

C .a 1=a 3>a 2>a 4

D .a 1=a 3>a 2=a 4 答案 C

4.(多选)(2019·天津市武清区等五区县高二下期中)如图4所示,正方形闭合导线框abcd ,置于磁感应强度大小为B 、方向垂直纸面向里的匀强磁场上方h 处.线框由静止自由下落(不计空气阻力),线框平面始终在竖直平面内,且dc 边与磁场的上边界平行,则下列说法正确的是( )

图4

A .dc 边刚进入磁场时,线框中产生的感应电动势一定最大

B .线框进入磁场的过程中一定做减速运动

C .线框进入磁场的过程中加速度不可能变大

D .线框从释放到完全进入磁场的过程中,线框减少的重力势能等于它增加的动能与产生的焦耳热之和 答案 CD

解析 线框在磁场中所受安培力F =BIL =B 2L 2v R .线框刚进入磁场时,若mg >F ,则线框具有

向下的加速度,做加速运动,速度增大,E =BL v 增大,则当cd 边刚进入磁场时,线框中产生的感应电动势不是最大,故A 错误;线框刚进入磁场时,若mg >F ,mg -B 2L 2v

R =ma ,a >0,

线框做加速运动,v 增大,则合力减小,a 减小;若mg

R

=ma ,a <0,线框

减速运动,v 减小,则合力减小,a 减小;若mg =F ,则a =0,v 不变,即线框做匀速直线运动,故线框进入磁场的过程其加速度可能变小,可能为零,不可能变大,故C 正确.根据能量守恒定律知,线框从释放到完全进入磁场的过程中,线框减少的重力势能等于它增加的动能与产生的焦耳热之和,故D 正确.

5.如图5所示,质量为m 的金属圆环用不可伸长的细线悬挂起来,金属圆环有一半处于水平且与环面垂直的匀强磁场中,从某时刻开始,磁感应强度均匀减小,则在磁感应强度均匀减小的过程中,关于线的拉力大小,下列说法中正确的是(重力加速度为g )( )

图5

A .大于环重力mg ,并逐渐减小

B .始终等于环重力mg

C .小于环重力mg ,并保持恒定

D .大于环重力mg ,并保持恒定 答案 A

解析 根据楞次定律知圆环中感应电流的方向为顺时针方向,再由左手定则判断可知圆环所受安培力方向竖直向下,对圆环受力分析,根据受力平衡有F T =mg +F 安,得F T >mg ;根据法拉第电磁感应定律知,I =E R =ΔΦR Δt =ΔB

R Δt S ,可知I 为恒定电流,由F 安=BIL 可知,B 减小,

则F 安减小,故由F T =mg +F 安知F T 减小,选项A 正确.

6.如图6所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行于MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行于MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则 ( )

图6

A .Q 1>Q 2,q 1=q 2

B .Q 1>Q 2,q 1>q 2

C .Q 1=Q 2,q 1=q 2

D .Q 1=Q 2,q 1>q 2

答案 A

解析 根据功能关系知,线框上产生的热量等于克服安培力做的功,即Q 1=W 1=F 1l bc =

B 2l 2ab v

R l bc =B 2S v R l ab

同理Q 2=B 2S v

R l bc ,又l ab >l bc ,故Q 1>Q 2;

因q =I t =

E

R t =ΔΦR =BS

R

,故q 1=q 2,因此A 正确. 7.(多选)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图7所示.金属棒和导轨的电阻不计.现将金属棒从轻弹簧原长位置由静止释放,则( )

图7

A .释放瞬间金属棒的加速度等于重力加速度g

B .金属棒向下运动时,流过电阻的电流方向为a →b

C .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v

R

D .电阻上产生的总热量等于金属棒重力势能的减少量 答案 AC

解析 释放瞬间,金属棒只受重力作用,所以其加速度等于重力加速度,选项A 正确;金属棒向下切割磁感线,由右手定则可知,流过电阻的电流方向为b →a ,选项B 错误;当金属棒的速度为v 时,感应电流I =BL v R ,则安培力F =BIL =B 2L 2v

R ,选项C 正确;由能量守恒可知,

重力势能的减少量等于轻弹簧弹性势能的增加量与电阻上产生的总热量之和,选项D 错误. 8.如图8所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,金属棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,金属棒在竖直向上的恒力F 作用下加速上升的一段时

间内,力F 做的功与安培力做的功的代数和等于( )

图8

A .金属棒的机械能增加量

B .金属棒的动能增加量

C .金属棒的重力势能增加量

D .电阻R 上产生的热量 答案 A

解析 金属棒加速上升时受到重力、拉力F 及安培力.根据功能关系可知,力F 与安培力做功的代数和等于金属棒的机械能的增加量,A 正确.

9.如图9所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,二者平滑连接.右端接一个阻值为R 的定值电阻.平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场.质量为m 、接入电路的电阻也为R 的金属棒从高度为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨垂直且接触良好,重力加速度为g .则金属棒穿过磁场区域的过程中( )

图9

A .流过金属棒的最大电流为Bd 2gh

2R

B .通过金属棒的电荷量为BdL

R

C .克服安培力所做的功为mgh

D .金属棒产生的焦耳热为1

2mg (h -μd )

答案 D

解析 金属棒沿弯曲部分下滑过程中,机械能守恒,由机械能守恒定律得:mgh =1

2m v 2,金

属棒到达平直部分时的速度v =2gh ,金属棒到达平直部分后做减速运动,刚到达平直部分时的速度最大,则最大感应电动势E =BL v ,最大感应电流I =E R +R =BL 2gh

2R ,故A 错误;

通过金属棒的电荷量q =I Δt =

ΔΦ2R =BdL

2R

,故B 错误; 金属棒在整个运动过程中,由动能定理有:mgh -W 安-μmgd =0-0,则克服安培力做功:

W 安=mgh -μmgd ,故C 错误;

克服安培力做的功转化为焦耳热,定值电阻与金属棒的电阻相等,通过它们的电流相等,则金属棒产生的焦耳热:Q ′=12Q =12W 安=1

2

mg (h -μd ),故D 正确.

10.(多选)(2019·福州市质量检测)如图10所示,在磁感应强度为B 、方向竖直向下的匀强磁场中,水平放置两条平行长直导轨MN ,导轨间距为L .导轨左端接一电阻R ,金属杆ab 垂直导轨放置,金属杆和导轨的电阻不计,杆与导轨间接触良好且无摩擦.现对金属杆施加一个与其垂直的水平方向恒力F 使金属杆从静止开始运动.在运动过程中,金属杆速度大小v 、恒力F 的功率P 、金属杆与导轨形成的回路中磁通量Φ等各量随时间变化图象正确的是( )

图10

答案 AD

解析 根据牛顿第二定律知,杆的加速度为:a =F -F A m =F -BIL m =F -B 2L 2v

R

m ,由于速度增大,

则加速度减小,可知杆做加速度逐渐减小的加速运动,当加速度等于零时,速度最大,则有

F =F Am =B 2L 2v m R ,解得v m =FR

B 2L

2,以后做匀速直线运动,故A 正确;恒力F 的功率为P =F v ,

且P m =F v m =B 2L 2v 2m

R

,因开始阶段v -t 关系不是线性关系,故选项B 错误;随速度的增大,

感应电动势增大,则根据E =ΔΦ

Δt 可知,回路磁通量的变化率增加;当速度最大时磁通量的变

化率不变,即Φ-t 图线的斜率先增大后不变,故选项C 错误,D 正确.

11.如图11所示,abcd 区域中存在一个垂直纸面向里的有界匀强磁场,磁感应强度为B ,bc 边距地面高度为L

2,正方形绝缘线圈MNPQ 竖直放置,质量为m ,边长为L ,总电阻为R ,

PQ 边与地面间的动摩擦因数为μ,重力加速度为g ,在水平恒力F 的作用下向右做直线运动通过磁场区域,下列说法正确的是( )

图11

A .线圈进入磁场过程中感应电流的方向沿QMNP

B .线圈MN 边完全处于磁场中运动时,MQ 两点间电势差为0

C .线圈进入磁场的过程中通过线圈导线某横截面的电荷量为BL 2

2R

D .线圈进入磁场过程中若F =B 2L 2v

4R +μmg ,则线圈将以速度v 做匀速直线运动

答案 C

解析 由右手定则可以判断,线圈进入磁场过程中感应电流的方向沿QPNM ,A 错误;线圈MN 边完全处于磁场中运动时,磁通量不变,则回路中电流为零,MQ 两点间电势差大小为

1

2BL v ,B 错误;由q =I ·Δt =ΔΦ

R 可得,线圈进入磁场过程中通过线圈导线某横截面的电荷量

q =BL 2

2R ,C 正确;线圈进入磁场过程中MN 受向下的安培力,则线圈所受的向左的摩擦力大

于μmg ,NP 受到的向左的安培力大小为F 安=B ·12BL v R ·L 2=B 2L 2v

4R ,因此,线圈进入磁场过程

中若所受摩擦力和安培力的合力大于拉力F =B 2L 2v

4R +μmg ,线圈将减速进入磁场,D 错误.

12.(2019·成都市双流中学高二月考)如图12所示,两根等高的四分之一光滑圆弧轨道,半径为r 、间距为L ,图中Oa 水平,Oc 竖直,在轨道顶端连有一阻值为R 的电阻,整个装置处

在一竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L 、质量为m 、电阻不计的金属棒从轨道的顶端ab 处由静止开始下滑,到达轨道底端cd 时受到轨道的支持力大小为2mg .整个过程中金属棒与轨道垂直且接触良好,轨道电阻不计,重力加速度为g .求:

图12

(1)金属棒到达轨道底端cd 时的速度大小和通过电阻R 的电流;

(2)金属棒从ab 下滑到cd 过程中回路中产生的焦耳热和通过R 的电荷量. 答案 (1)gr

BL gr R (2)12mgr BrL

R

解析 (1)金属棒到达轨道底端cd 时,由牛顿第二定律得: 2mg -mg =m v 2

r

解得v =gr

此时金属棒产生的感应电动势E =BL v 回路中的感应电流I =E

R

联立解得I =BL gr

R

(2)金属棒从ab 下滑到cd 过程中,由能量守恒定律得mgr =Q +1

2m v 2

则回路中产生的焦耳热Q =1

2mgr

回路中的平均感应电动势E =

ΔΦΔt =BLr Δt 回路中的平均感应电流I =E R

通过R 的电荷量q =I ·Δt 联立解得q =BrL

R

.

13.(2019·齐齐哈尔市高二期末)如图13所示,一个足够长的矩形金属框架与水平面成θ=37°角,宽L =0.5 m ,上端有一个电阻R 0=2.0 Ω,框架的其他部分的电阻不计,有一垂直于框

架平面向上的匀强磁场,磁感应强度B =1.0 T ,ab 为金属杆,与框架垂直且接触良好,其质量m =0.1 kg ,接入电路的电阻r =0.5 Ω,杆与框架间的动摩擦因数μ=0.5,杆由静止开始下滑到速度达到最大值的过程中,电阻R 0产生的热量Q 0=2.0 J(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8).求:

图13

(1)通过R 0的最大电流; (2)ab 杆下滑的最大速度;

(3)从开始下滑到速度最大的过程中ab 杆下滑的距离. 答案 (1)0.4 A (2)2 m/s (3)13.5 m

解析 (1)杆达到最大速度后, ab 中的最大电流为I m , 由平衡条件得:BI m L +μmg cos θ=mg sin θ 解得:I m =0.4 A

(2)由闭合电路欧姆定律得:E m =I m (R 0+r )=1.0 V 由法拉第电磁感应定律有:E m =BL v m 解得v m =

E m BL = 1.0

1.0×0.5

m /s =2 m/s (3)电路中产生的总焦耳热Q 总=R 0+r R 0Q 0=5

4Q 0=2.5 J

由动能定理得mgx sin θ-μmgx cos θ-Q 总=1

2m v m 2

解得ab 杆下滑的距离x =13.5 m.

(含答案)电磁感应中的动力学问题

电磁感应中的动力学问题分析 一、基础知识 1、安培力的大小 由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2、安培力的方向判断 3、导体两种状态及处理方法 (1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4、解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 二、练习 1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金

属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v . (2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 解析 (1)对匀速下滑的导体棒进行受力分析如图所示. 导体棒所受安培力F 安=BIl ① 导体棒匀速下滑,所以F 安=Mg sin θ② 联立①②式,解得I =Mg sin θBl ③ 导体棒切割磁感线产生感应电动势E =Bl v ④ 由闭合电路欧姆定律得I =E R +R x ,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2 (2)由题意知,其等效电路图如图所示. 由图知,平行金属板两板间的电压等于R x 两端的电压. 设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥ 要使带电的微粒匀速通过,则mg =q U d ⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ 2、如图所示,两足够长平行金属导轨固定在水平面上,

电磁感应动力学问题归纳.doc

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1.动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零, 导体达到稳定运动状态。此时 a=0,而速度 v 通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动 . 2.两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析 . 3.常见的力学模型分析: 类型“电—动—电”型 示 意 图 棒 ab 长为 L,质量 m,电阻 R,导轨光 滑,电阻不计 BLE F S 闭合,棒 ab 受安培力R ,此时 BLE “动—电—动”型 棒 ab 长 L ,质量 m,电阻 R;导轨光滑,电阻不计 棒 ab 释放后下滑,此时 a g sin ,棒ab 速度 v↑→感应电动势E=BLv ↑→电 分 a mR ,棒ab速度v↑→感应电动势I E 析 BLv ↑→电流 I ↓→安培力 F=BIL ↓→ 加速度 a↓,当安培力F=0 时, a=0, v 最大。 运动 变加速运动 形式 最终 v m E 状态BL 匀速运动流 R ↑→安培力F=BIL↑→加速度a↓,当安培力 F mg sin 时, a=0, v 最大。 变加速运动 mgR sin v m 2 L2 匀速运动 B 4.解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. ( 3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). ( 4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

高考物理--电磁感应中的动力学问题(习题)

第61课时 电磁感应中的动力学问题(题型研究课) [命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。这类问题能很好地提高学生的综合分析能力。 (一) 运动切割类动力学问题 考法1 单杆模型 [例1] (2016·全国甲卷) 水平面(纸面)间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g 。求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 单杆模型的分析方法 (1)电路分析:导体棒相当于电源,感应电动势E =BLv ,电流I = E R +r 。 (2)受力分析:导体棒中的感应电流在磁场中受安培力F 安=BIL ,I =BLv R +r ,F 安=B 2L 2v R +r 。 (3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。 考法2 双杆模型 [例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t =0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。 (2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab 和cd ,构成矩形回路。在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd 静

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框有可随金属框同步移动的磁场,OO′CD区域磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域磁场如图(c)所示,AB恰在磁场边缘以(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知() A. 小车的水平长度l=15 cm B. 磁场的宽度d=35cm C. 小车的位移x=10 cm时线圈中的电流I=7 A D. 线圈通过磁场的过程中线圈产生的热量Q=1.92J

应用动力学和能量观点处理电磁感应问题

应用动力学和能量观点处理电磁感应问题 (限时:45分钟) 1.(2014·浙江·24)某同学设计一个发电测速装置,工作原理如图1所示,一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R 3的圆盘,圆盘和金属棒能随转轴一起 转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g =10 m/s 2) 图1 (1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小; (3)求此下落过程中铝块机械能的损失. 答案 (1)正极 (2)2 m/s (3)0.5 J 解析 (2)由电磁感应定律得U =E =BR ·Rω2=1 2BωR 2 v =rω=1 3ωR 所以v =2U 3BR =2 m/s. (3)ΔE =mgh -1 2m v 2 ΔE =0.5 J. 2.(2014·天津·11)如图2所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m ,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN .Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg 、电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、

电磁感应的能量问题

电磁感应的能量问题 电磁感应中的动力学问题 1.安培力的大小 ?? ? ?? 感应电动势:E=Blv 感应电流:I= E R+r 安培力公式:F=BIl ?F= B2l2v R+r 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动――→ E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→ F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2)基本思路是: 电磁感应中的能量问题 1.能量的转化 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即:其他形式的能如:机械能 ――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能 (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

电磁感应中的能量问题

电磁感应中的能量问题 【教学目标】 1、理解电磁感应现象中的能量转化关系。 2、掌握利用功能关系解决电磁感应问题的一般思路和方法。 3、培养学生在电磁感应现象中利用动能定理、能量守恒定律解决实际问题的能力。 【教学重点】 1、通过对电磁感应现象的分析,理解电磁感应现象中各种能量的转化关系。 2、学生归纳利用功能关系解决电磁感应问题的一般思路和方法。 【教学难点】 1、理解电磁感应现象中各种能量的转化关系。 2、利用动能定理、能量守恒定律解决电磁感应现象问题。 【教学方法】 1、学生通过小组合作学习,归纳总结电磁感应现象中的各种能量转化关系。 2、通过自主学习、合作探究、学生展示、教师指导解决学习中存在的疑问。 【活动过程】 活动一:学生自主完成例1,小组合作交流探究成果,教师点拨,学生归纳电磁感应现象中的能量转化关系。 【例1】两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在一个匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面、与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高,如图所示,在这一过程中,(D) A.作用于金属棒上的各个力的合力做的功不等于零 B.作用于金属棒上的各个力的合力做的功等于mgh与电阻R 上发出的焦耳热之和 C.恒力F与安培力的合力所做的功等于零 D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热

【互动探究】如果金属导轨不光滑,恒力F 作用下棒加速上滑,能量转化又有什么关系?活动二:完成巩固训练1,总结利用功能关系解决电磁感应问题的一般思路和方法。 【巩固训练1】如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为v 时,受到安培力的大小为F ,此时( B C D)A .电阻R 1消耗的热功率为F v 3 B .电阻R 2消耗的热功率为 F v 6C .整个装置因摩擦而消耗的热功率为μmg v cos θ D .整个装置消耗的机械功率为(F +μmg cos θ)v 活动小结:电磁感应现象中的能量转化关系: 重力做功重力势能的变化 合外力做功动能的变化 除重力以外其他力做功机械能的变化 摩擦力做功摩擦产生的热量 安培力做功电能的变化 安培力做正功,电能转化为其他形式的能(电动机) 安培力做负功,电能转化为其他形式的能(发电机)

(完整word版)电磁感应中的动力学和能量问题(一)

电磁感应中的动力学与能量问题(一) 制卷:田军 审卷:张多升 使用时间:第三周周一 班级: 姓 名: 考点一 电磁感应中的动力学问题分析 1.安培力的大小 由感应电动势E =Blv ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2.安培力的方向判断(如右图) 3.处理此类问题的基本方法: (1)用法拉第电磁感应定律和楞次定律求出感应电动势的大小 和方向; (2)求回路中的电流的大小和方向; (3)分析导体的受力情况(含安培力); (4)列动力学方程或平衡方程求解。 4.电磁感应现象中涉及的具有收尾速度的问题,关键要抓好受力情况和运动情况的动态分析 5.两种状态及处理方法 (1)平衡状态(静止状态或匀速直线运动状态):根据平衡条件(合外力等于零)列式分析; (2)非平衡状态(a 不为零):根据牛顿第二定律进行动态分析或结合功能关系分析。 考点二 电磁感应中的能量问题分析 1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能. (3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能. 2.求解思路 (1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算. (2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安 培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减 少量等于产生的电能. 巩固练习 1.如上图所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一定值电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( ) A.ef 将减速向右运动,但不是匀减速 B.ef 将匀减速向右运动,最后停止 C.ef 将匀速向右运动 D.ef 将做往返运动 2.如图所示,匀强磁场存在于虚线框内,矩形线圈竖直下落.如果线圈中受到的磁场 力总小于其重力,则它在1、2、3、4位置时的加速度关系为( ) A.a 1>a 2>a 3>a 4 B.a 1=a 2=a 3=a 4 C.a 1=a 3>a 2>a 4 D.a 4=a 2>a 3>a 1 3.如图所示,两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一质量为m 的金属杆从轨道上 由静止滑下,经过足够长的时间后,金属杆的速度会达到最大值v m ,则( ) A.如果B 增大,v m 将变大 B.如果α增大,v m 将变大 C.如果R 增大,v m 将变大 D.如果m 减小,v m 将变大

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

电磁感应中的力学问题和能量问题

电磁感应中的力学问题和能量问题

————————————————————————————————作者:————————————————————————————————日期:

四、电磁感应中的力学问题和能量问题 电磁感应中的力学问题与能量转化问题 1.考点分析: 电磁感应的题目往往综合性较强,与前面的知识联系较多,涉及力学知识(如牛顿运动定律、功、动能定理、能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。 2.知识储备: (1)计算感应电动势大小的两种表达式: t N ??=φε,θεsin Blv = (2)判断产生的感应电流的方向方法:楞次定律, 右手定则 (3)安培力计算公式:F =BIl 3.基本方法: a. 确定电源( ??→?=+= r R E I E 感应电流 ??→?=BIl F 运动导体受到的安培力?→? 合外力??→?=ma F a 变化情况?→?运动状态的分析?→?临界状 态) b. 在受力分析与运动情况分析的同时,又要抓住能量转化和守恒这一基本规律,分析清楚哪些力做功,就可以知道有哪些形式的能量参与了转换,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就将其他形式能转化为电能,做正功将电能转化为其他形式能;然后利用能量守恒列出方程求解. 3.典例分析 一、电磁感应现象中的力学问题 【例1】如图所示,有两根足够长、不计电阻,相距L 的平行光滑金属导轨cd 、ef 与水平面成θ角固定放置,底端接一阻值为R 的电阻,在轨道平面内有磁感应强度为B 的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce 、垂直于导轨、质量为m 、电阻不计的金属杆ab ,在沿轨道平面向上的恒定拉力F 作用下,从底端ce 由静止沿导轨向上运动,当ab 杆速度达到稳定后,撤去拉力F ,最后ab 杆又沿轨道匀速回到ce 端.已知ab 杆向上和向下运动的最大速度相等.求:拉力F 和杆ab 最后回到ce 端的速度v . θ a F b B R c d e f

电磁感应中的动力学能量

电磁感应中的动力学能量问题 突破一电磁感应中的动力学问题 1.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析 2.电学对象与力学对象的转换及关系 1.如图所示,竖直平面内有一宽L=1 m、足够长的光滑矩形金属导轨,电阻不计。在导轨的上、下边分别接有电阻R1=3 Ω和R2=6 Ω。在MN上方及CD下方有垂直纸面向里的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B=1 T。现有质量m=0.2 kg、电阻r=1 Ω的导体棒ab,在金属导轨上从MN上方某处由静止下落,下落过程中导体棒始终保持水平,与金属导轨接触良好。当导体棒ab下落到快要接近MN时的速度大小为v1=3 m/s。不计空气阻力,g取10 m/s2。 (1)求导体棒ab快要接近MN时的加速度大小; (2)若导体棒ab进入磁场Ⅱ后,棒中的电流大小始终保持不变,求磁场Ⅰ和Ⅱ之间的距离h;

2.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( ) A.电容器两端的电压为零 B.电阻两端的电压为BLv C.电容器所带电荷量为CBLv D.为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R 突破二 电磁感应中的能量问题 1.电磁感应中的能量转化 2.求解焦耳热Q 的三种方法 3.解电磁感应现象中的能量问题的一般步骤 (1)在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源。 (2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。 (3)根据能量守恒列方程求解。 1(2015·天津理综)如图所示, “凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l 。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动,在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q 。线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g 。求:

相关文档
最新文档