高炉炉缸侵蚀监控系统的应用研究

高炉炉缸侵蚀监控系统的应用研究
高炉炉缸侵蚀监控系统的应用研究

1080m3高炉炉缸侵蚀状况的分析

摘要:为了延长某钢厂高炉(有效容积1080m3)炉缸的工作寿命,开发了计算炉缸侵蚀状况的数学模型。利用该模型

计算了高炉从2011年9月至2013年4月十九个月的侵蚀状况,发现该高炉的炉缸受到了较大的侵蚀,炉底已经侵蚀到

第一层陶瓷垫的底部,形成了锅底状的侵蚀。

关键词:高炉;炉缸;侵蚀状况;数学模型

Analysis of erosion situation of hearth in 1080m3Blast Furnace Abstract: For prolonging the campaign of hearth in a 1080 m3 Blast Furnace, a mathematical model is developed to compute the erosion situation of the hearth. With the model, the position of erosion line is calculated from Sep. 2011 to Apr. 2013. It is found that the hearth of the Blast Furnace is seriously eroded, at the bottom the 1150 erosion line touched the bottom of the first layer of ceramic pad.

Key words: Blast Furnace; Hearth; erosion situation; mathematical model

1前言

高炉生产实现高效与长寿的统一,一直是炼铁工作者关注的课题。提高高炉生产效率,可以降低

生铁成本[1];延长高炉寿命可以节约大修费用,以及减少大修期间产量损失[2]。实际上,高炉寿命受

诸多因素影响,如炉型设计、耐火材料质量等因素,但所有这些因素在投产前已经定型。投产后,炉

缸炉底的是影响高炉寿命的重要因素,原因是在高炉冶炼过程中,高炉炉缸炉底的工作条件尤其恶劣,侵蚀、破坏的速度十分迅速,且不能象高炉其他部位那样,在生产过程中修补,可以说炉龄长短主要

取决于炉缸、炉底耐材的侵蚀状况。而炉缸、炉底的破坏是化学、流体动力学及热变形共同作用的结

果[3]。

炉缸、炉底侵蚀破坏的机理和原因,冶金工作者们做了大量探讨和研究,但由于客观条件的限制,只能局限在停炉、拆炉后才能确定最终的侵蚀状态[4,5,6]。

近二、三十年中,高炉生产被迫停炉的主要原因已经不再是炉体问题,而是炉缸砖衬受到严重侵蚀,这种现象越来越突出[7,8]。因此,对炉缸炉底的监测仅停留在散点跟踪己不能满足需要,开展高炉

炉缸炉底侵蚀数学模型研制,并利用该模型监视炉缸、炉底等温线、热流强度变化具有重要的意义。

本文介绍了炉缸侵蚀数学模型的计算原理,以及运用该模型计算某厂高炉炉缸状况的结果,并进

行了分析。

2计算原理

针对某厂高炉的侵蚀情况,开发了一个计算炉缸侵蚀状况的数学模型,其中,将高炉炉缸、炉底

按传热的特点进行分区计算:采用将炉底中心、炉缸及炉底拐角部分别计算的方法,在传热情况相对

单一的炉底中心区和炉缸区采用一维稳态传热计算,计算中考虑耐火材料导热系数随温度的变化;在

传热情况复杂的炉底拐角区采用定节点、定形状、变步长且耐火材料导热系数随温度变化的稳态有限

差分的方法进行计算。

3炉缸侵蚀情况分析

3.1炉壁侵蚀情况的分析

根据某厂高炉从2011年9月至2013年4月十九个月数据,运用高炉炉缸侵蚀模型,计算出炉缸

炉底的侵入深度。如图1为2011年9月炉缸侵蚀横截面图,图2为2013年4月炉缸侵蚀横截面图,1

号风口侧炉缸拐角处侵蚀较严重。从图3中可以看出炉缸在这十九个月中受到了较大的侵蚀,炉底位

置侵蚀严重,已经侵蚀到第一层陶瓷垫的底部,形成了类似锅底状的侵蚀。在绝对高度8610mm的水

平面,1150线位置在1号至7号风口侧位置发生较大的变化,其余风口处1150侵蚀线位置相应的降低,在各个铁口侧1150侵蚀线的位置均出现向外侧和下部延伸的现象。5号、10号、15号和20号铁口侧

在炉缸拐角处侵蚀较严重。

图 1 2011年9月炉缸侵蚀横纵截面云图和等温线图

图 2 2013年4月炉缸侵蚀纵截面云图和等温线图

图 3 2011年9月-2013年4月炉缸侵蚀线的对比3.2 炉底部分的侵蚀情况

(a) 炉底中心处的1150侵蚀线位置的变化趋势图

(b) 炉底中心处的侵蚀深度的变化趋势图

图4 炉底中心处陶瓷垫的侵蚀深度

由图4可以看出,炉底中心在2011年9月至2012年2月侵蚀较为迅速,从2011年9月侵入的最低深度153mm逐渐加剧侵蚀,侵入深度接近300mm。从2012年2月至2012年8月侵蚀情况非常稳定,并有所缓解。从2012年8月至2012年11月侵蚀情况加剧,并在2011年11月侵入深度达到最高值377mm。2012年11月之后侵蚀情况较为稳定,并且在2013年2月出现较小的侵蚀深度,2013年2月之后的两个月,侵蚀情况有所加剧。总的看来,炉底中心侵蚀情况较为严重,侵蚀线接近第一层陶瓷垫的底部,总体的侵蚀深度的变化波动很大。炉底中心处的1150侵蚀线位置十几个月变化很小,最高位置出现在2012年11月,接近第一层陶瓷垫下沿的位置。

4结论

(1)针对某厂高炉的侵蚀情况,开发了一个计算炉缸侵蚀状况的数学模型,其中,将高炉炉缸、炉底按传热的特点进行分区计算。

(2)根据某厂高炉从2011年9月至2013年4月十九个月数据,运用高炉炉缸侵蚀模型,发现炉缸受到了较大的侵蚀,炉底已经侵蚀到第一层陶瓷垫底部,形成了类似锅底状的侵蚀。

参考文献

[1] 施月循,王德民,王文忠.高炉炉缸炭砖脆化层的形成及防止[J].东北大学学报,1996(1):20~24.

[2] 张皖菊,张影,杜钢.高炉炉缸炉底侵蚀机理研究进展[J].钢铁研究,2001(12):10~14.

[3] 吴启常,黄晓煜.高炉长寿技术研究[J].鞍钢技术,2003(1):1~9.

[4] F. Yan, Q. C. Zhou, D. Huang, et al. 3-D Computational Modeling of a Blast Furnace Hearth [C]. AISTech 2004 Proceedings,

Nashville TN, 2004: 249~260.

[5] D. Roldan, Y. Zhang, R Deshpande, et al. 3-D CFD Analysis for Blast Furnace Hearth Wear [C]. AISTech 2006 Proceedings,

Cleveland OH, 2006: 167~176.

[6] S. P. Mehrotra, Y. C. Nand.Heat balance model to predict salamander penetration and temperature profiles in the sub-hearth

of an iron blast furnace[J].ISIJ InternationaI,1993 (8):839~846.

[7] S. J. Gdula, R Biaeecki, K Kurpisz, et a1.Mathematical model of steady state heat transfer in blast furnace hearth and

bottom[J].Transactions ISIJ,1985:380~385.

[8] H. W. Gudenau, M Scheiwe, A Sieger,et al.Simulation of thermo-chemical and thermo-mechanical load in blast furnace

hearth[J].Steel Research,1993 (11):535~541.

阀门的检验及试验规定

目录 一、适用范围 (1) 二、检查、检验和补充检验 (1) 三、压力试验 (4) 四、压力试验程序 (8) 五、合格证书 (10) API Std 598-1996 阀门的检验和试验规定 一、适用范围 1. 本标准适用于对闸阀、截止阀、旋塞阀、球阀、止回阀、蝶阀的 检查、检验,补充检验和压力试验的要求。 但经采购方与阀门制造厂商定,API598也可用于其它类阀门。 2. 检查要求适用于由制造厂进行的检验和试验及采购方要求在制造 厂内进行任何补充试验。 试验要求的适用于在制造厂内进行的需要的和任选的压力试验。 3. 本标准所规定的试验和检验如下: a. 壳体试验 b. 上密封试验 c. 低压密封试验 d. 高压密封试验 e. 铸件的外观检验 f. 高压气体壳体试验 二、检查、检验和补充检验 1、在阀门制造厂内的检查。 采购方将在订单中规定要在制造厂内检查阀门,并见证阀门的检验和试验,可自由进入制造厂内与其有关的任何部门。 2、在阀门制造厂外的检查

当采购方规定,检查包括在制造厂外制造的壳体部件时,应在制造地接受采购方检查。 3、检查范围 检查范围可在订单中规定,除另外说明外,检查应限于下列各 项。 1)在装配过程中对阀门进行检查,以保证符合订单中的规定, 检查可包括使用规定的无损检验方法。 2)现场见证需要和规定任选的压力试验和检验。 3)现场见证任何补充检验。 ?各种补充检验仅在订单中规定时,并仅在规定范围内进行。 ?铸钢件或锻钢件的MT、RT、PT、UT应符合ASME B16.34 第8章或采购方自己的验收准则。 ?这些检验应在采购方现场见证的情况下,由阀门制造厂进行。 4)审查加工记录和无损检验记录(包括规定的RT记录). 4、阀门检验 1)制造厂应对所有的阀体、阀盖和密封件的铸件进行外观检验, 以保证符合MSS SP-55的规定。 2)制造厂应对每个阀门进行检验,以保证符合本标准和采购规 范。 3)所有的检验均应按根据相应标准编制的书面程序进行。 5、检验内容(此条参照SH3518规定) 1)阀体上应有制造厂铭牌:型号、公称压力、公称通径及制造厂 名称等标识。 2)质量证明文件:包括制造厂名称、出厂日期、产品名称、型号 及规格、公称压力、公称通径、适用介质及适用温度、依据的标准、检验结论及检验日期、出厂编号、检验人员及负责检验人员签章。 3)设计要求作低温密封试验的阀门,应有制造厂的低温密封试验 合格证明书。 4)铸钢阀门的MT和RT由供需双方协定,如需检验,厂方应按 合同要求的标准检验,并出具报告。

消防远程监控系统

城市消防远程监控系统技术需求书 一、项目总体目标 本项目总体目标是建设城市消防远程监控系统。系统在保持现有建筑消防设施正常运行的情况下,将建筑物内火灾自动报警系统等消防设施的运行情况通过现代网络技术实时传输到城市消防监控管理中心,实时监督建筑消防设施的运行状况,对于设施不能正常使用的情况进行有效管理。同时,对于突发的火情,在最短时间内作出有效的甄别,确认后的火警,立即传输到城市119消防调度指挥中心接警系统。系统与单位火灾探测器同步显示报警不超过15秒钟的预警时间,以及火灾发生后,系统显示的起火单位各种消防设施运行状态,能为灭火组织指挥提供宝贵的信息支持。 要求建设完成后的系统应能提高119消防指挥中心的自动化预警能力,减少因延误报警所造成的损失,更好地掌握受理火警的主动权,同时能加强对重点消防系统的监控,随时掌握各单位消防系统的动态,及时发现故障,予以维护服务,提高城市消防管理水平。建设数据传输及计算机网络传输方式的报警监控通讯网络,对城市各单位的火灾报警系统进行联网监测、监控,及时向消防指挥中心提供准确的消防系统运行和报警信息。 系统对用户火灾报警系统的日常监测信息进行分析,建立用户管理信息库,为消防指挥调度提供铺助决策,以提高对火灾的处理能力。协助消防部门做好各单位消防设备维护,管理值班员的培训考核,使其达到会使用、会操作、会维护水平,以保证系统的正常运行。根据监控中心接收到火警信息和报警设备的运行信息,为本市消防部门做好管理工作和报警后的辅助手段,达到从原有的人防转向技防,从而使得我市消防工作达到信息化、网络化管理模式,从整体上提高我市的消防管理水平,最大限度降低火灾风险,减少火灾隐患,达到保证人民生命及财产安全的目标。 二、设计方案要求 1. 系统设计目标 根据城市消防远程监控系统项目的建设要求,该项目的总体设计目标是: (1)建立城市消防远程监控中心,使城市建筑自动消防设施得到进一步有效治理,规范行业管理、多方面向社会提供优质的服务,树立消防服务的新形象。 (2)确保建筑消防设施的正常运行。要求系统启用后,每日24小时不间断运行,随时监测联网单位消防设施的运行信息,如果消防自动报警设施被违章关闭或故障,系统立即作出反应,监控中心的管理人员立即采取相应的措施,通知其单位恢复开通。如果因故障而停机或局部停止工作,系统同样作出反应,监控中心迅速安排人员排除故障,从而有效解决了因人为擅自关闭自动消防设施,而又不能及时发现的问题。 (3)要求系统从技术手段上对其单位的自动消防设施进行全天候的监控,确保消防设施的正常运行。 (4)利用管理中心的专业技术人员实力和先进设备,无条件支持消防部队的调度指挥中心、自动化办公系统技术及维护,做到资源共享。 (5)对社会新建、改建、扩建、已建的自动消防设施提供检测服务。 (6)根据入网防火单位消防设施日常运行状态,为防火监管部门提供火灾事故调查依据。 (7)通过消防网络监控管理,向社会免费提供有关消防产品质量、选型咨询。向消

远程图像监控系统技术条件书

广电集团东莞供电分公司 220KV板桥变电站远程图像监控系统技术条件书 广东省电力设计研究院 2004年9月

目录 1. 引言 2. 系统技术要求 2.1 引用标准 2.2 监控对象 2.3 系统功能 2.4 视音频图像技术要求 2.5 结构要求 2.6 设备环境条件要求 2.7 设备先进性和可靠性要求 2.8 软件要求 2.9 抗干扰措施及施工技术要求 2.10 主要性能指标要求 3. 供货清单 4. 工程管理 4.1 双方工作界面 4.2 设计联络与培训 4.3 资料和图纸 4.4 工程设计 4.5 电缆敷设 4.6 设备安装调试 4.7 现场试验验收(SAT) 4.8 售后服务要求

1.引言 本技术条件书适用于东莞供电分公司220kV板桥变电站智能图像监控系统订货招标。 2.系统技术要求 2.1 引用标准 QB/001-123.01-2002 《广电集团电力远程图像监控系统技术标准》 GB/T17626-1998 《电磁兼容试验和测量技术》 GB2887-89 《计算机场地技术条件》 GB/T13850-1998 《交流电量转换为模拟量或数字信号的电测量变送 器》 GBJ115-87 《工业电视系统工程设计标准》 GB/T16435.1-1996 《远动设备及系统接口(电气特性)》 GB/T17626.2 《静电放电抗扰度试验》 GB/T17626.3 《射频电磁场辐射抗扰度试验》 GB/T17626.4 《电快速瞬变脉冲群抗扰度试验》 GB/T17626.5 《浪涌(冲击)抗扰度试验》 GB/T17626.6 《射频场感应的传导骚扰抗扰度》 GB/T17626.8 《工频磁场的抗扰度试验》 GB50217-94 《电力工程电缆设计规范》 DL/T621-1997 《交流电气装置的接地》 《火力发电厂、变电所二次线设计技术规定》 《电力系统实时数具通信应用协议》ITU/T H.200系列标准 ITU/T H.120系列标准 ITU/T H.323标准 2.2 监控对象 (1) 变电站厂区内环境。

远程视频监控系统设计方案

目录 1前言 (2) 2系统的组成 (3) 2.1前端设备 (3) 2.2图像的传输。 (3) 2.3控制中心 (4) 2.3.1图像的控制。 (4) 2.3.2图像的显示设备。 (4) 2.3.3图像的记录设备。 (4) 2.4系统结构图 (5) 3系统功能介绍 (6) 4系统配置 (10) 5费用说明 (11)

远程视频监控系统方案 1前言 当今视频是一个高速发展、日新月异的社会,社会安全生产问题也是日益复杂、多种多样,对安全生产的监管工作也要求与时俱进,采用新技术、新方法、新系统来进行合理有效的监管和指导。现在的建筑工地开工面积大、地域分布广,对监管巡查工作带来很大难度,对生产安全问题不能及时有效的控制。对目前的工作难点和经后工作的长远发展,特采用《远程视频监控系统》对施工工地进行监管。 远程视频监控系统是一门被人们日益重视的新兴专业,就目前发展看,应用普及越来越广,科技含量越来越高。几乎所有高新科技都可促进其发展,尤其是信息时代的来临,更为该专业发展提供新动力。远程视频监控系统可不间断,全方位的对施工工地进行远程监控和记录,可实现无人值守的全天候监控。可让施工工地长期有效的得到监督和指导,同时也可以减少人为因素对监管工作的影响。 远程视频监控系统在国防、公安、消防等众多领域得到广泛应用,也取得了很好的实用效果,对各领域的监管工作起到了很大的促进作用,也对监管工作的高效、创新起较大的推动作用。在工程建筑行业的安全生产监管工作中采用此技术是一个新的创举,也是发展的必然。

2系统的组成 远程视频监控系统由前端设备、图像的传输、控制中心、三部分组成。 2.1前端设备 这部分是系统的前沿部分,是整个系统的"眼睛"。它布置在被监控场所的某一位置上,其视场角能覆盖整个被监控场所。当被监控场所面积较大时,为了节省摄像机的数量、简化传输系统及控制与显示系统,在摄像机上加装电动的(可遥控的)可变焦距(变倍)镜头,使摄像机能观察的距离更远、观察得更清楚;有时还把摄像机安装在电动云台上,通过控制台的控制,可以使云台带动摄像机进行水平和垂直方向的转动,从而使摄像机能覆盖的角度更广、面积更大。总之,摄像机就像整个系统的眼睛一样,它把监控的容变为图像信号,传送到控制中心的监视器上。摄像装置主要包含摄像机、镜头、云台、解码器箱、报警探头、紧急按钮等。 2.2图像的传输。 传输部分就是系统的图像信号通路。一般来说,传输部分指的是传输图像信号。但是,由于某些系统除要求传输图像外,还要求传输声音信号,同时。由于需要在控制中心通过控制台对摄像机、镜头、云台、防护罩等进行控制,因而在传输系统中还包含有控制信号的传输,所以这里所讲的传输部分,通常是指由所有要传输的信号形成的传输系统的总和。传输部分的传输介质主要包括视频电缆、控制信号传输电缆、光缆等。如果采用数字摄像机,则需要利用互联网来传送信号,传输线路就是综合布线系统的双绞线。

不锈钢钢材的进场验收

材料 所有材料按照要求进行尺寸、外观、表面质量检查,同时根 据RCCM和材料采购合同中,由于钢材在生产过程由ACPP全程 监造并提供质保第三方见证报告,因此对于进入现场的钢材 针对与不锈钢水池直接接触的不锈钢覆面抽检并按照RCCM规 定进行成份和机械性能检验,不锈钢覆面抽检钢材如下。 ——Z2CN18-10钢板 3mm、4mm、6mm; ——Z2CN17-12钢板 3mm。 检验项目 5. 1 尺寸公差 厚度=3mm钢板,按BTS4.02如下要求:厚度公差±0.1mm, 长度公差±2mm,宽度公差±1mm。 厚度>3mm钢板按照EN10029的规定如下: 不锈钢板厚度 h(mm) 厚度公差(mm) 3<h<5-0.3~+0.9 5≤h<8-0.3~+1.2 8≤h<15-0.3~+1.4 15≤h<25-0.3~+1.6 25≤h<40-0.3~+1.9 40≤h<80-0.3~+2.5 80≤h<150-0.3~+2.9 不锈钢板长度L(mm)长度公差(mm)

L<40000~20 4000≤L<60000~30 6000 ≤L<80000~40 不锈钢板宽 宽度公差(mm) D(mm) 600≤D<20000~20 2000≤D<30000~25 5. 2 外观检查 所有钢板必须进行目检,钢板表面必须平坦而均匀,不得凹凸 不平、卷边、起泡、裂纹和夹渣。钢板切割到交货状态尺寸 后,应按MC7100 要求对边缘进行目检,不得有开裂和分层 (例如,在轧制过程中引出细小夹杂物夹层)现象。如必 要,按MC4000 的规定进行液体渗透检验。 验收准则 只允许下列情况: a)对于2 级设备钢板 ——钢板厚度≤40mm 时,允许呈现长度≤8mm 的线性痕迹, 钢板厚度>40mm 时,允许呈现长度≤10mm 的线性痕迹。 另外,当钢板的使用条件有可能导致层状撕裂的危险时,则 只允许存在下述的密集显示,在缺陷最密集的1 米范围内, 显示总长度为: ——钢板厚度≤40mm 时,<30mm; ——钢板厚度>40mm 时,<40mm。 如果相邻两个痕迹间距小于其中较小者长度的两倍时,则可 视为一个痕迹。 其总长度等于两个痕迹长度之和再加上两个痕迹之间的距

机房环境监控系统方案

AYLCE机房综合监控系统解决方案 1.概述 通过对某客户机房动力和环境集中监控系统项目需求的分析和我们多次对机房现场勘察及与技术管理人员的沟通和交流,我们推荐选用最新版的专业机房动环设备集中监控管理软件――“AYLCE机房综合监控系统”。该系统可以很好实现对计算机机房的动力(包括供配电、防雷、UPS、蓄电池)、环境(包括温湿度、空调监测、漏水监测)、安保(视频监控、门禁)等三部分的各个子系统进行现场实时监控和管理。通过采用先进的计算机技术、网络通讯技术、视频传输技术、图像处理技术和软件组态技术等,可方便地实现对各个智能设备运行状态、运行参数的显示、处理和存储等;并可实现各子系统之间的数据流动,并且具有强大的联动功能;同时,本系统的故障自动检测与专家诊断功能以及丰富的报警功能,也极大地减轻了机房维护人员负担,在提高了机房系统的可靠性的同时提高了整个机房的运行效率,实现了对于机房的科学管理。强大的二次开发接口,内置完整VBScript,兼容各种通用控件,能够及其方便快速地对用户的特殊需求作开发,完全不必担心影响系统稳定性。 通过AYLCE机房综合监控系统对所有的信息、报警事件进行记录,实现相关信息采集的实时化以及报警信息处理的自动化,为某客户的信息化、网络化系统提供一个稳定、安全的机房环境保障。 2.设计依据 ◆用户机房动力环境集中监控需求 ◆《电子信息系统机房设计规范(GB 50174-2008)》 ◆《电子计算机机房设计规范(GB 50174-93)》 ◆《计算机站场地技术条件(GB 2887-89)》 ◆《计算机站场地安全要求(GB 9361-88)》 ◆《通信局(站)电源、空调及环境集中监控管理系统(YDt 1363.2-2005)》 ◆《智能建筑设计标准(GB/T50314-2006)》 ◆《低压配电设计规范(GB 50054-95)》

4高炉炉缸热流强度控制标准[1]1

邯钢4#高炉炉底炉缸热流强度控制标准 (试行) 随着高炉的强化,维护炉缸的重要性和迫切性日益突出,高炉炉缸状态已经成为高炉一代寿命的关键,因此从高炉投产之日起就应加强对炉缸的监测与维护,对炉缸状况做到预知与可控,以实现安全生产和高炉长寿。为此特制定本标准。 一、控制标准 1、热流强度(单位:kcal/m2.h) (1)正常值:≤7000 (2)报警值:7000~10000 (3)警戒值:10000~12000 (4)危险值:>12000 (5)极度危险:15000 2、水温差(℃) 根据上述热流强度控制界限,确定相应各部位水温差(此表水量为2005年3月3日实测全部出水头分段取各自的平均值,水压0.4Mpa)控制界限如下: 一段二段二段铁口三段 三段铁口 3-1,3-3 三段铁口 3-4,3-20 三段铁口 3-2 三段渣口 3-10,3-11 四段 连接方式双联双联单联双联单联单联单联双联双联冷却面积 m2 3.646 2.82 1.41 3.256 1.367 1.702 1.628 3.138 3.006 水量m3/h 12.1 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.1 正常值℃≤2.1 ≤1.5 ≤0.8 ≤1.8 ≤0.8 ≤0.9 ≤0.9 ≤1.7 ≤1.7 报警值℃ 2.1~3.0 1.5~2.2 0.8~1.1 1.8~2.5 0.8~1.1 0.9~1.3 0.9~1.3 1.7~2.4 1.7~2.5 警戒值℃ 3.0~3.6 2.2~2.6 1.1~1.3 2.5~3.0 1.1~1.3 1.3~1.6 1.3~1.5 2.4~2.9 2.5~3.0 危险值℃>3.6 >2.6 >1.3 >3.0 >1.3 >1.6 >1.5 >2.9 >3.0 极危险℃ 4.5 3.3 1.6 3.8 1.6 2.0 1.9 3.7 3.7

塔吊远程安全监控系统的研究与设计

塔吊远程安全监控系统的研究与设计 摘要:近年来,塔吊在建筑行业得到大量应用。但是由于塔吊的超限作业和塔 吊群干涉碰撞等引发的各类安全事故频繁发生,造成了巨大的生命财产损失。为 了满足塔吊安全监控和管理的需要,研发塔吊的远程安全监控系统已经越来越得 到建筑安全监察部门和相关领域企业的关注。 关键词:塔式起重机;塔吊事故;远程安全监控 中图分类号:TU71 文献标识码:A 文章编号:1006-4311(2010)03-0242-02 1 塔吊的应用与组成 塔吊(塔式起重机)是现代建筑业起重、运输、吊装作业的主导机械,起源 于西欧,第一项有关建筑用塔吊专利颁发于1900年[1]。我国的塔吊行业起步于 20世纪50年代,2002年成为世界上首个塔吊年产量突破10000台的国家[2]。目 前我国取得生产许可证的塔吊生产厂达400余家,仅黑龙江省建筑工地运行的塔 吊在8000到10000台,并以每年近千台的数量增加。塔吊可以分为基础、塔身、顶升、回转、起升、平衡臂、起重臂、起重小车、塔顶、司机室、变幅等部分。 基础是塔吊安装在地面上的部分;塔身是塔吊的身子,也是升高的部分;顶升是 使得塔吊可以升高的部分;回转是保持塔吊上半身可以水平旋转的部分;起升机 构用来将重物提升起来的部分;平衡臂架是保持力矩平衡的部分;起重臂架是提 升重物的受力部分;小车是用来安装滑轮组和钢绳以及吊钩的,是直接受力部分;塔顶是用来保持臂架受力平衡的部分;司机室是操作的地方;变幅是使小车沿轨 道运行的部分。 2 塔吊事故及监控现状 近年来塔吊运行安全事故频繁发生,仅2007年塔吊倒塌事故就发生16起事故,死亡65人。在发生的事故中各种塔吊违规超限操作、超载作业是主因,部 分建筑企业赶工期、抢进度,违规超重、超力矩起吊作业,致使塔吊结构疲劳失稳,发生塔吊群干涉碰撞[3]。目前塔吊作业多应用机械式限位装置保护,性能一般,而且施工单位屏蔽破坏限位装置几近常态;安装塔吊记录仪、塔吊黑匣子进 行监测[4],采用的是封闭式的记录方式,容易遭到屏蔽破坏难于监管,主要用于 事故滞后分析,意义不大。由于目前塔吊数量众多、高空作业、违规操作行为隐 蔽且难于取证,建筑监管部门希望能够远程实时获取塔吊运行状态信息,以保证 对塔吊运行状态进行有效监控。 3 塔吊远程安全监控系统设计 本设计基于传感器技术、嵌入式技术、数据采集技术、数据融合处理、无线 传感网络与远程数据通信技术,高效率地完整实现建筑塔吊单机运行和群塔干涉 作业防碰撞的实时监控与声光预警报警功能。塔吊远程安全监控系统由塔吊终端 监控平台和远程监控管理平台两部分组成。监控终端由布设于塔吊不同位置上的 传感器、基于ARM的控制器、基于GPRS的无线传输模块构成,在实现对塔吊现 场安全监控、运行记录和声光报警的同时,通过远程高速无线数据传输,将塔吊 运行工况安全数据和预警报警信息实时发送到GIS可视化远程监控平台,并能在 报警时自动触发手机短信向相关人员报警,从而实现开放式实时动态的远程监控、远程报警和远程告知。本系统适用于国内普通楼房、高层住宅及其他工程建设项目。 3.1 塔吊终端监控平台

美国sensaphone远程环境监控系统

概述 随着计算机及网络设备的普及化,计算机及网络系统对企业的重要性愈来愈高,其配套的环境设备也日益增多。因此,机房的管理及监控是现代计算机及网络通信机房非常重要的一个环节。 IMS-1000是专为现代计算机及网络通信机房而设计的环境及网络监控报警系统。IMS-1000 除可监视机房内的环境参数外,更可监控网络上的IP 设备。它可通过多种不同的通信方式发送报警信息。而且IMS-1000 已结合了网页服务器及电邮服务器的功能,用户可方便地在互联网或通过电子邮件得到机房的信息。 环境监控 IMS-1000可监控机房的各项环境参数,包括温度、湿度、烟雾报警、声音、漏水、门禁、红外线感应、电源及其它设备,如空调、UPS 的报警等。 IMS-1000更细微到检测机柜内、服务器、散热器或特定设备的温度,比监控空调设备或房间温度更准确。 IP 网络设备监控 IMS-1000可监控网络上的IP 设备,定时检查IP 设备的状态。若该设备没有回应,马上发出报警。 IMS-1000可监控包括路由器、服务器、打印机等所有带有IP 地址的网络设备。 报警信息 当环境参数超出设定的报警范围或网络设备发生故障, IMS-1000马上按照指定的程序及通信方式,向指定的人员名单轮流发放报警信息,直至信息被确认。报警方式有: z 电话 z 传真 z 电邮 z SNMP 信息等 被通知人员名单可由用户设定先后次序,值班时间及假期等。 巡查机房功能 无论您身在何地,都可随时通过多种不同方式得悉机房的状况。您可通过拨号方式进入 IMS-1000系统,也可在互联网上浏览它的网页;或向 IMS-1000发出电邮,IMS-1000会自动以电邮回复;若您身边没有计算机,您也可通过电话, IMS-1000会直接以语音方式告诉您机房的状况。 巡查方式有: z 电话 z 双向电子邮件 z 网页/WAP z 远程接入 z IMS-1000 ConsoleView 等

高炉炉缸长寿的智能化控制

高炉炉缸长寿的智能化控制 王刚邹忠平许俊李爱锋 近十来年,高炉炉缸烧穿的事故频发。据不完全统计,在2000年以后,国内外有数十座高炉炉缸被烧穿。而另有大量高炉出现炉缸侧壁温度升高,事故安全隐患给生产单位带来减产甚至停产的巨大经济损失,给生产管理人员和技术人员带来身心上的无尽折磨。如果有一套在线系统,能够对炉缸长寿状况进行准确全面的监控、对凝铁层减薄原因进行智能诊断、针对长寿状况恶化给出准确的建议措施,从而避免炉缸的异常侵蚀,对提高高炉长寿管理的准确性、及时性和便捷性将大有帮助。在此背景下,本研究将高炉炉缸工艺设计、传热学理论与高炉操作工艺相结合,开发了一套炉缸长寿智能管理系统,在炉缸长寿管理方面取得了良好的效果。 1炉缸长寿机制研究 经过多座1000m3级、2000m3级、3000m3级和4000m3级高炉的炉缸解剖调查发现,炉缸炭砖热面存在一层凝铁层,它阻断了炭砖与铁水的直接接触。炭砖的铁水熔蚀指数也表明,如果炭砖直接暴露在高温的铁水中,40min内炭砖被侵蚀掉15%-30%。因此,炭砖热面形成稳定的凝铁层,是炉缸长寿的关键所在。经过试验研究,凝铁层的主要成分是Fe和C的化合物,通常C能达到10%-30%甚至更高,过饱和的C析出来,以石墨碳的形式存在,另有少量的CaO、SiO2等熔渣凝结物。凝铁层的导热系数在2-10w/(m?K)左右,一般低于炭砖导热系数,这为降低炭砖的温度,防止温度过高而失效发挥了重要作用。 凝铁层稳定形成的条件是炉缸建立稳定有效的传热体系。只要传热体系有效,炭砖受到冷却壁的冷却保护,其热面就会形成凝铁层。有凝铁层的炉缸传热体系如图1所示。 凝铁层的厚度可以通过傅里叶一维传热公式进行计算,通过铁水与1150℃凝固线之间的热流强度与插入炭砖的两支热电偶之间的热流强度相等建立方程。 2炉缸长寿智能管理系统的工艺架构 炉缸长寿智能管理系统由炭砖残厚和凝铁层在线监控模块、炉缸气隙判断模块、炉缸长寿状况判断模块、凝铁层减薄原因诊断模块、长寿状况恶化的智能建议模块组成,5个模块呈递进关系,如图2所示。 3炭砖残厚和凝铁层在线监控 在本系统开发之前,已成功开发基于二维有限元算法的炉缸侵蚀模型,凝铁层的计算是在炉缸侵蚀模型中一并进行计算的。侵蚀模型通过推定炭砖侵蚀线和1150℃等温线,两条线之间区域为凝铁层。 由于侵蚀模型通过对炉缸仪表传回的数据进行在线计算,本系统可对炉缸各个标高和方位的炭砖残厚和凝铁层厚度进行在线动态跟踪,极大地方便了高炉操作者及时了解炉缸的残厚及凝铁层状况。 4炉缸气隙判断 炉缸气隙往往产生于冷却壁与碳素捣打料之间,气隙是破坏炉缸传热体系的重要因素。气隙的导热系数为0.0285w/(m?K),仅约相当于炭砖的1/500,铸铁冷却壁的1/1200,一旦形成气隙,整个传热体系的热阻大大增加,热流密度下降,热量导出减少,大量热量在炭砖积聚,引起炭砖温度升高,凝铁层减薄甚至脱落,最终炭砖遭到侵蚀。因此,判断炉缸是否存在气隙非常重要。气隙一般是由于碳素捣打料捣打不密实、烘炉不彻底等建设期的因素造成的,因此很难彻底治理,一般应结合炭砖

工厂远程实时监控系统方案

远程实时监控系统在 外向型工厂、多点超市连锁、跨地域办公室等场所中的实际应用 ----------- 柳浪随着国家数字信息化的发展以及人们对安防意识的提高,传统的定点监看及录像的监控方式,已渐渐显出其不足的一面,尤其是在外向型工厂、多点超市连锁、跨地域办公室等场所中应用。远程实时监控系统的议题也渐为人们所常谈。 1、概述 在日趋竞争激烈的市场经济中,良好的公司形象宣传和综合的体系(包括监控)管理是必不可少的。那么,怎样才能让客户更进一步的、直观的了解公司的生产实力、厂容厂貌、员工素质、良好的现场管理和展出的样品呢让客户对公司的信心倍增,使而在激烈的商海中运筹帷幄。我想,最捷径的方式不外乎就是通过互联网传遍千家万户。特别是发展海外客户,以上因素都是客人所急于想知道的,良好的公司形象和高效的管理往往能赢得客人的芳心,好比吃了定心丸一样放心的与之长期友好合作。 同样,也便于公司老总随时查看工厂生产环节是否周密协调,有无浪费不必要的生产成本,真正做到安全、高效、低耗。同时免除公司老总辛劳往返于工厂之间的疲惫,腾出更多的时间一心扑在营销外交工作上,稳步发展壮大实力,创造辉煌成就。 2、远程传输的原理及理论

借助着网络信息业的长足发展,很多地方都能用上网络宽频(比如有线电视网、长城宽带网、电信网络快车/ADSL、小区宽带等各门各类的宽频网络),为远程实时监控提供了外部传输技术的支持。在存储技术上,数字硬盘录像机的诞生,把传统的模拟信号转化为数字信号,从M-JPEG、MPEG1、MPEG2乃至当今的MPEG4技术的不断改进,图像画质越来越清晰,而存储容量越来越小,为远程实时监控提供了内部压缩技术的支持。 、互联网接入方式的选择 现在常用的接入方式中,主要有以下三类较为常用: A类:普通电话拔号方式(PSTN、ISDN); B类:专线方式(DDN、ATM、xDSL); C类:局域网转接方式(LAN); 那么,我们就分别谈谈以上各类接入方式的优缺点: A类:普通电话拔号方式(PSTN、ISDN); 基本特点是使用简单方便,要求低。只要有电话的地方,再配上 Modem,申请账号就能直接上网,速率可达56K/s 其缺点也是较为明显的: 1.传输速率慢。 PSTN为56k/s(实际上只有7k/s), ISDN为128k/s(实际上只有14k

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

智能家居远程监控系统

一种基于SMS的智能家居远程监控系统(1) 关键字:SMS智能家居远程监控系统 1 引言 随着生活节奏的加快,生活水平的提高,人们对现代家居的安全性、智能性、舒适性和便捷 性提出了更高的要求。智能家居控制系统就是适应这种需求而出现的新事物,正朝着智能化、远程化、小型化、低成本等方向发展。如今手机已经十分普及,如何让普通百姓只需要 增加少量投入便可以通过手机远程遥控自己家中的电器设备,远程查看设备或安防系统状 况。同时,一旦家中发生煤气泄露、火灾、被盗等安全事故时能够立即获知警报,及时处理。为此本文提出了一种基于SMS和Atmega128 的智能家居远程监控系统。 2 系统结构及工作原理 本文所设计的智能家居远程监控系统由CP U 模块、短信收发模块、电源模块、时钟模块、LCD 显示模块、键盘模块、驱动模块、无线收发模块、检测模块等模块组成,如图 1 所示。系统的工作原理如下:用户通过手机将控制或查询命令以短信的形式通过GSM 网发送到短信收发模块,CPU 再通过串口将短信读入内存,然后对命令分析处理后作出响应,控制相 应电器的开通或关断,实现了家电的远程控制。CPU 定时检测烟感传感器、CO 传感器、门禁系统的信号,一旦家中发生煤气泄露、火灾、被盗等险情时,系统立即切断电源、蜂鸣 器警报并向指定的手机发送报警短信,实现了家居的远程监视。为了达到更人性化的设计, 当用户在家时可通过手持无线遥控器控制各个家电的通断,通过自带的小键盘设定授权手机 号码、权限和设定系统的精确时间等参数。LCD 用来实时显示各电器状态和各个传感器的 状态。 图1 系统结构框图 3 硬件系统设计

远程手机APP综合监控系统解决设计方案

机房远程APP综合监控系统主要是对机房设备(如供配电系统、UPS电源、防雷器、空调、消防系统、保安门禁系统等)的运行状态、温湿度、烟雾、振动、红外、水浸、供电的电压、电流、频率、配电系统的开关状态、测漏系统、环境状态等进行实时监控并记录历史数据 机房监控(机房动环系统)APP软件是怎样的,机房监控,机房动环系统 一、系统概述 机房远程APP综合监控系统主要是对机房设备(如供配电系统、UPS电源、防雷器、空调、消防系统、保安门禁系统等)的运行状态、温湿度、烟雾、振动、红外、水浸、供电的电压、电流、频率、配电系统的开关状态、测漏系统、环境状态等进行实时监控并记录历史数据,同时将机房设备的工作状态的进行实时的视频监控,实现对机房远程监控与管理功能,通过手机APP可对上述全部监控对象进行可靠、准确的监控与控制。使机房无线远程监控达到无人或少人值守,为机房高效的管理和安全运营提供有力的保证。 机房远程APP综合监控系统支持市面全系列安卓手机,手机终端可以通过4G/3G/GPRS/WIFI远程进行监控与控制,是目前无人值守管理人员最不可以缺少的系统组成部分之一,从而有效提高工作效率,保证机房系统运作的安全性与稳定性。 二、系统设计原则 系统设计坚持“技术先进、使用方便、经济合理、超前考虑”的原则,系统具有先进性、实用性、规范性、可靠性、开放性,同时为了保证整个系统稳定可靠,具备良好的整体升级、扩展能力和方便维护,符合机房间远程APP综合管理控制的需要,系统设备选型在符合系统功能要求的前提下,综合的考虑了性能指标、规格统一性及性能价格比。 可靠性 保证系统的高可靠性。即不会出现因为某一个设备发生故障而造成整个监控系统无法使用的现象。 系统的接入不会影响现有通信设备和网络的正常工作。 系统将正确反映监控内容的实际情况。 系统的运行和平均故障修复时间完全符合设计要求。 实时性 保证系统能实时的反映通信设备运行情况,一到那出现异常情况是能够及时报警。 安全性

高炉炉缸传热体系的探讨

高炉炉缸传热体系的探讨 摘要:通过建立炉缸传热体系,结合理论计算,分析了炉缸冷却水、气隙对炉缸传热的影响规律,并对炉缸配置,设计提出了参考建议。 关键词:炉缸传热体系冷却水气隙炉缸配置设计 Discussion of Hearth Thermal Conductivity System Abstract :With setting up hearth heat transfer system, together with theoretical calculation, the cooling water, gas gap affecting hearth conductivity are analyzed in the article, and some suggestions about hearth configuration design are made in the article. Key words: hearth heat transfer system, cooling water, gas gap, hearth configuration design . 1 引言 在高炉强化冶炼的条件下,炉缸寿命已经成为高炉长寿技术的一个限制性环节,而炉缸的组成主包括耐材和冷却系统。炉缸耐材在一代炉役中,需要抵抗铁水的侵蚀,因此其对炉缸寿命有着重要的影响;而冷却水系统主要作用是带走炉缸传出的热量,使炉壳在正常温度下工作,保护炉壳。下面主要对冷却水以及气隙在炉缸传热体系中的影响进行一些探讨。 2 炉缸传热体系分析 各种冷却形式的炉缸传热体系,简单地都可以如图1 所示,炉缸传出热流为: q=(Tm-Tw)/(1/hw+L1/K1+L2/K2+L3/K3+ 1/hm) 炉缸传热体系总热阻为: R=1/hw+L1/K1+L2/K2+L3/K3+1/hm 下面仅从冷却形式和气隙的角度探讨炉缸传热的影响因素。

不锈钢晶间腐蚀控制措施

不锈钢晶间腐蚀控制措施 1 问题的提出 技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境, 焊后应做固 溶或稳定化处理”, 提出这样的要求, 自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条, 要求制造厂进行不锈钢制容器(比如换热器) 的焊后热处理, 由于实际热处理工艺参数难以控制和其他一些意想不到的困难, 通常难以达到设计人员提出的理想要求, 实际上在役的不锈钢设备绝大部分是在焊后态使用。这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式, 那么产生晶间腐蚀的机理是什么? 在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理 晶间腐蚀是一种常见的局部腐蚀, 腐蚀沿着金属或合金晶粒边界或它的临近区域发展, 而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论, 主要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢, 在氧化性或弱氧化性介质中之所以产生晶间腐蚀, 多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区, 钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火, 目的是获得均相固溶体。奥氏体钢中含有少量碳, 碳在奥氏体中的固溶度是随温度下降而减小的。如0Cr18Ni9Ti , 在1100 ℃时, 碳的固溶度约为0. 2 % , 在500~700 ℃时, 约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。( Fe 、Cr) 23C6 的含铬量比奥氏体基体的含铬量高很多, 它的析出自然消耗了晶界附近大量的铬, 而消耗的铬不能从晶粒中通过扩散及时得到补充, 因为铬的扩散速度很慢, 结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr) ,形成贫铬区, 因而钝态受到破坏, 晶界附近区域电位下降, 而晶粒本身仍维持钝态, 电位较高, 晶粒与晶界构成活态———钝态微电偶电池, 电池具有大阴极小阳极的面积比,这样就导致晶界区的腐蚀。 2. 2 晶界杂质选择溶解理论 在生产实践中, 我们还了解到奥氏体不锈钢在强氧化性介质(如浓硝酸) 中也能产生晶间腐蚀, 但腐蚀情况和在氧化性或弱氧化性介质中的情况不同。通常发生在经过固溶处理的钢上,经过敏化处理的钢一般不发生。当固溶体中含有磷这种杂质达100ppm时或硅杂质为1000 - 2000ppm 时, 它们便会偏析在晶界上。这些杂质在强氧化性介质作用下便发生溶解, 导致晶间腐蚀。而钢经敏化处理时, 由于碳可以和磷生成(MP) 23C6 , 或由于碳的首先偏析限制了磷向晶界扩散, 这两种情况都会免除或减轻杂质在晶界的偏析, 就消除或减弱了钢对晶间腐蚀的敏感性。 上述两种解释晶间腐蚀机理的理论各自适用于一定合金的组织状态和一定的介质, 不是互相排斥而是互相补充的。生产实践中最常见的不锈钢的晶间腐蚀多数是在弱氧化性或氧化性介质中发生的,因而绝大多数的腐蚀实例都可以用贫铬理论来解释。 3 引起晶间腐蚀的的介质环境

远程图像监控系统方案设计

远程图像监控系统 方案设计

文档仅供参考 RV- 远程图像监控系统 方 案 设 计 书 5月

目录 目录 ................................................ 错误! 未定义书签。 一、概述 ....................... 错误!未定义书签。 二、系统设计依据和原则 ................. 错误!未定义书签。 2.1 设计依据 ...................... 错误!未定义书签。 2.2 设计原则 ...................... 错误!未定义书签。 (1) 实用性..................... 错误!未定义书签 (2) 先进性.................... 错误!未定义书签 (3) 可靠性.................... 错误!未定义书签 (4) 灵活性.................... 错误!未定义书签 (5) 扩展性.................... 错误!未定义书签 (6) 易用性.................... 错误!未定义书签 三、系统特点、技术参数 ................. 错误!未定义书签。 3.1 系统特点 ...................... 错误! 未定义书签。 采用数字通信技术................... 错误!未定义书签 标准的模块化设计................... 错误!未定义书签 高可靠性和安全性................... 错误!未定义书签 分布式录像体系.................... 错误!未定义书签 采用先进的MPEG软件解压缩............... 错误!未定义书签 3.2 技术参数 ...................... 错误!未定义书签。 四、系统方案设计说明 .................. 错误!未定义书签。

高炉炉缸安全的几个问题探讨资料

高炉炉缸安全的几个问题探讨 前言 近年来,为数不少的高炉在投产不久即出现炉缸耐材温度异常升高,有的高炉甚至短时间被烧穿。导致高炉炉缸快速侵蚀的原因见仁见智。炉缸安全涉及到设计、施工、设备及耐材、操作维护等方面,任何一个环节都能对炉缸安全产生重大影响。本文针对涉及炉缸安全的陶瓷杯结构、炉墙气隙、炭素捣打料、冷却强度、碱金属、烘炉,以及操作维护等热点问题予以了初步探讨,并提出了相应的改进建议。 1. 陶瓷杯对炉缸安全的影响 尽管高炉炉缸有全炭砖和炭砖加陶瓷杯两种不同的结构形式,但获得炉缸长寿的根本机理是相同的,都是为了保护炭砖免遭铁水的侵蚀,而采取不同的措施避免铁水与炭砖的直接接触。全炭砖炉墙通过炭砖的高导热性能使热面温度降到1150℃以下,依靠炭砖热面温度较低的、流动性较小的“粘滞保护层”来隔离铁水,陶瓷杯结构则是人为采用陶瓷质砖衬来隔离铁水,避免炭砖与铁水的直接接触。 有观点将炉缸砖衬温度异常甚至烧穿的主要原因归咎于炭砖热面的陶瓷杯,认为陶瓷杯阻碍了炉渣在炭砖表面形成保护层、铁水会渗透到炭砖热面,对炭砖产生所谓的“熔洞”侵蚀。长期的高炉实践中,全炭砖炉缸、炭砖加陶瓷杯炉缸这两种结构均有长寿实例,也均有炉缸砖衬温度异常甚至烧穿的事故发生。这些客观实例证明这两种形式的炉缸结构都是可行的,但要实现有效隔离铁水进而获得高炉长寿,都是需要条件的。 陶瓷杯存在时,其对炭砖的保护作用是毋容置疑的;陶瓷杯侵蚀后,即转变为全炭砖炉缸结构。只要炭砖质量好,炉墙传热体系有效,炉缸仍是安全的。采用炭砖加陶瓷杯结构的炉缸,其关键点是陶瓷杯必须具有稳定性和密封性的合理结构[1],尽可能提高陶瓷杯的寿命。 陶瓷杯材质、结构不合理,以及陶瓷杯热应力过大都会导致陶瓷杯破损甚至垮塌。在结构设计方面,小块陶瓷杯设计、制造与施工均比较简便,砖缝能够吸收一定的膨胀以释放热应力,但需防止砖缝钻铁,并提高其结构稳定性。大块陶瓷杯的互锁结构,以及较少的砖缝等使其具有较好的稳定

相关文档
最新文档