矩阵计算习题及答案

矩阵计算习题及答案
矩阵计算习题及答案

1、选择题

1)下列变量中 A 是合法的。

A. Char_1,i,j *y, C. X\y, a1234 D. end, 1bcd

2)下列 C 是合法的常量。

A. 3e10

B. 1e500

C.

D. 10-2

3)x=uint8,则x所占的字节是 D 个。

A. 1

B. 2

C. 4

D. 8

4)已知x=0:10,则x有 B 个元素。

A. 9

B. 10

C. 11

D. 12

5)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。

A. Ones(2,3)

B. Ones(3,2)

C. Eye(2,3)

D. Eye(3,2)

6)a=

123

456

789

??

?

?

?

??

,则a(:,end)是指 C 。

A.所有元素

B. 第一行元素

C. 第三列元素

D. 第三行元素

7) a=

123

456

789

??

?

?

?

??

,则运行a(:,1)=[] 命令后 C 。

变成行向量 B. a数组成2行2列 C. a数组成3行2列 D. a数组没有元素

8)a=

123

456

789

??

?

?

?

??

,则运行命令 mean(a)是 B 。

A. 计算a的平均值

B. 计算a每列的平均值

C. 计算a每行的平均值数组增加一列平均值

9)已知x是一个向量,计算 ln(x)的命令是 B 。

A. ln(x)

B. log(x)

C. Ln(x)

D. lg10(x)

10)当a=时,使用取整函数得到3,则该函数名是 C 。

B. round

C. ceil

D. floor

11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。

A. a+b

B. a./b

C. a'*b

D. a*b

12)已知a=4,b=‘4’,下面说法错误的是 C 。

A. 变量a比变量b占用的空间大

B. 变量a、b可以进行加减乘除运算

C. 变量a、b数据类型相同

D. 变量b可以用eval计算

13)已知s=‘显示“hello”’,则s 元素的个数是 A 。

A. 12

B. 9

C. 7

D. 18

14)运行字符串函数strncmp('s1','s2',2),则结果为 B 。

A. 1

B. 0

C. true

D. fales

15)命令day(now)是指 C 。

A. 按日期字符串格式提取当前时间

B. 提取当前时间

C. 提取当前时间的日期

D. 按日期字符串格式提取当前日期

16)有一个2行2列的元胞数组c ,则c(2)是指 D 。

A. 第1行第2列元素内容

B. 第2行第1列元素内容

C. 第1行第2列元素 D .第2行第1列元素

17)以下运算中哪个运算级别最高 B 。

A. *

B. ^

C. ~=

D. /

18)运行命令bitand(20,15)的结果是 C 。

A. 15

B. 20

C. 4

D. 5

19)使用检测函数isinteger(15)的结果是 B 。

A. 1

B. 0

C. true

D. fales

20)计算三个多项式s1、s2和s3的乘积,则算式为 C 。

A. conv(s1,s2,s3)

B. s1*s2*s3

C. conv(conv(s1,s2),s3)

D. conv(s1*s2*s3)

以下写出MATLAB命令序列,并给出结果

2.复数向量a=2+3i,b=3-4i,计算a+b,a-b,c=a*b,d=a/b,并计算变量c的实部、虚部、模和相角。

3.用 from:step:to的方式和linspace函数分别得到0~4π步长为π的变量x1,0~4π分成10个点的变量x2。

4.输入矩阵a=

123

456

789

??

?

?

?

??

,使用全下标方式提取元素3,使用单下标方式提取元素8,

取出后两行子矩阵块,使用逻辑矩阵提取

13

79

?? ???

5.输入a 为3×3的魔方阵,b 为3×3的单位阵,将他们生成3×6的大矩阵c 、6×3的大矩阵d ,将d 的最后一行提取生成小矩阵e 。

6.矩阵a=

123

456

789

??

?

?

?

??

用flipud、fliplr、rot90、diag、triu和tril进行操作。并

求其转置、秩、逆矩阵、矩阵的行列式值及三次幂。

8.解线性方程组

1234

124

1234

1234 2328

36

87 73225

x x x x

x x x

x x x x

x x x x

-++=

?

?++=

?

?

-++=

?

?+-+=

?

9.输入字符串变量a 为‘hello ’,将其每个字符后移4个,如‘h ’变为‘l ’,然后再逆序存入变量b 。

10 计算函数2()10sin(4)t f t e t =-,其中t 范围为0到20,步长为,g (t )为f (t )大于0的部分,计算g (t )的值。

11.矩阵a=

123

456

789

??

?

?

?

??

,使用数组信息获取函数求其行列数、元素个数,是否为稀疏

矩阵、是否为字符型。

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

2014矩阵分析试卷

2014矩阵分析试卷 一、判断题(不要求证明)(20分) 1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ ) 2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r 的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变 换。 ( × ) 4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n R 上的对称变换。 ( √ ) 二、计算题 1. (1,1,1,1)T 2. 已知1 12212W ={,},W ={,}Span a a Span b b ,而 1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1; 12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3 3. 23:,()R R A ββ→=A A ,基 123(1,0,0),(0,1,0);(0,0,1) ααα===及基 12(1,0),(0,1)ββ==下的矩阵为110=211T B ?? ? ?? 。 4. (10分)设线性变换22:R R →A ,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ??? ,求A 的核为{k(-2,1)| k}T ?、值域的基1 2+2β β,维数1。 6.(8分)求矩阵11010=0111123131A ?? ? ? ??? 的满秩分解 7.(24分)设矩阵308=3-16-20-5A ?? ? ? ??? ,求可逆矩阵P ,使得1 P AP -为约当阵。 A E -λ = ??? ? ? ??+-+---502613803 λλλ→ ????? ??++2)1(0001 0001λλ,

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 12 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差1 11 X σ=的方差 21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.83511 00.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ?? ?

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0 的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此 即对称矩阵组成(1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间, 只需找出(1) 2 n n +个向量线性无关,并且集合中任何一个向量都可以用这 (1) 2n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 12341231211203x x x x x x x x x x +++++?? ??=????+???? 于是 12341231,2x x x x x x x +++=++= 1210,3x x x +==

矩阵分析复习题(带有90%答案位置)

矩阵分析复习题 1.设r V 是n 维线性空间n V 的一个r 维子空间,r ααα,,,21 是r V 的一组基,证明这组向量必可扩充为整个空间的基。即,在n V 中必可找到r n -个向量n r r ααα,,,21 ++,使得n r r αααα,,,,,11 +是n V 的一组基。 2.证明:如果21,V V 是线性空间V 的子空间,那么它们的和21V V +也是V 的子空间. 答案:13页, 定理3. 3.设12,V V 是线性空间V 的子空间,证明: )dim()dim()dim()dim(212121V V V V V V -+=+. 答案:16页,定理7. 4.设)0,1,2,1(1=α,)1,1,1,1(2-=α,)1,0,1,2(1-=β,)7,3,1,1(2-=β. {}211,αα=Span V ,{}212,ββ=Span V .求(1)21V V +的基与维数;(2)21V V 的基与维数. 答案:14页,例6. 5.设12,V V 是线性空间V 的两个子空间,证明以下论断等价: (1)12V V +是直和; (2)零向量分解式唯一(即,若1211220,,,V V α+α=α∈α∈则120α=α=.); (3){}120V V = ; (4)dim (12V V +)=dim (1V )+ dim (2V ). 答案:18页,定义2 & 定理8 6.在线性空间][x C n 中,取两组基 n x x x ,,,,12 (Ⅰ) n x n x x ! 1,,!21,,12 (Ⅱ) D 为微分算子。(1)求由(Ⅰ)到(Ⅱ)的过渡矩阵;(2)求线性变换D 在两组基下的矩阵。 答案:35页 例6.

矩阵分析试题A参考答案及评分标准样本

重庆邮电大学 级研究生(矩阵分析)考卷( A 卷) 参考答案及评分细则 一 、 已知 1(1,2,1,0)T α=, 2(1,1,1,1)T α=-, 1(2,1,0,1)T β=-, 2(1,1,3,7)T β=- 求12{,}span αα与12{,}span ββ的和与交的基和维数。( 10分) 解: 因为 12{,}span αα+12{,}span ββ=1212{,,,}span ααββ (2分) 由于秩1212{,,,}ααββ=3, 且121,,ααβ是向量组1212,,,ααββ的一个极大相信无关组, 因此和空间的维数是3, 基为121,,ααβ。 (2分) 设{}1212{,},span span ξααββ∈ 于是由交空间定义可知11221122k k l l ξααββ=+=+ 此即 121211212111 011030117k k l l -???????? ? ? ? ?-- ? ? ? ?+--= ? ? ? ? ? ? ? ????????? 解之得1122122,4,3(k l k l l l l =-==-为任意数) (2分) 于是 11222[5,2,3,4]T k k l ξαα=+=-, 1122l l ξββ=+(很显然) 因此交空间的维数为1, 基为T [-5,2,3,4] (2分) 二、 证明: Jordan 块 10()0100a J a a a ?? ??=?? ???? 相似于矩阵 0000a a a εε?? ???? ???? , 这里0ε≠为任意实数。( 10分) 证明: 由于容易求出两个λ-矩阵的不变因子均为31,1,()a λ-, 从而这两个λ-矩阵相似,

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该 迭代函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商公 式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残

相关文档
最新文档